1
|
Wang Q, Xu Z, Ai Q. Arginine metabolism and its functions in growth, nutrient utilization, and immunonutrition of fish. ACTA ACUST UNITED AC 2021; 7:716-727. [PMID: 34466676 PMCID: PMC8379419 DOI: 10.1016/j.aninu.2021.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Fish have limited ability in endogenous biosynthesis of arginine. Arginine is an indispensable amino acid for fish, and the arginine requirement varies with fish species and fish size. Recent studies on fish have demonstrated that arginine influences nutrient metabolism, stimulates insulin release, is involved in nonspecific immune responses and antioxidant responses, and elevates disease resistance. Specifically, arginine can regulate energy homeostasis via modulating the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway, and also regulate protein synthesis via activating the target of rapamycin (TOR) signaling pathway. The present article reviews pertinent knowledge of arginine in fish, including dietary quantitative requirements, endogenous anabolism and catabolism, regulation of the endocrine and metabolic systems, and immune-regulatory functions under pathogenic challenge. Our findings showed that further data about the distribution of arginine after intake into specific cells, its sub-cellular sensor to initiate downstream signaling pathways, and its effects on fish mucosal immunity, especially the adaptive immune response against pathogenic infection in different species, are urgently needed.
Collapse
Affiliation(s)
- Qingchao Wang
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture), Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Peter MCS, Gayathry R. Nitric oxide synthase (NOS) inhibitor L-NAME activates inducible NOS/NO system and drives multidimensional regulation of Na + /K + -ATPase in ionocyte epithelia of immersion-stressed air-breathing fish (Anabas testudineus Bloch). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:396-416. [PMID: 33734617 DOI: 10.1002/jez.2454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) has been implicated in Na+ homeostatic control in water-breathing fishes. It is, however, uncertain whether air-breathing fish relies on NO to coordinate Na+ /K+ -ATPase (NKA)-driven Na+ transport during acute hypoxemia. We, thus, examined the action of nitric oxide synthase (NOS) inhibitor, L-NAME on NO availability, inducible NOS (iNOS) protein abundance and the regulatory dynamics of NKA in osmoregulatory epithelia of Anabas testudineus kept at induced hypoxemia. As expected in nonstressed fish, in vivo L-NAME (100 ng g-1 ) challenge for 30 min declined NO production in serum (40%) and osmoregulatory tissues (average 51.6%). Surprisingly, the magnitude of such reduction was less in hypoxemic fish after L-NAME challenge due to the net gain of NO (average 23.7%) in these tissues. Concurrently, higher iNOS protein abundance was found in branchial and intestinal epithelia of these hypoxemic fish. In nonstressed fish, L-NAME treatment inhibited the NKA activity in branchial and intestinal epithelia while stimulating its activity in renal epithelia. Interestingly in hypoxemic fish, L-NAME challenge restored the hypoxemia-inhibited NKA activity in branchial and renal epithelia. Similar recovery response was evident in the NKAα protein abundance in immunoblots and immunofluorescence images of branchial epithelia of these fish. Analysis of Nkaα1 isoform transcript abundance (Nkaα1a, α1b, α1c) also showed spatial and preferential regulation of Nkaα1 isoform switching. Collectively, the data indicate that L-NAME challenge activates iNOS/NO system in the branchial ionocyte epithelia of hypoxemia-stressed Anabas and demands multidimensional regulation of NKA to restore the Na+ transport rate probably to defend against acute hypoxemia.
Collapse
Affiliation(s)
- M C Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, Thiruvananthapuram, Kerala, India.,Department of Zoology, University of Kerala, Thiruvananthapuram, Kerala, India
| | - R Gayathry
- Department of Zoology, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
3
|
Yan JJ, Hwang PP. Novel discoveries in acid-base regulation and osmoregulation: A review of selected hormonal actions in zebrafish and medaka. Gen Comp Endocrinol 2019; 277:20-29. [PMID: 30878350 DOI: 10.1016/j.ygcen.2019.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/26/2019] [Accepted: 03/12/2019] [Indexed: 12/28/2022]
Abstract
Maintenance of internal ionic and acid-base homeostasis is critical for survival in all biological systems. Similar to mammals, aquatic fishes have developed sophisticated homeostatic mechanisms to mitigate metabolic or environmental disruptions in ionic and acid-base status of systemic body fluids via hormone-controlled transport of ions or acid equivalents. The present review summarizes newly discovered actions of several hormones in zebrafish (Danio rerio) and medaka (Oryzias latipes) that have greatly contributed to our overall understanding of ionic/acid-base regulation. For example, isotocin and cortisol were reported to enhance transport of various ions by stimulating the proliferation and/or differentiation of ionocyte progenitors. Meanwhile, stanniocalcin-1, a well-documented hypocalcemic hormone, was found to suppress ionocyte differentiation and thus downregulate secretion of H+ and uptake of Na+ and Cl-. Estrogen-related receptor and calcitonin gene-related peptide also regulate the differentiation of certain types of ionocytes to either stimulate or suppress H+ secretion and Cl- uptake. On the other hand, endothelin and insulin-like growth factor 1 activate the respective secretion of H+ and Na+/Cl through fast actions. These new findings enhance our understanding of how hormones regulate fish ionic and acid-base regulation while further providing new insights into vertebrate evolution, mammalian endocrinology and human disease-related therapeutics.
Collapse
Affiliation(s)
- Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
4
|
Gerber L, Jensen FB, Madsen SS. Dynamic changes in nitric oxide synthase expression are involved in seawater acclimation of rainbow trout Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 2017; 314:R552-R562. [PMID: 29351430 DOI: 10.1152/ajpregu.00519.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent research has shown that nitric oxide (NO) produced by nitric oxide synthases (NOS) is an inhibitor of ion transporter activity and a modulator of epithelial ion transport in fish, but little is known on changes in the NOS/NO system during osmotic stress. We hypothesized that the NOS/NO system responds to salinity changes as an integrated part of the acclimation process. Expression and localization of nos1/Nos1 and nos2/Nos2 were investigated in gill, kidney, and intestine of freshwater (FW)- and seawater (SW)-transferred trout using quantitative PCR, Western blotting, and immunohistochemistry, along with expressional changes of major ion transporters in the gill. The classical branchial ion transporters showed expected expressional changes upon SW transfer, there among a rapid decrease in Slc26a6 mRNA, coding a branchial Cl-/[Formula: see text] exchanger. There was a major downregulation of nos1/ nos2/Nos2 expression in the gill during SW acclimation. A significant decrease in plasma nitrite supported an overall decreased Nos activity and NO production. In the middle intestine, Nos1 was upregulated during SW acclimation, whereas no changes in nos/Nos expression were observed in the posterior intestine and the kidney. Nos1 was localized along the longitudinal axis of the gill filament, beneath smooth muscle fibers of the intestine wall and in blood vessel walls of the kidney. Nos2 was localized within the epithelium adjacent to the gill filament axis and in hematopoietic tissues of the kidney. We conclude that downregulation of branchial NOS is integrated to the SW acclimation process likely to avoid the inhibitory effects of NO on active ion extrusion.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
5
|
Zaccone G, Lauriano ER, Kuciel M, Capillo G, Pergolizzi S, Alesci A, Ishimatsu A, Ip YK, Icardo JM. Identification and distribution of neuronal nitric oxide synthase and neurochemical markers in the neuroepithelial cells of the gill and the skin in the giant mudskipper, Periophthalmodon schlosseri. ZOOLOGY 2017; 125:41-52. [PMID: 28830730 DOI: 10.1016/j.zool.2017.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
Mudskippers are amphibious fishes living in mudflats and mangroves. These fishes hold air in their large buccopharyngeal-opercular cavities where respiratory gas exchange takes place via the gills and higher vascularized epithelium lining the cavities and also the skin epidermis. Although aerial ventilation response to changes in ambient gas concentration has been studied in mudskippers, the localization and distribution of respiratory chemoreceptors, their neurochemical coding and function as well as physiological evidence for the gill or skin as site for O2 and CO2 sensing are currently not known. In the present study we assessed the distribution of serotonin, acetylcholine, catecholamines and nitric oxide in the neuroepithelial cells (NECs) of the mudskipper gill and skin epithelium using immunohistochemistry and confocal microscopy. Colocalization studies showed that 5-HT is coexpressed with nNOS, Na+/K+-ATPase, TH and VAChT; nNOS is coexpressed with Na+/K+-ATPase and TH in the skin. In the gill 5-HT is coexpressed with nNOS and VAhHT and nNOS is coexpressed with Na+/K+-ATPase and TH. Acetylcholine is also expressed in chain and proximal neurons projecting to the efferent filament artery and branchial smooth muscle. The serotonergic cells c labeled with VAChT, nNOS and TH, thus indicating the presence of NEC populations and the possibility that these neurotransmitters (other than serotonin) may act as primary transmitters in the hypoxic reflex in fish gills. Immunolabeling with TH antibodies revealed that NECs in the gill and the skin are innervated by catecholaminergic nerves, thus suggesting that these cells are involved in a central control of branchial functions through their relationships with the sympathetic branchial nervous system. The Na+/K+-ATPase in mitochondria-rich cells (MRCs), which are most concentrated in the gill lamellar epithelium, is colabeled with nNOS and associated with TH nerve terminals. TH-immunopositive fine varicosities were also associated with the numerous capillaries in the skin surface and the layers of the swollen cells. Based on the often hypercapnic and hypoxic habitat of the mudskippers, these fishes may represent an attractive model for pursuing studies on O2 and CO2 sensing due to the air-breathing that increases the importance of acid/base regulation and the O2-related drive including the function of gasotransmitters such as nitric oxide that has an inhibitory (regulatory) function in ionoregulation.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Department of Morphofunctional Imaging, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy.
| | - Eugenia Rita Lauriano
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Michał Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Jagiellonian University Medical Collage, Kopernika 15, 31-501 Krakow, Poland.
| | - Gioele Capillo
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Simona Pergolizzi
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Alessio Alesci
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Atsushi Ishimatsu
- Institute for East China Sea Research, Nagasaki University, 1551-7 Tairamachi, Nagasaki 851-2213, Japan
| | - Yuen Kwong Ip
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Jose M Icardo
- Department of Anatomy and Cell Biology, Polígono de Cazoña, University of Cantabria, 39011 Santander, Spain
| |
Collapse
|
6
|
Gerber L, Madsen SS, Jensen FB. Cortisol regulates nitric oxide synthase in freshwater and seawater acclimated rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2016; 204:1-8. [PMID: 27838356 DOI: 10.1016/j.cbpa.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Cortisol and nitric oxide (NO) are regulators of ion transport and metabolic functions in fish. In the gill, they show opposite effects on Na+/K+-ATPase (NKA) activity: cortisol stimulates NKA activity while NO inhibits NKA activity. We hypothesized that cortisol may impact NO production in osmoregulatory tissues by regulating NO synthase (NOS) expression. We evaluated the influence of cortisol treatment on mRNA expression of Nos1 and Nos2 in gill, kidney and middle intestine of both freshwater (FW) and seawater (SW) acclimated rainbow trout and found both tissue- and salinity-dependent effects. Nos2 expression was down-regulated in the gill by cortisol injection in both FW and SW trout. This was substantiated by incubating gill tissue with cortisol ex vivo. Similarly, cortisol injection significantly down-regulated Nos2 expression in kidney of SW fish but not in FW fish. In the middle intestine, Nos2 expression was up-regulated by cortisol injection in FW but unchanged in SW fish. Nos1 expression was up-regulated by cortisol injection in FW kidney and down-regulated in SW kidney, whereas it was unaffected in gill and middle intestine of FW and SW fish. Our data provide the first evidence that cortisol may influence NO production in fish by regulating Nos expression. Indeed, the down-regulation of Nos2 expression by cortisol in the gill may prevent the inhibitory effect of NO on NKA activity thereby furthering the stimulatory effect of cortisol on ion-transport.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
7
|
Gerber L, Jensen FB, Madsen SS, Marshall WS. Nitric oxide inhibition of NaCl secretion in the opercular epithelium of seawater-acclimated killifish, Fundulus heteroclitus. ACTA ACUST UNITED AC 2016; 219:3455-3464. [PMID: 27591310 DOI: 10.1242/jeb.145045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) modulates epithelial ion transport pathways in mammals, but this remains largely unexamined in fish. We explored the involvement of NO in controlling NaCl secretion by the opercular epithelium of seawater killifish using an Ussing chamber approach. Pharmacological agents were used to explore the mechanism(s) triggering NO action. A modified Biotin-switch technique was used to investigate S-nitrosation of proteins. Stimulation of endogenous NO production via the nitric oxide synthase (NOS) substrate l-arginine (2.0 mmol l-1), and addition of exogenous NO via the NO donor SNAP (10-6 to 10-4 mol l-1), decreased the epithelial short-circuit current (Isc). Inhibition of endogenous NO production by the NOS inhibitor l-NAME (10-4 mol l-1) increased Isc and revealed a tonic control of ion transport by NO in unstimulated opercular epithelia. The NO scavenger PTIO (10-5 mol l-1) supressed the NO-mediated decrease in Isc, and confirmed that the effect observed was elicited by release of NO. The effect of SNAP on Isc was abolished by inhibitors of the soluble guanylyl cyclase (sGC), ODQ (10-6 mol l-1) and Methylene Blue (10-4 mol l-1), revealing NO signalling via the sGC/cGMP pathway. Incubation of opercular epithelium and gill tissues with SNAP (10-4 mol l-1) led to S-nitrosation of proteins, including Na+/K+-ATPase. Blocking of NOS with l-NAME (10-6 mol l-1) or scavenging of NO with PTIO during hypotonic shock suggested an involvement of NO in the hypotonic-mediated decrease in Isc Yohimbine (10-4 mol l-1), an inhibitor of α2-adrenoceptors, did not block NO effects, suggesting that NO is not involved in the α-adrenergic control of NaCl secretion.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - William S Marshall
- Department of Biology, St Francis Xavier University, Antigonish, NS, Canada B2G 2W5
| |
Collapse
|
8
|
Gaw S, Glover CN. A case of contagious toxicity? Isoprostanes as potential emerging contaminants of concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 560-561:295-298. [PMID: 27102276 DOI: 10.1016/j.scitotenv.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/27/2016] [Accepted: 04/01/2016] [Indexed: 06/05/2023]
Abstract
Isoprostanes are useful biomarkers of human and animal health, being representative of oxidative stress processes, and having biological impacts associated with toxicity and disease. Isoprostanes are also chemically stable, a property facilitating population-level health assessments through wastewater sampling. However, as biologically-active entities, the presence of isoprostanes in domestic effluents could have toxic impacts on biota in receiving environments. As such it is proposed that isoprostanes are emerging organic contaminants of particular concern. Fish and aquatic invertebrates may be affected by the presence of isoprostanes in wastewaters through mechanisms such as reproductive impairment, cardiovascular disturbance and/or oxidative stress. This would represent a unique scenario of "contagious" toxicity, whereby human health has a direct toxicological consequence on aquatic animal health.
Collapse
Affiliation(s)
- Sally Gaw
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Chris N Glover
- Faculty of Science and Technology, Athabasca University, Alberta, Canada
| |
Collapse
|
9
|
Martos-Sitcha JA, Mancera JM, Calduch-Giner JA, Yúfera M, Martínez-Rodríguez G, Pérez-Sánchez J. Unraveling the Tissue-Specific Gene Signatures of Gilthead Sea Bream (Sparus aurata L.) after Hyper- and Hypo-Osmotic Challenges. PLoS One 2016; 11:e0148113. [PMID: 26828928 PMCID: PMC4734831 DOI: 10.1371/journal.pone.0148113] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/13/2016] [Indexed: 11/19/2022] Open
Abstract
A custom microarray was used for the transcriptomic profiling of liver, gills and hypothalamus in response to hypo- (38‰ → 5‰) or hyper- (38‰ → 55‰) osmotic challenges (7 days after salinity transfer) in gilthead sea bream (Sparus aurata) juveniles. The total number of differentially expressed genes was 777. Among them, 341 and 310 were differentially expressed in liver after hypo- and hyper-osmotic challenges, respectively. The magnitude of changes was lower in gills and hypothalamus with around 131 and 160 responsive genes in at least one osmotic stress condition, respectively. Regardless of tissue, a number of genes were equally regulated in either hypo- and hyper-osmotic challenges: 127 out of 524 in liver, 11 out of 131 in gills and 19 out of 160 in hypothalamus. In liver and gills, functional analysis of differentially expressed genes recognized two major clusters of overlapping canonical pathways that were mostly related to “Energy Metabolism” and “Oxidative Stress”. The later cluster was represented in all the analyzed tissues, including the hypothalamus, where differentially expressed genes related to “Cell and tissue architecture” were also over-represented. Overall the response for “Energy Metabolism” was the up-regulation, whereas for oxidative stress-related genes the type of response was highly dependent of tissue. These results support common and different osmoregulatory responses in the three analyzed tissues, helping to load new allostatic conditions or even to return to basal levels after hypo- or hyper-osmotic challenges according to the different physiological role of each tissue.
Collapse
Affiliation(s)
- Juan Antonio Martos-Sitcha
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), E-11519, Puerto Real (Cádiz), Spain
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real (Cádiz), Spain
- * E-mail:
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, E-11519, Puerto Real (Cádiz), Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595, Castellón, Spain
| | - Manuel Yúfera
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), E-11519, Puerto Real (Cádiz), Spain
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), E-11519, Puerto Real (Cádiz), Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595, Castellón, Spain
| |
Collapse
|
10
|
Martos-Sitcha JA, MartínezRodríguez G, Mancera JM, Fuentes J. AVT and IT regulate ion transport across the opercular epithelium of killifish ( Fundulus heteroclitus ) and gilthead sea bream ( Sparus aurata ). Comp Biochem Physiol A Mol Integr Physiol 2015; 182:93-101. [DOI: 10.1016/j.cbpa.2014.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/28/2023]
|
11
|
Peter VS. Nitric oxide rectifies acid-base disturbance and modifies thyroid hormone activity during net confinement of air-breathing fish (Anabas testudineus Bloch). Gen Comp Endocrinol 2013; 181:115-21. [PMID: 23153653 DOI: 10.1016/j.ygcen.2012.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 10/31/2012] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO), a short-lived freely diffusible radical gas that acts as an important biological signal, regulates an impressive spectrum of physiological functions in vertebrates including fishes. The action of NO, however, on thyroid hormone status and its role in the integration of acid-base, osmotic and metabolic balances during stress are not yet delineated in fish. Sodium nitroprusside (SNP), a NO donor, was employed in the present study to investigate the role of NO in the stressed air-breathing fish Anabas testudineus. Short-term SNP treatment (1 mM; 30 min) interacted negatively with thyroid axis, as evident in the fall of plasma thyroxine in both stressed and non-stressed fish. In contrast, the cortisol responsiveness to NO was negligible. SNP challenge produced systemic alkalosis, hypocapnia and hyperglycemia in non-stressed fish. Remarkable acid-base compensation was found in fish kept for 60 min net confinement where a rise in blood pH and HCO(3) content occurred with a reduction in PCO(2) content. SNP challenge in these fish, on the contrary, produced a rise in oxygen load together with hypocapnia but without an effect on HCO(3) content, indicating a modulator role of NO in respiratory gas transport during stress response. SNP treatment reduced Na(+), K(+) ATPase activity in the gill, intestine and liver of both stressed and non-stressed fish, and this suggests that stress state has little effect on the NO-driven osmotic competence of these organs. On the other hand, a modulatory effect of NO was found in the kidney which showed a differential response to SNP, emphasizing a key role of NO in kidney ion transport and its sensitivity to stressful condition. H(+)-ATPase activity, an index of H(+) secretion, downregulated in all the organs of both non-stressed and stressed fish except in the gill of non-stressed fish and this supports a role for NO in promoting alkalosis. The data indicate that, (1) NO interacts antagonistically with T(4), (2) modifies respiratory gas transport and (3) integrates acid-base and osmotic actions during stress response in air-breathing fish. Collectively, this first evidence in fish indicate that NO can promote compensatory physiologic modification and that can reduce the magnitude of stress-induced acid-base and osmotic disturbance and that suggests a role for NO in the ease and ease response of this fish.
Collapse
Affiliation(s)
- Valsa S Peter
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India.
| |
Collapse
|
12
|
Evans DH, Hyndman KA, Cornwell E, Buchanan P. Urotensin II and its receptor in the killifish gill: regulators of NaCl extrusion. J Exp Biol 2011; 214:3985-91. [DOI: 10.1242/jeb.065243] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SUMMARY
The peptide urotensin II (UII) and its receptor (UT) mediate cardiovascular and renal effects in both mammals and fishes. In both groups, vasopressor and diuretic responses predominate, although, in mammals, some secondary vasodilatation is found, mediated by secondary release of nitric oxide or prostacyclin. In fishes, gill extrusion of NaCl is inhibited by UII, but a single study has determined that UT is expressed in gill vasculature, not on the epithelium that mediates the transport. To begin to clarify the pathways involved in UII inhibition of gill transport, we have cloned the cDNA encoding UII and UT from the euryhaline killifish (Fundulus heteroclitus L.) gill and spinal cord, quantified UT mRNA expression in various tissues and measured relative expression in gill tissue from fish acclimated to seawater (SW) vs fresh water (FW). We have also localized UT in the gill epithelium, and measured the effect of UII on ion transport across the opercular epithelium. We found that both UII and UT are synthesized in the gill of F. heteroclitus and that gill UT mRNA levels are ∼80% higher in SW- vs FW-acclimated individuals. In addition, UII inhibits NaCl transport across the opercular epithelium in a concentration-dependent manner, and this inhibition is at least partially mediated by both nitric oxide and a prostanoid.
Collapse
Affiliation(s)
- David H. Evans
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Kelly A. Hyndman
- Experimental Medicine Section, Department of Medicine, Georgia Health Sciences University, Augusta, GA 30912, USA
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Emily Cornwell
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| | - Patrick Buchanan
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672, USA
| |
Collapse
|
13
|
Arachidonic acid induces production of 17,20β-dihydroxy-4-pregnen-3-one (DHP) via a putative PGE2 receptor in fish follicles from the Eurasian perch. Lipids 2010; 46:179-87. [PMID: 21184198 DOI: 10.1007/s11745-010-3512-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
The effects of docosahexaenoic, eicosaenoic and arachidonic acids (DHA, EPA and ARA, respectively) on sex-steroid and prostaglandin (PG) production were investigated in Eurasian perch (Perca fluviatilis) follicles using an in- vitro incubation technique. Only ARA was able to induce the production of 17,20β-dihydroxy-4-pregnen-3-one (DHP), the hormone produced by vitellogenic follicles undergoing final meiotic maturation, as well as the production of PGE2 and PGF2α by the follicles. This work also investigated, using a preliminary pharmacological approach, the presence of a functional PGE2-like receptor in fish follicles. Exogenous PGE2 and butaprost (specific agonist of the EP2 receptor) stimulated DHP production. A second experiment assayed the cyclic adenosine monophosphate (cAMP) production by the follicles after 24 h of incubation with the agonist and antagonist of the EP2 receptor. As observed in mammals, we concluded that the cAMP produced in response to PGE2 was probably mediated by an intracellular mechanism via a PGE2-like receptor. This is the first pharmacological indication of this type of receptors in fish follicles. This study also indicates that ARA, and its derivatives, PGE2 and PGF2α, may act on final follicle maturation in Eurasian perch.
Collapse
|
14
|
Evans DH. A brief history of the study of fish osmoregulation: the central role of the Mt. Desert Island Biological Laboratory. Front Physiol 2010; 1:13. [PMID: 21423356 PMCID: PMC3059943 DOI: 10.3389/fphys.2010.00013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/28/2010] [Indexed: 11/22/2022] Open
Abstract
The Mt. Desert Island Biological Laboratory (MDIBL) has played a central role in the study of fish osmoregulation for the past 80 years. In particular, scientists at the MDIBL have made significant discoveries in the basic pattern of fish osmoregulation, the function of aglomerular kidneys and proximal tubular secretion, the roles of NaCl cotransporters in intestinal uptake and gill and rectal gland secretion, the role of the shark rectal gland in osmoregulation, the mechanisms of salt secretion by the teleost fish gill epithelium, and the evolution of the ionic uptake mechanisms in fish gills. This short review presents the history of these discoveries and their relationships to the study of epithelial transport in general.
Collapse
Affiliation(s)
- David H Evans
- Department of Biology, University of Florida Gainesville, FL, USA.
| |
Collapse
|
15
|
Phylogeny, taxonomy, and evolution of the endothelin receptor gene family. Mol Phylogenet Evol 2009; 52:677-87. [PMID: 19410007 DOI: 10.1016/j.ympev.2009.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/28/2009] [Accepted: 04/23/2009] [Indexed: 01/29/2023]
Abstract
A gene phylogeny provides the natural historical order to classify genes and to understand their functional, structural, and genomic diversity. The gene family of endothelin receptors (EDNR) is responsible for many key physiological and developmental processes of tetrapods and teleosts. This study provides a well-defined gene phylogeny for the EDNR family, which is used to classify its members and to assess their evolution. The EDNR phylogeny supports the recognition of the EDNRA, EDNRB, and EDNRC subfamilies, as well as more lineage-specific duplicates of teleosts and the African clawed frog. The duplications for these nominal genes are related to the various whole-genome amplifications of vertebrates, jawed vertebrates, fishes, and frog. The EDNR phylogeny also identifies several gene losses, including that of EDNRC from placental and marsupial (therian) mammals. When coupled with structural and biochemical information, site-specific analyses of evolutionary rate shifts reveal two distinct patterns of potential functional changes at the sequence level between therian versus non-therian EDNRA and EDNRB (i.e., between groups without and with EDNRC). An analysis of linkage maps and tetrapod synteny further suggests that the loss of therian EDNRC may be related to a chromosomal deletion in its common ancestor.
Collapse
|
16
|
Evans DH. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 2008; 295:R704-13. [PMID: 18525009 DOI: 10.1152/ajpregu.90337.2008] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the 1930s, August Krogh, Homer Smith, and Ancel Keys knew that teleost fishes were hyperosmotic to fresh water and hyposmotic to seawater, and, therefore, they were potentially salt depleted and dehydrated, respectively. Their seminal studies demonstrated that freshwater teleosts extract NaCl from the environment, while marine teleosts ingest seawater, absorb intestinal water by absorbing NaCl, and excrete the excess salt via gill transport mechanisms. During the past 70 years, their research descendents have used chemical, radioisotopic, pharmacological, cellular, and molecular techniques to further characterize the gill transport mechanisms and begin to study the signaling molecules that modulate these processes. The cellular site for these transport pathways was first described by Keys and is now known as the mitochondrion-rich cell (MRC). The model for NaCl secretion by the marine MRC is well supported, but the model for NaCl uptake by freshwater MRC is more unsettled. Importantly, these ionic uptake mechanisms also appear to be expressed in the marine gill MRC, for acid-base regulation. A large suite of potential endocrine control mechanisms have been identified, and recent evidence suggests that paracrines such as endothelin, nitric oxide, and prostaglandins might also control MRC function.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
17
|
Hyndman KA, Evans DH. Endothelin and endothelin converting enzyme-1 in the fish gill:evolutionary and physiological perspectives. J Exp Biol 2007; 210:4286-97. [DOI: 10.1242/jeb.009969] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY
In euryhaline fishes like the killifish (Fundulus heteroclitus)that experience daily fluctuations in environmental salinity, endothelin 1(EDN1) may be an important regulator molecule necessary to maintain ion homeostasis. The purpose of this study was to determine if EDN1 and the endothelin converting enzyme (ECE1; the enzyme necessary for cleaving the precursor proendothelin-1 to EDN1) are present in the killifish, to determine if environmental salinity regulates their expression, and to examine the phylogenetic relationships among the EDNs and among the ECEs. We sequenced killifish gill cDNA for two EDN1 orthologues, EDN1A and EDN1B, and also sequenced a portion of ECE1 cDNA. EDN1A and ECE1 mRNA are expressed ubiquitously in the killifish while EDN1B mRNA has little expression in the killifish opercular epithelium or gill. Using in situ hybridization and immunohistochemistry, EDN1 was localized to large round cells adjacent to the mitochondrion-rich cells of the killifish gill, and to lamellar pillar cells. In the gill, EDN1A and EDN1B mRNA levels did not differ with acute (<24 h) or chronic (30 days) acclimation to seawater (SW); however, EDN1B levels increased threefold post SW to freshwater (FW) transfer,and ECE1 mRNA levels significantly increased twofold over this period. ECE1 mRNA levels also increased sixfold over 24 h post FW to SW transfer. Chronic exposure to SW or FW had little effect on ECE1mRNA levels. Based upon our cellular localization studies, we modeled EDN1 expression in the fish gill and conclude that it is positioned to act as a paracrine regulator of gill functions in euryhaline fishes. It also may function as an autocrine on pillar cells, where it is hypothesized to regulate local blood flow in the lamellae. From our phylogenetic analyses, ECE is predicted to have an ancient origin and may be a generalist endoprotease in non-vertebrate organisms, while EDNs are vertebrate-specific peptides and may be key characters in vertebrate evolution.
Collapse
Affiliation(s)
- Kelly A. Hyndman
- Department of Zoology, University of Florida, 221 Bartram Hall,Gainesville, FL 32608, USA and Mount Desert Island Biological Laboratory,Salisbury Cove, ME 04672, USA
| | - David H. Evans
- Department of Zoology, University of Florida, 221 Bartram Hall,Gainesville, FL 32608, USA and Mount Desert Island Biological Laboratory,Salisbury Cove, ME 04672, USA
| |
Collapse
|
18
|
Burnett KG, Bain LJ, Baldwin WS, Callard GV, Cohen S, Di Giulio RT, Evans DH, Gómez-Chiarri M, Hahn ME, Hoover CA, Karchner SI, Katoh F, MacLatchy DL, Marshall WS, Meyer JN, Nacci DE, Oleksiak MF, Rees BB, Singer TD, Stegeman JJ, Towle DW, Van Veld PA, Vogelbein WK, Whitehead A, Winn RN, Crawford DL. Fundulus as the premier teleost model in environmental biology: opportunities for new insights using genomics. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2007; 2:257-86. [PMID: 18071578 PMCID: PMC2128618 DOI: 10.1016/j.cbd.2007.09.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A strong foundation of basic and applied research documents that the estuarine fish Fundulus heteroclitus and related species are unique laboratory and field models for understanding how individuals and populations interact with their environment. In this paper we summarize an extensive body of work examining the adaptive responses of Fundulus species to environmental conditions, and describe how this research has contributed importantly to our understanding of physiology, gene regulation, toxicology, and ecological and evolutionary genetics of teleosts and other vertebrates. These explorations have reached a critical juncture at which advancement is hindered by the lack of genomic resources for these species. We suggest that a more complete genomics toolbox for F. heteroclitus and related species will permit researchers to exploit the power of this model organism to rapidly advance our understanding of fundamental biological and pathological mechanisms among vertebrates, as well as ecological strategies and evolutionary processes common to all living organisms.
Collapse
Affiliation(s)
- Karen G. Burnett
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson, Charleston, SC 29412, USA
| | - Lisa J. Bain
- Clemson Institute of Environmental Toxicology, Clemson University; Pendleton, SC 29670, USA
| | - William S. Baldwin
- Clemson Institute of Environmental Toxicology, Clemson University; Pendleton, SC 29670, USA
| | | | - Sarah Cohen
- Romberg Tiburon Center and Department of Biology, San Francisco State University, Tiburon, CA 94120, USA
| | - Richard T. Di Giulio
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC, USA
| | - David H. Evans
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA
| | - Marta Gómez-Chiarri
- Department of Fisheries, Animal and Veterinary Science, University of Rhode Island, Kingston, RI 02881, USA
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | | | - Sibel I. Karchner
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Fumi Katoh
- Department of Biology, St. Francis Xavier University, Antigonish, N.S. B2G 2W5, Canada
| | - Deborah L. MacLatchy
- Faculty of Science, Wilfred Laurier University, Waterloo, Ontario, Canada N2L 3C5
| | - William S. Marshall
- Department of Biology, St. Francis Xavier University, Antigonish, N.S. B2G 2W5, Canada
| | - Joel N. Meyer
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC, USA
| | - Diane E. Nacci
- US Environmental Protection Agency Office of Research and Development, Narragansett, RI 02882, USA
| | - Marjorie F. Oleksiak
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Bernard B. Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Thomas D. Singer
- School of Optometry, University of Waterloo, Waterloo, ON, N2L 3G1, CANADA
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - David W. Towle
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, Maine 04672, USA
| | - Peter A. Van Veld
- The College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Wolfgang K. Vogelbein
- The College of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA
| | - Andrew Whitehead
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Richard N. Winn
- Aquatic Biotechnology and Environmental Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Douglas L. Crawford
- Rosenstiel School of Marine & Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|
19
|
Abstract
In their aqueous habitats, fish are exposed to a wide range of osmotic conditions and differ in their abilities to respond adaptively to these variations in salinity. Fish species that inhabit environments characterized by significant salinity fluctuation (intertidal zone, estuaries, salt lakes, etc.) are euryhaline and able to adapt to osmotic stress. Adaptive and acclimatory responses of fish to salinity stress are based on efficient mechanisms of osmosensing and osmotic stress signaling. Multiple osmosensors, including calcium sensing receptor likely act in concert to convey information about osmolality changes to downstream signaling and effector mechanisms. The osmosensory signal transduction network in fishes is complex and includes calcium, mitogen-activated protein kinase, 14-3-3 and macromolecular damage activated signaling pathways. This network controls, among other targets, osmosensitive transcription factors such as tonicity response element binding protein and osmotic stress transcription factor 1, which, in turn, regulate the expression of genes involved in osmotic stress acclimation. In addition to intracellular signaling mechanisms, the systemic response to osmotic stress in euryhaline fish is coordinated via hormone- and paracrine factor-mediated extracellular signaling. Overall, current insight into osmosensing and osmotic stress-induced signal transduction in fishes is limited. However, euryhaline fish species represent excellent models for answering critical emerging questions in this field and for elucidating the underlying molecular mechanisms of osmosensory signal transduction.
Collapse
Affiliation(s)
- Diego F Fiol
- Physiological Genomics Group, Department of Animal Science, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
20
|
Hoffmann EK, Schettino T, Marshall WS. The role of volume-sensitive ion transport systems in regulation of epithelial transport. Comp Biochem Physiol A Mol Integr Physiol 2007; 148:29-43. [PMID: 17289411 DOI: 10.1016/j.cbpa.2006.11.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 11/08/2006] [Accepted: 11/23/2006] [Indexed: 11/25/2022]
Abstract
This review focuses on using the knowledge on volume-sensitive transport systems in Ehrlich ascites tumour cells and NIH-3T3 cells to elucidate osmotic regulation of salt transport in epithelia. Using the intestine of the European eel (Anguilla anguilla) (an absorptive epithelium of the type described in the renal cortex thick ascending limb (cTAL)) we have focused on the role of swelling-activated K+- and anion-conductive pathways in response to hypotonicity, and on the role of the apical (luminal) Na+-K+-2Cl- cotransporter (NKCC2) in the response to hypertonicity. The shrinkage-induced activation of NKCC2 involves an interaction between the cytoskeleton and protein phosphorylation events via PKC and myosin light chain kinase (MLCK). Killifish (Fundulus heteroclitus) opercular epithelium is a Cl(-)-secreting epithelium of the type described in exocrine glands, having a CFTR channel on the apical side and the Na+/K+ ATPase, NKCC1 and a K+ channel on the basolateral side. Osmotic control of Cl- secretion across the operculum epithelium includes: (i) hyperosmotic shrinkage activation of NKCC1 via PKC, MLCK, p38, OSR1 and SPAK; (ii) deactivation of NKCC by hypotonic cell swelling and a protein phosphatase, and (iii) a protein tyrosine kinase acting on the focal adhesion kinase (FAK) to set levels of NKCC activity.
Collapse
Affiliation(s)
- E K Hoffmann
- Department of Molecular Biology, The August Krogh Building, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
21
|
McNeill B, Perry SF. The interactive effects of hypoxia and nitric oxide on catecholamine secretion in rainbow trout (Oncorhynchus mykiss). J Exp Biol 2006; 209:4214-23. [PMID: 17050836 DOI: 10.1242/jeb.02519] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYExperiments were performed to test the hypothesis that exposure of rainbow trout to repetitive hypoxia would result in a decreased capacity of chromaffin cells to secrete catecholamines owing to increased production of nitric oxide(NO), a potent inhibitor of catecholamine secretion. A partial sequence of trout neuronal nitric oxide synthase (nNOS) was cloned and its mRNA was found to be present in the posterior cardinal vein (PCV), the predominant site of chromaffin cells in trout. Using heterologous antibodies, nNOS and endothelial NOS (eNOS) were localized in close proximity to the chromaffin cells of the PCV.Exposure of trout to acute hypoxia (5.33 kPa for 30 min) in vivoresulted in significant increases in plasma catecholamine and NO levels. However, after 4 days of twice-daily exposures to hypoxia, the elevation of plasma catecholamine levels during hypoxia was markedly reduced. Associated with the reduction in plasma catecholamine levels during acute hypoxia was a marked increase in basal and hypoxia-evoked circulating levels of NO that became apparent after 2-4 days of repetitive hypoxia. The capacity of the chromaffin cells of the hypoxia-exposed fish to secrete catecholamine was assessed by electrical stimulation of an in situ saline-perfused PCV preparation. Compared with control (normoxic) fish, the PCV preparations derived from fish exposed to repeated hypoxia displayed a significant reduction in electrically evoked catecholamine secretion that was concomitant with a marked increased in NO production. This additional rise in NO secretion in preparations derived from hypoxic fish was prevented after adding NOS inhibitors to the perfusate; concomitantly, the reduction in catecholamine secretion was prevented. The increased production of NO during hypoxia in vivo and during electrical stimulation in situ was consistent with significant elevations of nNOS mRNA and protein; eNOS protein was unaffected. These results suggest that the reduced capacity of trout chromaffin cells to secrete catecholamines after repeated hypoxia reflects an increase in the expression of nNOS and a subsequent increase in NO production during chromaffin-cell activation.
Collapse
Affiliation(s)
- Brian McNeill
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|
22
|
Hyndman KA, Choe KP, Havird JC, Rose RE, Piermarini PM, Evans DH. Neuronal nitric oxide synthase in the gill of the killifish, Fundulus heteroclitus. Comp Biochem Physiol B Biochem Mol Biol 2006; 144:510-9. [PMID: 16814584 DOI: 10.1016/j.cbpb.2006.05.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/03/2006] [Accepted: 05/12/2006] [Indexed: 11/30/2022]
Abstract
Neuronal NOS (nNOS) is a constitutively expressed enzyme that catalyzes the oxidation of L-arginine and water to L-citrulline and the gas nitric oxide (NO). Nitric oxide is involved in regulation of a variety of processes, including: vascular tone, neurotransmission, and ion balance in mammals and fishes. In this study, we have cloned and characterized a putative NOS homologue from the brain of the euryhaline killifish, Fundulus heteroclitus. Killifish NOS has 75% amino acid identity to human nNOS, and phylogenetic analysis groups the killifish sequence with the mammalian nNOS, suggesting that it is a mammalian orthologue. Relative quantitative reverse transcriptase-PCR demonstrated that killifish nNOS mRNA is highly expressed in the brain and gill followed by the stomach, kidney, opercular epithelium, intestine and heart. Immunohistochemistry localized nNOS to nerve fibers and epithelial cells adjacent to mitochondrion-rich cells (ion transporting cell) in the gill, suggesting that nNOS production of NO may contribute to regulation of vascular tone and/or MRC function in the teleost gill.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Choe KP, Havird J, Rose R, Hyndman K, Piermarini P, Evans DH. COX2 in a euryhaline teleost, Fundulus heteroclitus: primary sequence, distribution, localization, and potential function in gills during salinity acclimation. J Exp Biol 2006; 209:1696-708. [PMID: 16621950 DOI: 10.1242/jeb.02198] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In the kidneys of mammals, cyclooxygenase type 2 (COX2) is expressed in medullary interstitial cells, the macula densa and epithelial cells of the cortical thick ascending limb where it generates prostaglandins that regulate hormone secretion, inhibit ion transport, and support cell survival during salt loading and dehydration. In teleosts, the gills are in direct contact with an aquatic environment and are the dominant site of osmoregulation. During transfers between salinities, specialized cells in the gills (chloride cells) rapidly regulate NaCl secretion for systemic osmoregulation while they simultaneously are exposed to acute osmotic shock. This study was conducted to determine if COX2 is expressed in the gills, and if so, to evaluate its function in cellular and systemic osmoregulation. Degenerate primers, reverse transcription–PCR and rapid amplification of cDNA ends were used to deduce the complete cDNA sequence of a putative COX2 enzyme from the gills of the euryhaline killifish (Fundulus heteroclitus). The 2738 base pair cDNA includes a coding region for a 610 amino acid protein that is over 70%identical to mammalian COX2. A purified antibody generated against a conserved region of mouse COX2 labeled chloride cells, suggesting that the enzyme may control NaCl secretion as an autocrine agent. Real-time PCR was then used to demonstrate that mRNA expression of the COX2 homologue was threefold greater in gills from chronic seawater killifish than in gills from chronic freshwater killifish. Expression of Na+/K+/2Cl–cotransporter and the cystic fibrosis transmembrane conductance regulator were also greater in seawater, suggesting that chronic COX2 expression in the gills is regulated in parallel to the key ion transporters that mediate NaCl secretion. Real-time PCR was also used to demonstrate that acute transfer from seawater to freshwater and from freshwater to seawater led to rapid, transient inductions of COX2 expression. Together with previous physiological evidence,the present molecular and immunological data suggest that constitutive branchial COX2 expression is enhanced in seawater, where prostaglandins can regulate NaCl secretion in chloride cells. Our data also suggest that branchial COX2 expression may play a role in cell survival during acute osmotic shock.
Collapse
Affiliation(s)
- Keith P Choe
- Department of Zoology, University of Florida, Gainesville, 32611, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Eddy FB. Role of nitric oxide in larval and juvenile fish. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:221-30. [PMID: 15979364 DOI: 10.1016/j.cbpb.2005.05.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Revised: 05/11/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
Fish are known to express the three isoforms of nitric oxide synthase (NOS), the constitutive forms endothelial or eNOS, neuronal or nNOS and the inducible form iNOS. Most studies in fish have focussed on possible roles for NO in cardiovascular physiology although there has been recent attention on the role of nNOS in embryonic development. However compared to mammalian studies there have been relatively few studies on effects of nitric oxide (NO) on fish. Studies on heart and blood vessel preparations from various fish species appear to show results specific to the species or to the particular preparation. Possible roles of NO in the in vivo biology of adult fish or larval fish have received little attention. This article reviews effects of nitric oxide on cardiovascular physiology in fish with special emphasis on larval fish. It introduces some experimental work on possible signaling pathways in larval fish and introduces the possibility that NO could be an important environmental influence for some aquatic organisms. In higher vertebrates LPS (lipopolysaccharide) is known to activate the cytokine signaling system and stimulate increased expression of iNOS and increased production of NO, but this remains less investigated in fish. The effects of LPS on cardiovascular and osmoregulatory physiology of larval and juvenile salmonids are discussed and a possible role of NO in stress-induced drinking is suggested.
Collapse
Affiliation(s)
- F B Eddy
- Biological Sciences Institute, Faculty of Life Sciences, University of Dundee DD1 4HN, UK.
| |
Collapse
|
25
|
Marshall WS, Ossum CG, Hoffmann EK. Hypotonic shock mediation by p38 MAPK, JNK, PKC, FAK, OSR1 and SPAK in osmosensing chloride secreting cells of killifish opercular epithelium. ACTA ACUST UNITED AC 2005; 208:1063-77. [PMID: 15767308 DOI: 10.1242/jeb.01491] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypotonic shock rapidly inhibits Cl(-) secretion by chloride cells, an effect that is osmotic and not produced by NaCl-depleted isosmotic solutions, yet the mechanism for the inhibition and its recovery are not known. We exposed isolated opercular epithelia, mounted in Ussing chambers, to hypotonic shock in the presence of a variety of chemicals: a general protein kinase C (PKC) inhibitor chelerythrine, Gö6976 that selectively blocks PKC alpha and beta subtypes, H-89 that blocks PKA, SB203580 that blocks p38 mitogen-activated protein kinase (MAPK), as well as serine/threonine protein phosphatase (PP1 and 2A) inhibitor okadaic acid, and finally tamoxifen, a blocker of volume-activated anion channels (VSOAC). Chelerythrine has no effect on hypotonic inhibition but blocked the recovery, indicating PKC involvement in stimulation. Gö6976 had little effect, suggesting that PKC alpha and PKC beta subtypes are not involved. H-89 did not block hypotonic inhibition but decreased the recovery, indicating PKA may be involved in the recovery and overshoot (after restoration of isotonic conditions). SB203580 significantly enhanced the decrease in current by hypotonic shock, suggesting an inhibitory role of p38 MAPK in the hypotonic inhibition. Okadaic acid increased the steady state current, slowed the hypotonic inhibition but made the decrease in current larger; also the recovery and overshoot were completely blocked. Hypotonic stress rapidly and transiently increased phosphorylated p38 MAPK (pp38) MAPK (measured by western analysis) by eightfold at 5 min, then more slowly again to sevenfold at 60 min. Hypertonic shock slowly increased p38 by sevenfold at 60 min. Phosphorylated JNK kinase was increased by 40-50% by both hypotonic and hypertonic shock and was still elevated at 30 min in hypertonic medium. By immunoblot analysis it was found that the stress protein kinase (SPAK) and oxidation stress response kinase 1 (OSR1) were present in salt and freshwater acclimated fish with higher expression in freshwater. By immunocytochemistry, SPAK, OSR1 and phosphorylated focal adhesion kinase (pFAK) were colocalized with NKCC at the basolateral membrane. The protein tyrosine kinase inhibitor genistein (100 micromol l(-1)) inhibited Cl(-) secretion that was high, increased Cl(-) secretion that was low and reduced immunocytochemical staining for phosphorylated FAK. We present a model for rapid control of CFTR and NKCC in chloride cells that includes: (1) activation of NKCC and CFTR via cAMP/PKA, (2) activation of NKCC by PKC, myosin light chain kinase (MLCK), p38, OSR1 and SPAK, (3) deactivation of NKCC by hypotonic cell swelling, Ca(2+) and an as yet unidentified protein phosphatase and (4) involvement of protein tyrosine kinase (PTK) acting on FAK to set levels of NKCC activity.
Collapse
Affiliation(s)
- W S Marshall
- Department of Biology, St Francis Xavier University, PO Box 5000 Antigonish, Nova Scotia, Canada B2G 2W5.
| | | | | |
Collapse
|
26
|
Fellner SK, Parker L. Endothelin-1, superoxide and adeninediphosphate ribose cyclase in shark vascular smooth muscle. J Exp Biol 2005; 208:1045-52. [PMID: 15767306 DOI: 10.1242/jeb.01506] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
SUMMARY
In vascular smooth muscle (VSM) of Squalus acanthias, endothelin-1(ET-1) signals via the ETB receptor. In both shark and mammalian VSM, ET-1 induces a rise in cytosolic Ca2+ concentration([Ca2+]i) via activation of the inositol trisphosphate (IP3) receptor (IP3R) and subsequent release of Ca2+ from the sarcoplasmic reticulum (SR). IP3R-mediated release of SR Ca2+ causes calcium-induced calcium release (CICR) via the ryanodine receptor (RyR), which can be sensitized by cyclic adeninediphosphate ribose (cADPR). cADPR is synthesized from NAD+ by a membrane-bound bifunctional enzyme, ADPR cyclase. We have previously shown that the antagonists of the RyR, Ruthenium Red, high concentrations of ryanodine and 8-Br cADPR, diminish the[Ca2+]i response to ET-1 in shark VSM. To investigate how ET-1 might influence the activity of the ADPR cyclase, we employed inhibitors of the cyclase. To explore the possibility that ET-1-induced production of superoxide (O2.-) might activate the cyclase, we used an inhibitor of NAD(P)H oxidase (NOX), DPI and a scavenger of O2.-, TEMPOL. Anterior mesenteric artery VSM was loaded with fura-2AM to measure [Ca2+]i. In Ca2+-free shark Ringers, ET-1 increased[Ca2+]i by 104±8 nmol l-1. The VSM ADPR cyclase inhibitors, nicotinamide and Zn2+, diminished the response by 62% and 72%, respectively. Both DPI and TEMPOL reduced the response by 63%. The combination of the IP3R antagonists, 2-APB or TMB-8, with DPI or TEMPOL further reduced the response by 83%. We show for the first time that in shark VSM, inhibition of the ADPR cyclase reduces the[Ca2+]i response to ET-1 and that superoxide may be involved in the activation of the cyclase.
Collapse
Affiliation(s)
- Susan K Fellner
- Mount Desert Island Biological Laboratory, Salisbury, Maine 04672, USA.
| | | |
Collapse
|
27
|
Evans DH, Piermarini PM, Choe KP. The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste. Physiol Rev 2005; 85:97-177. [PMID: 15618479 DOI: 10.1152/physrev.00050.2003] [Citation(s) in RCA: 1628] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fish gill is a multipurpose organ that, in addition to providing for aquatic gas exchange, plays dominant roles in osmotic and ionic regulation, acid-base regulation, and excretion of nitrogenous wastes. Thus, despite the fact that all fish groups have functional kidneys, the gill epithelium is the site of many processes that are mediated by renal epithelia in terrestrial vertebrates. Indeed, many of the pathways that mediate these processes in mammalian renal epithelial are expressed in the gill, and many of the extrinsic and intrinsic modulators of these processes are also found in fish endocrine tissues and the gill itself. The basic patterns of gill physiology were outlined over a half century ago, but modern immunological and molecular techniques are bringing new insights into this complicated system. Nevertheless, substantial questions about the evolution of these mechanisms and control remain.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville 32611, USA.
| | | | | |
Collapse
|