1
|
Belbis MD, Yap Z, Hobart SE, Ferguson SK, Hirai DM. Effects of acute phosphodiesterase type 5 inhibition on skeletal muscle interstitial PO 2 during contractions and recovery. Nitric Oxide 2024; 142:16-25. [PMID: 37979932 DOI: 10.1016/j.niox.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
The oxygen partial pressure within the interstitial space (PO2is; mmHg) provides the driving force for oxygen diffusion into the myocyte thereby supporting oxidative phosphorylation. We tested the hypothesis that potentiation of the nitric oxide pathway with sildenafil (phosphodiesterase type 5 inhibitor) would enhance PO2is during muscle metabolic transitions, thereby slowing PO2is on- and accelerating PO2is off-kinetics. The rat spinotrapezius muscle (n = 17) was exposed for PO2is measurements via phosphorescence quenching under control (CON), low-dose sildenafil (1 mg/kg i.a., SIL1) and high-dose sildenafil (7 mg/kg i.a., SIL7). Data were collected at rest and during submaximal twitch contractions (1 Hz, 4-6 V, 3 min) and recovery (3 min). Mean arterial blood pressure (MAP; mmHg) was reduced with both SIL1 (pre:132 ± 5; post:99 ± 5) and SIL7 (pre:111 ± 6; post:99 ± 4) (p < 0.05). SIL7 elevated resting PO2is (18.4 ± 1.1) relative to both CON (15.7 ± 0.7) and SIL1 (15.2 ± 0.7) (p < 0.05). In addition, SIL7 increased end-recovery PO2is (17.7 ± 1.6) compared to CON (12.8 ± 0.9) and SIL1 (13.4 ± 0.8) (p < 0.05). The overall PO2is response during recovery (i.e., area under the PO2is curve) was greater in SIL7 (4107 ± 444) compared to CON (3493 ± 222) and SIL1 (3114 ± 205 mmHg s) (p < 0.05). Contrary to our hypothesis, there was no impact of acute SIL (1 or 7 mg/kg) on the speed of the PO2is response during contractions or recovery (p > 0.05). However, sildenafil lowered MAP and improved skeletal muscle interstitial oxygenation in healthy rats. Specifically, SIL7 enhanced PO2is at rest and during recovery from submaximal muscle contractions. Potentiation of the nitric oxide pathway with sildenafil enhances microvascular blood-myocyte O2 transport and is expected to improve repeated bouts of contractile activity.
Collapse
Affiliation(s)
- Michael D Belbis
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA; Department of Exercise Science, Aurora University, Aurora, IL, USA
| | - Zhen Yap
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Sara E Hobart
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Scott K Ferguson
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA
| | - Daniel M Hirai
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Nyberg M, Jones AM. Matching of O2 Utilization and O2 Delivery in Contracting Skeletal Muscle in Health, Aging, and Heart Failure. Front Physiol 2022; 13:898395. [PMID: 35774284 PMCID: PMC9237395 DOI: 10.3389/fphys.2022.898395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle is one of the most dynamic metabolic organs as evidenced by increases in metabolic rate of >150-fold from rest to maximal contractile activity. Because of limited intracellular stores of ATP, activation of metabolic pathways is required to maintain the necessary rates of ATP re-synthesis during sustained contractions. During the very early phase, phosphocreatine hydrolysis and anaerobic glycolysis prevails but as activity extends beyond ∼1 min, oxidative phosphorylation becomes the major ATP-generating pathway. Oxidative metabolism of macronutrients is highly dependent on the cardiovascular system to deliver O2 to the contracting muscle fibres, which is ensured through a tight coupling between skeletal muscle O2 utilization and O2 delivery. However, to what extent O2 delivery is ideal in terms of enabling optimal metabolic and contractile function is context-dependent and determined by a complex interaction of several regulatory systems. The first part of the review focuses on local and systemic mechanisms involved in the regulation of O2 delivery and how integration of these influences the matching of skeletal muscle O2 demand and O2 delivery. In the second part, alterations in cardiovascular function and structure associated with aging and heart failure, and how these impact metabolic and contractile function, will be addressed. Where applicable, the potential of exercise training to offset/reverse age- and disease-related cardiovascular declines will be highlighted in the context of skeletal muscle metabolic function. The review focuses on human data but also covers animal observations.
Collapse
Affiliation(s)
- Michael Nyberg
- Vascular Biology, Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
- *Correspondence: Michael Nyberg,
| | - Andrew M. Jones
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Gliemann L, Rytter N, Yujia L, Tamariz-Ellemann A, Carter H, Hellsten Y. A High Activity Level Is Required for Augmented Muscle Capillarization in Older Women. Med Sci Sports Exerc 2021; 53:894-903. [PMID: 33844669 DOI: 10.1249/mss.0000000000002566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study aimed to evaluate the influence of lifelong regular physical activity on skeletal muscle capillarization in women. METHODS Postmenopausal women, 61±4 yr old, were divided according to self-reported physical activity level over the past 20 yrs: sedentary (SED; n = 14), moderately active (MOD; n = 12), and very active (VERY; n = 15). Leg blood flow (LBF) was determined by ultrasound Doppler, and blood samples were drawn from the femoral artery and vein for calculation of leg oxygen uptake (LVO2) at rest and during one-legged knee extensor exercise. A skeletal muscle biopsy was obtained from the vastus lateralis and analyzed for capillarization and vascular endothelial growth factor (VEGF) and mitochondrial OXPHOS proteins. Platelets were isolated from venous blood and analyzed for VEGF content and effect on endothelial cell proliferation. RESULTS The exercise-induced rise in LBF and LVO2 was faster (P = 0.008) in VERY compared with SED and MOD. Steady-state LBF and LVO2 were lower (P < 0.04) in MOD and VERY compared with SED. Capillary-fiber ratio and capillary density were greater (P < 0.03) in VERY (1.65 ± 0.48 and 409.3 ± 57.5) compared with MOD (1.30 ± 0.19 and 365.0 ± 40.2) and SED (1.30 ± 0.30 and 356.2 ± 66.3). Skeletal muscle VEGF and OXPHOS complexes I, II, and V were ~1.6-fold and ~1.25-fold (P < 0.01) higher, respectively, in VERY compared with SED. Platelets from all groups induced an approximately nine-fold (P < 0.001) increase in endothelial cell proliferation. CONCLUSION A very active lifestyle is associated with superior skeletal muscle exercise hemodynamics and greater potential for oxygen extraction concurrent with a higher skeletal muscle capillarization and mitochondrial capacity.
Collapse
Affiliation(s)
- Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, DENMARK
| | - Nicolai Rytter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, DENMARK
| | | | | | - Howard Carter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, DENMARK
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, DENMARK
| |
Collapse
|
4
|
Craig JC, Broxterman RM, Cerbie JF, La Salle DT, Roundy CS, Jarrett CL, Richardson RS, Trinity JD. The dynamic adjustment of mean arterial pressure during exercise: a potential tool for discerning cardiovascular health status. J Appl Physiol (1985) 2021; 130:1544-1554. [PMID: 33830814 DOI: 10.1152/japplphysiol.00057.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The regulation of mean arterial pressure (MAP) during exercise has important physiological and clinical implications. Kinetics analysis on numerous physiological variables following the transition from unloaded-to-loaded exercise has revealed important information regarding their control. Surprisingly, the dynamic response of MAP during this transition remains to be quantified. Therefore, ten healthy participants (5/5 M/F, 24 ± 3 yr) completed repeated transitions from unloaded to moderate- and heavy-intensity dynamic single-leg knee-extensor exercise to investigate the on-kinetics of MAP. Following the transition to loaded exercise, MAP increased in a first-order dynamic manner, subsequent to a time delay (moderate: 23 ± 10; heavy: 19 ± 9 s, P > 0.05) at a speed (τ, moderate: 59 ± 30; heavy: 66 ± 19 s, P > 0.05), which did not differ between intensities, but the MAP amplitude was doubled during heavy-intensity exercise (moderate: 12 ± 5; heavy: 24 ± 8 mmHg, P < 0.001). The reproducibility [coefficient of variation (CV)] during heavy intensity for unloaded baseline, amplitude, and mean response time, when assessed as individual transitions, was 7 ± 1%, 18 ± 2%, and 25 ± 4%, respectively. Averaging two transitions improved the CVs to 4 ± 1%, 8 ± 2%, and 13 ± 3%, respectively. Preliminary findings supporting the clinical relevance of evaluating MAP kinetics in middle-aged hypertensive (n = 5) and, age-matched, normotensive (n = 5) participants revealed an exaggerated MAP response in both older groups (P < 0.05), but the MAP response was slowed only for the patients with hypertension (P < 0.05). It is concluded that kinetics modeling of MAP is practical for heavy-intensity knee-extensor exercise and may provide insight into cardiovascular health and the effect of aging.NEW & NOTEWORTHY Kinetics analysis of physiological variables following workload transitions provides important information, but this has not been performed on mean arterial pressure (MAP), despite the clear clinical importance of this variable. This investigation reveals that kinetic modeling of MAP following unloaded-to-loaded knee-extensor exercise is practical and repeatable. Additional preliminary findings in hypertensive and, age-matched, normotensive subjects suggest that MAP kinetics may provide insight into cardiovascular health and the effect of aging.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Ryan M Broxterman
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - James F Cerbie
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - D Taylor La Salle
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Caleb S Roundy
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah
| | - Catherine L Jarrett
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah.,Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|