Tsuneyoshi H, Oriyanhan W, Kanemitsu H, Shiina R, Nishina T, Matsuoka S, Ikeda T, Komeda M. Does the beta2-agonist clenbuterol help to maintain myocardial potential to recover during mechanical unloading?
Circulation 2006;
112:I51-6. [PMID:
16159865 DOI:
10.1161/circulationaha.104.525097]
[Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE
Chronic mechanical unloading induces left ventricular (LV) atrophy, which may impair functional recovery during support with an LV-assist device. Clenbuterol, a beta2-adrenergic receptor (AR) agonist, is known to induce myocardial hypertrophy and might prevent LV atrophy during LV unloading. Furthermore, beta2-AR stimulation is reported to improve Ca2+ handling and contribute to antiapoptosis. However, there is little information on the effects of clenbuterol during LV unloading.
METHODS AND RESULTS
We investigated LV atrophy and function after LV unloading produced by heterotopic heart transplantation in isogenic rats. After transplantation, rats were randomized to 1 of 2 groups (n=10 each). The clenbuterol group received 2 mg.kg(-1).d(-1) of the drug for 2 weeks; the control group received normal saline. The weight of unloaded control hearts was 48% less than that of host hearts after 2 weeks of unloading. Clenbuterol significantly increased the weight of the host hearts but did not prevent unloading-induced LV atrophy. Papillary muscles were isolated and stimulated, and there was no difference in developed tension between the 2 groups. However, the inotropic response to the beta-AR agonist isoproterenol significantly improved in the clenbuterol group. The mRNA expression of myocardial sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a) and fetal gene shift (myosin heavy chain [MHC] mRNA isozyme) was also significantly improved by clenbuterol treatment. There was no difference in beta1-AR mRNA expression between the 2 groups. In contrast, beta2-AR mRNA was significantly decreased in the clenbuterol-treated, unloaded heart. This indicates that clenbuterol may downregulate beta2-ARs. In the evaluation of apoptosis, mRNA expression of caspase-3, which is the central pathway for apoptosis, tended to be better in the clenbuterol group.
CONCLUSIONS
During complete LV unloading, clenbuterol did not prevent myocardial atrophy but improved gene expression (SERCA2a, beta-MHC) and beta-adrenergic responsiveness and potentially prevented myocardial apoptosis. However, chronic administration of clenbuterol may be associated with downregulation of beta2-ARs.
Collapse