1
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
2
|
Ruhr IM, Shiels HA, Crossley DA, Galli GLJ. Developmental programming of sarcoplasmic reticulum function improves cardiac anoxia tolerance in turtles. J Exp Biol 2024; 227:jeb247434. [PMID: 39246147 DOI: 10.1242/jeb.247434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Oxygen deprivation during embryonic development can permanently remodel the vertebrate heart, often causing cardiovascular abnormalities in adulthood. While this phenomenon is mostly damaging, recent evidence suggests developmental hypoxia produces stress-tolerant phenotypes in some ectothermic vertebrates. Embryonic common snapping turtles (Chelydra serpentina) subjected to chronic hypoxia display improved cardiac anoxia tolerance after hatching, which is associated with altered Ca2+ homeostasis in heart cells (cardiomyocytes). Here, we examined the possibility that changes in Ca2+ cycling, through the sarcoplasmic reticulum (SR), underlie the developmentally programmed cardiac phenotype of snapping turtles. We investigated this hypothesis by isolating cardiomyocytes from juvenile turtles that developed in either normoxia (21% O2; 'N21') or chronic hypoxia (10% O2; 'H10') and subjected the cells to anoxia/reoxygenation, in either the presence or absence of SR Ca2+-cycling inhibitors. We simultaneously measured cellular shortening, intracellular Ca2+ concentration ([Ca2+]i), and intracellular pH (pHi). Under normoxic conditions, N21 and H10 cardiomyocytes shortened equally, but H10 Ca2+ transients (Δ[Ca2+]i) were twofold smaller than those of N21 cells, and SR inhibition only decreased N21 shortening and Δ[Ca2+]i. Anoxia subsequently depressed shortening, Δ[Ca2+]i and pHi in control N21 and H10 cardiomyocytes, yet H10 shortening and Δ[Ca2+]i recovered to pre-anoxic levels, partly due to enhanced myofilament Ca2+ sensitivity. SR blockade abolished the recovery of anoxic H10 cardiomyocytes and potentiated decreases in shortening, Δ[Ca2+]i and pHi. Our novel results provide the first evidence of developmental programming of SR function and demonstrate that developmental hypoxia confers a long-lasting, superior anoxia-tolerant cardiac phenotype in snapping turtles, by modifying SR function and enhancing myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Ilan M Ruhr
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
- School of Science, Engineering, & Environment, University of Salford, Salford M5 4NT, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Gina L J Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
3
|
Souchet J, Josserand A, Darnet E, Le Chevalier H, Trochet A, Bertrand R, Calvez O, Martinez-Silvestre A, Guillaume O, Mossoll-Torres M, Pottier G, Philippe H, Aubret F, Gangloff EJ. Embryonic and juvenile snakes (Natrix maura, Linnaeus 1758) compensate for high elevation hypoxia via shifts in cardiovascular physiology and metabolism. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:1102-1115. [PMID: 37723946 DOI: 10.1002/jez.2756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023]
Abstract
The colonization of novel environments requires a favorable response to conditions never, or rarely, encountered in recent evolutionary history. For example, populations colonizing upslope habitats must cope with lower atmospheric pressure at elevation, and thus reduced oxygen availability. The embryo stage in oviparous organisms is particularly susceptible, given its lack of mobility and limited gas exchange via diffusion through the eggshell and membranes. Especially little is known about responses of Lepidosaurian reptiles to reduced oxygen availability. To test the role of physiological plasticity during early development in response to high elevation hypoxia, we performed a transplant experiment with the viperine snake (Natrix maura, Linnaeus 1758). We maintained gravid females originating from low elevation populations (432 m above sea level [ASL]-normoxia) at both the elevation of origin and high elevation (2877 m ASL-extreme high elevation hypoxia; approximately 72% oxygen availability relative to sea level), then incubated egg clutches at both low and high elevation. Regardless of maternal exposure to hypoxia during gestation, embryos incubated at extreme high elevation exhibited altered developmental trajectories of cardiovascular function and metabolism across the incubation period, including a reduction in late-development egg mass. This physiological response may have contributed to the maintenance of similar incubation duration, hatching success, and hatchling body size compared to embryos incubated at low elevation. Nevertheless, after being maintained in hypoxia, juveniles exhibit reduced carbon dioxide production relative to oxygen consumption, suggesting altered energy pathways compared to juveniles maintained in normoxia. These findings highlight the role of physiological plasticity in maintaining rates of survival and fitness-relevant phenotypes in novel environments.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Alicia Josserand
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Elodie Darnet
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Hugo Le Chevalier
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d'Histoire Naturelle, Paris, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique (UMR CNRS 5174), Université de Toulouse III Paul Sabatier, IRD, Toulouse, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | | | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | | | | | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
- School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Eric J Gangloff
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| |
Collapse
|
4
|
Galli GLJ, Lock MC, Smith KLM, Giussani DA, Crossley DA. Effects of Developmental Hypoxia on the Vertebrate Cardiovascular System. Physiology (Bethesda) 2023; 38:0. [PMID: 36317939 DOI: 10.1152/physiol.00022.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mitchell C Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kerri L M Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
5
|
Ruhr I, Bierstedt J, Rhen T, Das D, Singh SK, Miller S, Crossley DA, Galli GLJ. Developmental programming of DNA methylation and gene expression patterns is associated with extreme cardiovascular tolerance to anoxia in the common snapping turtle. Epigenetics Chromatin 2021; 14:42. [PMID: 34488850 PMCID: PMC8420019 DOI: 10.1186/s13072-021-00414-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background Environmental fluctuation during embryonic and fetal development can permanently alter an organism’s morphology, physiology, and behaviour. This phenomenon, known as developmental plasticity, is particularly relevant to reptiles that develop in subterranean nests with variable oxygen tensions. Previous work has shown hypoxia permanently alters the cardiovascular system of snapping turtles and may improve cardiac anoxia tolerance later in life. The mechanisms driving this process are unknown but may involve epigenetic regulation of gene expression via DNA methylation. To test this hypothesis, we assessed in situ cardiac performance during 2 h of acute anoxia in juvenile turtles previously exposed to normoxia (21% oxygen) or hypoxia (10% oxygen) during embryogenesis. Next, we analysed DNA methylation and gene expression patterns in turtles from the same cohorts using whole genome bisulfite sequencing, which represents the first high-resolution investigation of DNA methylation patterns in any reptilian species. Results Genome-wide correlations between CpG and CpG island methylation and gene expression patterns in the snapping turtle were consistent with patterns observed in mammals. As hypothesized, developmental hypoxia increased juvenile turtle cardiac anoxia tolerance and programmed DNA methylation and gene expression patterns. Programmed differences in expression of genes such as SCN5A may account for differences in heart rate, while genes such as TNNT2 and TPM3 may underlie differences in calcium sensitivity and contractility of cardiomyocytes and cardiac inotropy. Finally, we identified putative transcription factor-binding sites in promoters and in differentially methylated CpG islands that suggest a model linking programming of DNA methylation during embryogenesis to differential gene expression and cardiovascular physiology later in life. Binding sites for hypoxia inducible factors (HIF1A, ARNT, and EPAS1) and key transcription factors activated by MAPK and BMP signaling (RREB1 and SMAD4) are implicated. Conclusions Our data strongly suggests that DNA methylation plays a conserved role in the regulation of gene expression in reptiles. We also show that embryonic hypoxia programs DNA methylation and gene expression patterns and that these changes are associated with enhanced cardiac anoxia tolerance later in life. Programming of cardiac anoxia tolerance has major ecological implications for snapping turtles, because these animals regularly exploit anoxic environments throughout their lifespan. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00414-7.
Collapse
Affiliation(s)
- Ilan Ruhr
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, M13 9NT, UK
| | - Jacob Bierstedt
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA.
| | - Debojyoti Das
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Sunil Kumar Singh
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Soleille Miller
- Department of Biology, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Gina L J Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, M13 9NT, UK
| |
Collapse
|
6
|
Prenatal hypoxia affects scaling of blood pressure and arterial wall mechanics in the common snapping turtle, Chelydra serpentina. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111023. [PMID: 34224856 DOI: 10.1016/j.cbpa.2021.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/24/2022]
Abstract
In reptiles, exposure to hypoxia during embryonic development affects several cardiovascular parameters. These modifications may impose different mechanical stress to the arterial system, and we speculated that the arterial wall of major outflow vessels would be modified accordingly. Since non-crocodilian reptiles possess a partially divided ventricle, ensuing similar systemic and pulmonary systolic pressures, we investigated how morphological and mechanical properties of segments from the left aortic arch (LAo) and the proximal and distal segments of the left pulmonary artery (LPAp and LPAd, respectively) change as body mass (Mb) increases. Eggs from common snapping turtles, Chelydra serpentina, were incubated under normoxia (21% O2; N21) or hypoxia (10% O2; H10), hatched and maintained in normoxia thereafter. Turtles (0.11-6.85 kg) were cannulated to measure arterial pressures, and an injection of adrenaline was used to increase pressures. Portions of the LAo, LPAp and LPAd were fixed under physiological hydrostatic pressures for histology and mechanical assessment. Arterial pressures increased with Mb for N21 but not for H10. Although mechanical and functional characteristics from the LPAp and LPAd were similar between N21 and H10, wall thickness from LAo did not change with Mb in the H10 group, thus wall stress increased in larger turtles. This indicates that larger H10 turtles probably experience an elevated probability of arterial wall rupture without concomitant changes in the cardiovascular system to prevent it. Finally, collagen content of the LPAp and LAo was smaller than in LPAd, suggesting a more distensible arterial wall could attenuate higher pressures from larger turtles.
Collapse
|
7
|
Galli GLJ, Ruhr IM, Crossley J, Crossley DA. The Long-Term Effects of Developmental Hypoxia on Cardiac Mitochondrial Function in Snapping Turtles. Front Physiol 2021; 12:689684. [PMID: 34262478 PMCID: PMC8273549 DOI: 10.3389/fphys.2021.689684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/03/2021] [Indexed: 01/05/2023] Open
Abstract
It is well established that adult vertebrates acclimatizing to hypoxic environments undergo mitochondrial remodeling to enhance oxygen delivery, maintain ATP, and limit oxidative stress. However, many vertebrates also encounter oxygen deprivation during embryonic development. The effects of developmental hypoxia on mitochondrial function are likely to be more profound, because environmental stress during early life can permanently alter cellular physiology and morphology. To this end, we investigated the long-term effects of developmental hypoxia on mitochondrial function in a species that regularly encounters hypoxia during development-the common snapping turtle (Chelydra serpentina). Turtle eggs were incubated in 21% or 10% oxygen from 20% of embryonic development until hatching, and both cohorts were subsequently reared in 21% oxygen for 8 months. Ventricular mitochondria were isolated, and mitochondrial respiration and reactive oxygen species (ROS) production were measured with a microrespirometer. Compared to normoxic controls, juvenile turtles from hypoxic incubations had lower Leak respiration, higher P:O ratios, and reduced rates of ROS production. Interestingly, these same attributes occur in adult vertebrates that acclimatize to hypoxia. We speculate that these adjustments might improve mitochondrial hypoxia tolerance, which would be beneficial for turtles during breath-hold diving and overwintering in anoxic environments.
Collapse
Affiliation(s)
- Gina L. J. Galli
- Faculty of Biology, Medicine, and Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
| | - Ilan M. Ruhr
- Faculty of Biology, Medicine, and Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
| | - Janna Crossley
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Dane A. Crossley
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
8
|
Souchet J, Bossu C, Darnet E, Le Chevalier H, Poignet M, Trochet A, Bertrand R, Calvez O, Martinez-Silvestre A, Mossoll-Torres M, Guillaume O, Clobert J, Barthe L, Pottier G, Philippe H, Gangloff EJ, Aubret F. High temperatures limit developmental resilience to high-elevation hypoxia in the snake Natrix maura (Squamata: Colubridae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Climate change is generating range shifts in many organisms, notably along the altitudinal gradient. However, moving up in altitude exposes organisms to lower oxygen availability, which may negatively affect development and fitness, especially at high temperatures. To test this possibility in a potentially upward-colonizing species, we artificially incubated developing embryos of the viperine snake Natrix maura Linnaeus 1758, using a split-clutch design, in conditions of extreme high elevation or low elevation at two ecologically-relevant incubation temperatures (24 and 32 °C). Embryos at low and extreme high elevations incubated at cool temperatures did not differ in development time, hatchling phenotype or locomotor performance. However, at the warmer incubation temperature and at extreme high elevation, hatching success was reduced. Further, embryonic heart rates were lower, incubation duration longer and juveniles born smaller. Nonetheless, snakes in this treatment were faster swimmers than siblings in other treatment groups, suggesting a developmental trade-off between size and performance. Constraints on development may be offset by the maintenance of important performance metrics, thus suggesting that early life-history stages will not prevent the successful colonization of high-elevation habitat even under the dual limitations of reduced oxygen and increased temperature.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Coralie Bossu
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Elodie Darnet
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Hugo Le Chevalier
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Manon Poignet
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d’Histoire Naturelle, CP41, 57 rue Cuvier, Paris, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique, UMR 5174 Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, France
| | - Olivier Calvez
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | | | - Marc Mossoll-Torres
- Bomosa, Pl. Parc de la Mola, 10 Torre Caldea 7º, Les Escaldes, Andorra
- Pirenalia, c/ de la rectoria, 2 Casa Cintet, Encamp, Andorra
| | - Olivier Guillaume
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Jean Clobert
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Laurent Barthe
- Société Herpétologique de France, Muséum National d’Histoire Naturelle, CP41, 57 rue Cuvier, Paris, France
- Nature En Occitanie, 14 rue de Tivoli, Toulouse, France
| | | | - Hervé Philippe
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, QC, Canada
| | - Eric J Gangloff
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
- Department of Zoology, Ohio Wesleyan University, 61 Sandusky Street, Delaware, Ohio, USA
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, WA, Australia
| |
Collapse
|
9
|
Souchet J, Gangloff EJ, Micheli G, Bossu C, Trochet A, Bertrand R, Clobert J, Calvez O, Martinez-Silvestre A, Darnet E, LE Chevalier H, Guillaume O, Mossoll-Torres M, Barthe L, Pottier G, Philippe H, Aubret F. High-elevation hypoxia impacts perinatal physiology and performance in a potential montane colonizer. Integr Zool 2020; 15:544-557. [PMID: 32649806 PMCID: PMC7689776 DOI: 10.1111/1749-4877.12468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Climate change is generating range shifts in many organisms, notably along the elevational gradient in mountainous environments. However, moving up in elevation exposes organisms to lower oxygen availability, which may reduce the successful reproduction and development of oviparous organisms. To test this possibility in an upward‐colonizing species, we artificially incubated developing embryos of the viperine snake (Natrix maura) using a split‐clutch design, in conditions of extreme high elevation (hypoxia at 2877 m above sea level; 72% sea‐level equivalent O2 availability) or low elevation (control group; i.e. normoxia at 436 m above sea level). Hatching success did not differ between the two treatments. Embryos developing at extreme high elevation had higher heart rates and hatched earlier, resulting in hatchlings that were smaller in body size and slower swimmers compared to their siblings incubated at lower elevation. Furthermore, post‐hatching reciprocal transplant of juveniles showed that snakes which developed at extreme high elevation, when transferred back to low elevation, did not recover full performance compared to their siblings from the low elevation incubation treatment. These results suggest that incubation at extreme high elevation, including the effects of hypoxia, will not prevent oviparous ectotherms from producing viable young, but may pose significant physiological challenges on developing offspring in ovo. These early‐life performance limitations imposed by extreme high elevation could have negative consequences on adult phenotypes, including on fitness‐related traits.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Eric J Gangloff
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France.,Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Gaëlle Micheli
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Coralie Bossu
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Audrey Trochet
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Romain Bertrand
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | | | - Elodie Darnet
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Hugo LE Chevalier
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Marc Mossoll-Torres
- Bomosa, Pl. Parc de la Mola, Les Escaldes, Andorra.,Pirenalia, Encamp, Andorra
| | | | | | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France.,Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Canada
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| |
Collapse
|
10
|
LI X, WU P, MA L, HUEBNER C, SUN B, LI S. Embryonic and post‐embryonic responses to high‐elevation hypoxia in a low‐elevation lizard. Integr Zool 2020; 15:338-348. [DOI: 10.1111/1749-4877.12441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinghan LI
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| | - Pengfei WU
- Key Laboratory of Animal Ecology and Conservation BiologyChinese Academy of SciencesInstitute of Zoology Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Liang MA
- Key Laboratory of Animal Ecology and Conservation BiologyChinese Academy of SciencesInstitute of Zoology Beijing China
| | - Christopher HUEBNER
- Department of Integrative BiologyUniversity of California Berkeley California USA
| | - Baojun SUN
- Key Laboratory of Animal Ecology and Conservation BiologyChinese Academy of SciencesInstitute of Zoology Beijing China
| | - Shuran LI
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| |
Collapse
|
11
|
Smith B, Crossley JL, Elsey RM, Hicks JW, Crossley DA. Embryonic developmental oxygen preconditions cardiovascular functional response to acute hypoxic exposure and maximal β-adrenergic stimulation of anesthetized juvenile American alligators ( Alligator mississippiensis). ACTA ACUST UNITED AC 2019; 222:jeb.205419. [PMID: 31548289 DOI: 10.1242/jeb.205419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
Abstract
The effects of the embryonic environment on juvenile phenotypes are widely recognized. We investigated the effect of embryonic hypoxia on the cardiovascular phenotype of 4-year-old American alligators (Alligator mississippiensis). We hypothesized that embryonic 10% O2 preconditions cardiac function, decreasing the reduction in cardiac contractility associated with acute 5% O2 exposure in juvenile alligators. Our findings indicate that dobutamine injections caused a 90% increase in systolic pressure in juveniles that were incubated in 21% and 10% O2, with the 10% O2 group responding with a greater rate of ventricular relaxation and greater left ventricle output compared with the 21% O2 group. Further, our findings indicate that juvenile alligators that experienced embryonic hypoxia have a faster rate of ventricular relaxation, greater left ventricle stroke volume and greater cardiac power following β-adrenergic stimulation, compared with juvenile alligators that did not experience embryonic hypoxia. When juveniles were exposed to 5% O2 for 20 min, normoxic-incubated juveniles had a 50% decline in left ventricle maximal rate of pressure development and maximal pressure; however, these parameters were unaffected and decreased less in the hypoxic-incubated juveniles. These data indicate that embryonic hypoxia in crocodilians alters the cardiovascular phenotype, changing the juvenile response to acute hypoxia and β-adrenergic stimulation.
Collapse
Affiliation(s)
- Brandt Smith
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Janna L Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA 70643, USA
| | - James W Hicks
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
12
|
Ruhr IM, McCourty H, Bajjig A, Crossley DA, Shiels HA, Galli GLJ. Developmental plasticity of cardiac anoxia-tolerance in juvenile common snapping turtles ( Chelydra serpentina). Proc Biol Sci 2019; 286:20191072. [PMID: 31238852 PMCID: PMC6599983 DOI: 10.1098/rspb.2019.1072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For some species of ectothermic vertebrates, early exposure to hypoxia during embryonic development improves hypoxia-tolerance later in life. However, the cellular mechanisms underlying this phenomenon are largely unknown. Given that hypoxic survival is critically dependent on the maintenance of cardiac function, we tested the hypothesis that developmental hypoxia alters cardiomyocyte physiology in a manner that protects the heart from hypoxic stress. To test this hypothesis, we studied the common snapping turtle, which routinely experiences chronic developmental hypoxia and exploits hypoxic environments in adulthood. We isolated cardiomyocytes from juvenile turtles that embryonically developed in either normoxia (21% O2) or hypoxia (10% O2), and subjected them to simulated anoxia and reoxygenation, while simultaneously measuring intracellular Ca2+, pH and reactive oxygen species (ROS) production. Our results suggest developmental hypoxia improves cardiomyocyte anoxia-tolerance of juvenile turtles, which is supported by enhanced myofilament Ca2+-sensitivity and a superior ability to suppress ROS production. Maintenance of low ROS levels during anoxia might limit oxidative damage and a greater sensitivity to Ca2+ could provide a mechanism to maintain contractile force. Our study suggests developmental hypoxia has long-lasting effects on turtle cardiomyocyte function, which might prime their physiology for exploiting hypoxic environments.
Collapse
Affiliation(s)
- Ilan M Ruhr
- 1 Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester , Manchester M13 9NT , UK
| | - Heather McCourty
- 1 Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester , Manchester M13 9NT , UK
| | - Afaf Bajjig
- 1 Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester , Manchester M13 9NT , UK
| | - Dane A Crossley
- 2 Department of Biological Sciences, University of North Texas , Denton, TX 76203 , USA
| | - Holly A Shiels
- 1 Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester , Manchester M13 9NT , UK
| | - Gina L J Galli
- 1 Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester , Manchester M13 9NT , UK
| |
Collapse
|
13
|
Alderman SL, Crossley DA, Elsey RM, Gillis TE. Hypoxia-induced reprogramming of the cardiac phenotype in American alligators (Alligator mississippiensis) revealed by quantitative proteomics. Sci Rep 2019; 9:8592. [PMID: 31197188 PMCID: PMC6565670 DOI: 10.1038/s41598-019-45023-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Hypoxic exposure during development can have a profound influence on offspring physiology, including cardiac dysfunction, yet many reptile embryos naturally experience periods of hypoxia in buried nests. American alligators experimentally exposed to developmental hypoxia demonstrate morphological and functional changes to the heart that persist into later life stages; however, the molecular bases of these changes remain unknown. We tested if targeted and persistent changes in steady-state protein expression underlie this hypoxic heart phenotype, using isobaric tags for relative and absolute quantitation (iTRAQ) proteomics. Alligator eggs were reared under normoxia or 10% hypoxia, then either sampled (embryo) or returned to normoxia for 2 years (juvenile). Three salient findings emerge from the integrated analysis of the 145 differentially expressed proteins in hypoxia-reared animals: (1) significant protein-protein interaction networks were identified only in up-regulated proteins, indicating that the effects of developmental hypoxia are stimulatory and directed; (2) the up-regulated proteins substantially enriched processes related to protein turnover, cellular organization, and metabolic pathways, supporting increased resource allocation towards building and maintaining a higher functioning heart; and (3) the juvenile cardiac proteome retained many of the signature changes observed in embryonic hearts, supporting long-term reprogramming of cardiac myocytes induced by hypoxia during critical periods of development.
Collapse
Affiliation(s)
- Sarah L Alderman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | - Dane A Crossley
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas, 76203-5017, USA
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, Louisiana, 70643, USA
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
14
|
Hu YC, Lu HL, Cheng KM, Luo LG, Zeng ZG. Thermal dependence of feeding performance and resting metabolic expenditure in different altitudinal populations of toad-headed lizards. J Therm Biol 2019; 80:16-20. [PMID: 30784481 DOI: 10.1016/j.jtherbio.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/06/2018] [Accepted: 01/01/2019] [Indexed: 11/16/2022]
Abstract
Inter-population variations in growth rate can result from independent or interactive effects of genetic and environmental factors, and be induced by some physiological differences as well. Toad-headed lizards (Phrynocephalus vlangalii) from a higher-elevation population were shown to have a higher growth rate than those from a lower-elevation population. The physiological basis of growth rate variation in this species is not well understood. Here, we investigated the feeding performance and resting metabolic rate (RMR) of lower- and higher-elevation individuals at different test ambient temperatures to evaluate the role of differences in energy intake, assimilation efficiency and metabolic expenditure on growth rate variations. Within the range of 25-35 °C, lizard RMR increased with increasing test ambient temperature, but food intake, apparent digestive coefficient (ADC, food energy minus faecal energy divided by food energy), and assimilation efficiency (AE, food energy minus faecal and urinary energy divided by food energy) were less thermally sensitive in both populations. Higher-elevation lizards tended to eat more food and have a lower RMR than lower-elevation ones, despite the lack of differences in ADC and AE. Our result showed that more energy intake and reduced maintenance cost may be associated with the higher growth rate of higher-elevation lizards. Accordingly, inter-population differences in energy acquisition and expenditure could act as potential sources for geographic variation in growth rate.
Collapse
Affiliation(s)
- Ying-Chao Hu
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Hong-Liang Lu
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China.
| | - Kun-Ming Cheng
- Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, Zhejiang, China
| | - Lai-Gao Luo
- School of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Kouyoumdjian L, Gangloff EJ, Souchet J, Cordero GA, Dupoué A, Aubret F. Transplanting gravid lizards to high elevation alters maternal and embryonic oxygen physiology, but not reproductive success or hatchling phenotype. J Exp Biol 2019; 222:jeb.206839. [DOI: 10.1242/jeb.206839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Abstract
Increased global temperatures have opened previously inhospitable habitats, such as at higher elevations. However, the reduction of oxygen partial pressure with increase in elevation represents an important physiological constraint that may limit colonization of such habitats, even if the thermal niche is appropriate. To test the mechanisms underlying the response to ecologically-relevant levels of hypoxia, we performed a translocation experiment with the common wall lizard (Podarcis muralis), a widespread European lizard amenable to establishing populations outside its natural range. We investigated the impacts of hypoxia on the oxygen physiology and reproductive output of gravid common wall lizards and the subsequent development and morphology of their offspring. Lowland females transplanted to high elevations increased their haematocrit and haemoglobin concentration within days and maintained routine metabolism compared to lizards kept at native elevations. However, transplanted lizards suffered from increased reactive oxygen metabolite production near the oviposition date, suggesting a cost of reproduction at high elevation. Transplanted females and females native to different elevations did not differ in reproductive output (clutch size, egg mass, relative clutch mass, or embryonic stage at oviposition) or in post-oviposition body condition. Developing embryos reduced heart rates and prolonged incubation times at high elevations within the native range and at extreme high elevations beyond the current range, but this reduced oxygen availability did not affect metabolic rate, hatching success, or hatchling size. These results suggest that this opportunistic colonizer is capable of successfully responding to novel environmental constraints in these important life-history stages.
Collapse
Affiliation(s)
- Laura Kouyoumdjian
- Station d'Ecologie Théorique et Expérimentale du CNRS – UMR 5321, Moulis, France
| | - Eric J. Gangloff
- Station d'Ecologie Théorique et Expérimentale du CNRS – UMR 5321, Moulis, France
| | - Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale du CNRS – UMR 5321, Moulis, France
| | - Gerardo A. Cordero
- Fachbereich Geowissenschaften, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Andréaz Dupoué
- CNRS UPMC, UMR 7618, iEES Paris, Université Pierre et Marie Curie, Paris, France
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale du CNRS – UMR 5321, Moulis, France
- School of Molecular and Life Sciences, Curtin University, 6102 WA, Australia
| |
Collapse
|
16
|
The effects of embryonic hypoxic programming on cardiovascular function and autonomic regulation in the American alligator (Alligator mississippiensis) at rest and during swimming. J Comp Physiol B 2018; 188:967-976. [DOI: 10.1007/s00360-018-1181-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/25/2018] [Accepted: 09/06/2018] [Indexed: 02/08/2023]
|
17
|
Hydric environmental effects on turtle development and sex ratio. ZOOLOGY 2018; 126:89-97. [DOI: 10.1016/j.zool.2017.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/18/2017] [Accepted: 11/26/2017] [Indexed: 12/30/2022]
|
18
|
Cedillo-Leal C, Simoncini MS, Leiva PML, Larriera A, Lang JW, Piña CI. Eggshell structure in Caiman latirostris eggs improves embryo survival during nest inundation. Proc Biol Sci 2018; 284:rspb.2016.2675. [PMID: 28469027 DOI: 10.1098/rspb.2016.2675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 04/05/2017] [Indexed: 11/12/2022] Open
Abstract
Egg inundation often results in poor hatching success in crocodylians. However, how tolerant eggs are to submergence, and/or how eggshell ultrastructure may affect embryo survival when inundated, are not well understood. In this study, our objective was to determine if embryo survival in Caiman latirostris is affected by eggshell surface roughness, when eggs are submerged under water. Tolerance to inundation was tested early (day 30) versus late (day 60) in development, using eight clutches (four per time treatments), subdivided into four groups: (N = 9 per clutch per treatment; 9 × 4 = 36 eggs per group). 'Rough' eggshell represented the natural, unmodified eggshell surface structure. 'Smooth' eggshell surface structure was created by mechanically sanding the natural rough surface to remove surface columnar elements and secondary layer features, e.g. irregularities that result in 'roughness'. When inundated by submerging eggs under water for 10 h at day 30, 'smooth' eggshell structure resulted in more than twice as many dead embryos (16 versus 6, smooth versus rough; N = 36), and fewer than half as many healthy embryos (6 versus 13, smooth versus rough, respectively; N = 36). By contrast, at day 60, inundation resulted in very low hatching success, regardless of eggshell surface structure. Only two hatchlings survived the inundation, notably in the untreated group with intact, rough eggshells. Inundation produced a high rate of malformations (58% at day 30), but did not affect hatchling size. Our results indicate that eggshell roughness enhances embryo survival when eggs are inundated early in development, but not late in development. Apparently, the natural surface 'roughness' entraps air bubbles at the eggshell surface during inundation, thereby facilitating gas exchange through the eggshell even when the egg is submerged under water.
Collapse
Affiliation(s)
- César Cedillo-Leal
- Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Melina S Simoncini
- Proyecto Yacaré-Laboratorio de Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/MASPyMA), Santa Fe, Argentina .,CICyTTP-UADER-Prov Entre Ríos-CONICET. FCyT, Dr Materi y España, Diamante, Argentina
| | - Pamela M L Leiva
- Proyecto Yacaré-Laboratorio de Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/MASPyMA), Santa Fe, Argentina.,CICyTTP-UADER-Prov Entre Ríos-CONICET. FCyT, Dr Materi y España, Diamante, Argentina
| | - Alejandro Larriera
- Proyecto Yacaré-Laboratorio de Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/MASPyMA), Santa Fe, Argentina
| | - Jeffrey W Lang
- Conservation Biology Program, University of Minnesota, St Paul, MN 55108, Minnesota, USA
| | - Carlos I Piña
- Proyecto Yacaré-Laboratorio de Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/MASPyMA), Santa Fe, Argentina .,CICyTTP-UADER-Prov Entre Ríos-CONICET. FCyT, Dr Materi y España, Diamante, Argentina
| |
Collapse
|
19
|
Schachner ER, Sedlmayr JC, Schott R, Lyson TR, Sanders RK, Lambertz M. Pulmonary anatomy and a case of unilateral aplasia in a common snapping turtle (Chelydra serpentina): developmental perspectives on cryptodiran lungs. J Anat 2017; 231:835-848. [PMID: 29063595 DOI: 10.1111/joa.12722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 01/07/2023] Open
Abstract
The common snapping turtle (Chelydra serpentina) is a well studied and broadly distributed member of Testudines; however, very little is known concerning developmental anomalies and soft tissue pathologies of turtles and other reptiles. Here, we present an unusual case of unilateral pulmonary aplasia, asymmetrical carapacial kyphosis, and mild scoliosis in a live adult C. serpentina. The detailed three-dimensional (3D) anatomy of the respiratory system in both the pathological and normal adult C. serpentina, and a hatchling are visualized using computed tomography (CT), microCT, and 3D digital anatomical models. In the pathological turtle, the right lung consists of an extrapulmonary bronchus that terminates in a blind stump with no lung present. The left lung is hyperinflated relative to the normal adult, occupying the extra coelomic space facilitated by the unusual mid-carapacial kyphotic bulge. The bronchial tree of the left lung retains the overall bauplan of the normal specimens, with some minor downstream variation in the number of secondary airways. The primary difference between the internal pulmonary structure of the pathological individual and that of a normal adult is a marked increase in the surface area and density of the parenchymal tissue originating from the secondary airways, a 14.3% increase in the surface area to volume ratio. Despite this, the aplasia has not had an impact upon the ability of the turtle to survive; however, it did interfere with aquatic locomotion and buoyancy control under water. This turtle represents a striking example of a non-fatal congenital defect and compensatory visceral hypertrophy.
Collapse
Affiliation(s)
- E R Schachner
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - J C Sedlmayr
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - R Schott
- Wildlife Rehabilitation Center of Minnesota, Roseville, MN, USA
| | - T R Lyson
- Department of Earth Sciences, Denver Museum of Nature and Science, Denver, CO, USA
| | - R K Sanders
- Department of Diagnostic Imaging, North Canyon Medical Center, Gooding, ID, USA
| | - M Lambertz
- Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.,Sektion Herpetologie, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| |
Collapse
|
20
|
Wearing OH, Conner J, Nelson D, Crossley J, Crossley DA. Embryonic hypoxia programmes postprandial cardiovascular function in adult common snapping turtles (Chelydra serpentina). J Exp Biol 2017; 220:2589-2597. [DOI: 10.1242/jeb.160549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022]
Abstract
Reduced oxygen availability (hypoxia) is a potent stressor during embryonic development, altering the trajectory of trait maturation and organismal phenotype. We previously documented that chronic embryonic hypoxia has a lasting impact on the metabolic response to feeding in juvenile snapping turtles (Chelydra serpentina). Turtles exposed to hypoxia as embryos (10% O2, H10) exhibited an earlier and increased peak postprandial oxygen consumption rate, compared to control turtles (21% O2, N21). In the current study, we measured central blood flow patterns to determine whether the elevated postprandial metabolic response in H10 turtles is linked to lasting impacts on convective transport. Five years after hatching, turtles were instrumented to quantify systemic (Q̇sys) and pulmonary (Q̇pul) blood flows and heart rate (fH) before and after a ∼5% body mass meal. In adult N21 and H10 turtles, fH was increased significantly by feeding. While total stroke volume (Vstot) remained at fasted values, this tachycardia contributed to an elevation in total cardiac output (Q̇tot). However, there was a postprandial reduction in a net left-right (L-R) shunt in N21 snapping turtles only. Relative to N21 turtles, H10 animals exhibited higher Q̇sys due to increased blood flow through the right systemic outflow vessels of the heart. This effect of hypoxic embryonic development, reducing a net L-R cardiac shunt, may support the increased postprandial metabolic rate we previously reported in H10 turtles, and is further demonstration of adult reptile cardiovascular physiology being programmed by embryonic hypoxia.
Collapse
Affiliation(s)
- Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Justin Conner
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Derek Nelson
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Janna Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| |
Collapse
|
21
|
Tate KB, Rhen T, Eme J, Kohl ZF, Crossley J, Elsey RM, Crossley DA. Periods of cardiovascular susceptibility to hypoxia in embryonic american alligators (Alligator mississippiensis). Am J Physiol Regul Integr Comp Physiol 2016; 310:R1267-78. [PMID: 27101296 DOI: 10.1152/ajpregu.00320.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/11/2016] [Indexed: 01/30/2023]
Abstract
During embryonic development, environmental perturbations can affect organisms' developing phenotype, a process known as developmental plasticity. Resulting phenotypic changes can occur during discrete, critical windows of development. Critical windows are periods when developing embryos are most susceptible to these perturbations. We have previously documented that hypoxia reduces embryo size and increases relative heart mass in American alligator, and this study identified critical windows when hypoxia altered morphological, cardiovascular function and cardiac gene expression of alligator embryos. We hypothesized that incubation in hypoxia (10% O2) would increase relative cardiac size due to cardiac enlargement rather than suppression of somatic growth. We exposed alligator embryos to hypoxia during discrete incubation periods to target windows where the embryonic phenotype is altered. Hypoxia affected heart growth between 20 and 40% of embryonic incubation, whereas somatic growth was affected between 70 and 90% of incubation. Arterial pressure was depressed by hypoxic exposure during 50-70% of incubation, whereas heart rate was depressed in embryos exposed to hypoxia during a period spanning 70-90% of incubation. Expression of Vegf and PdgfB was increased in certain hypoxia-exposed embryo treatment groups, and hypoxia toward the end of incubation altered β-adrenergic tone for arterial pressure and heart rate. It is well known that hypoxia exposure can alter embryonic development, and in the present study, we have identified brief, discrete windows that alter the morphology, cardiovascular physiology, and gene expression in embryonic American alligator.
Collapse
Affiliation(s)
- Kevin B Tate
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, North Dakota
| | - John Eme
- Department of Biological Sciences, California State University San Marcos, San Marcos, California
| | - Zachary F Kohl
- Department of Biological Sciences, University of North Texas, Denton, Texas; and
| | - Janna Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas; and
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, Louisiana
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas; and
| |
Collapse
|