1
|
Guérineau NC. Cholinergic and peptidergic neurotransmission in the adrenal medulla: A dynamic control of stimulus‐secretion coupling. IUBMB Life 2019; 72:553-567. [DOI: 10.1002/iub.2117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Nathalie C. Guérineau
- IGFUniv. Montpellier, CNRS, INSERM Montpellier France
- LabEx “Ion Channel Science and Therapeutics” Montpellier France
| |
Collapse
|
2
|
Examination of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) as a Potential Biomarker in Heart Failure Patients. J Mol Neurosci 2018; 68:368-376. [PMID: 29353438 DOI: 10.1007/s12031-017-1025-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/25/2017] [Indexed: 01/06/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic and multifunctional neuropeptide having neurotrophic, neuroprotective, and general cytoprotective actions in a variety of tissues based on its anti-apoptotic, anti-inflammatory, and antioxidant effects. Several studies have demonstrated its cardioprotective effects in vitro and in various animal models. However, few data are available on the presence of PACAP in human cardiac tissues and its role in the pathomechanism and progression of different cardiac disorders, particularly heart failure. Earlier, our research group has shown PAC1 receptor immunoreactivity in human heart tissue samples and we have found significantly elevated PACAP27- and PACAP38-like immunoreactivity in ischemic cardiac samples compared to valvular abnormalities with radioimmunoassay. In the last few years, numerous studies examined the presence and the changes of PACAP levels in different human tissue samples and biological fluids to show alterations in different physiological and pathological conditions. Therefore, the aim of the present study was to measure the alterations of blood PACAP levels in chronic heart failure caused by primary dilated cardiomyopathy or ischemic cardiomyopathy and to examine the possible relationship between serum levels of PACAP, N-terminal prohormone of brain natriuretic peptide (NT-proBNP), and systolic left ventricular function, the most reliable biomarkers of heart failure. In the group of mild heart failure patients, a significant strong negative correlation was detected. Furthermore, in moderate heart failure, we found a significant moderate negative correlation between PACAP and NT-proBNP levels only in ischemic subgroup. Positive correlation was found between serum PACAP level and ejection fraction only in patients with heart failure due to ischemic cardiomyopathy but not in patients with primary dilated cardiomyopathy. In summary, remarkable differences were observed between the ischemic and non-ischemic heart failure suggesting that PACAP might play an important role in the pathomechanism and progression of ischemic heart failure and it might be a potential biomarker of cardiac diseases in the future.
Collapse
|
3
|
Lymperopoulos A, Brill A, McCrink KA. GPCRs of adrenal chromaffin cells & catecholamines: The plot thickens. Int J Biochem Cell Biol 2016; 77:213-9. [PMID: 26851510 DOI: 10.1016/j.biocel.2016.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/14/2022]
Abstract
The circulating catecholamines (CAs) epinephrine (Epi) and norepinephrine (NE) derive from two major sources in the whole organism: the sympathetic nerve endings, which release NE on effector organs, and the chromaffin cells of the adrenal medulla, which are cells that synthesize, store and release Epi (mainly) and NE. All of the Epi in the body and a significant amount of circulating NE derive from the adrenal medulla. The secretion of CAs from adrenal chromaffin cells is regulated in a complex way by a variety of membrane receptors, the vast majority of which are G protein-coupled receptors (GPCRs), including adrenergic receptors (ARs), which act as "presynaptic autoreceptors" in this regard. There is a plethora of CA-secretagogue signals acting on these receptors but some of them, most notably the α2ARs, inhibit CA secretion. Over the past few years, however, a few new proteins present in chromaffin cells have been uncovered to participate in CA secretion regulation. Most prominent among these are GRK2 and β-arrestin1, which are known to interact with GPCRs regulating receptor signaling and function. The present review will discuss the molecular and signaling mechanisms by which adrenal chromaffin cell-residing GPCRs and their regulatory proteins modulate CA synthesis and secretion. Particular emphasis will be given to the newly discovered roles of GRK2 and β-arrestins in these processes and particular points of focus for future research will be highlighted, as well.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA.
| | - Ava Brill
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA
| | - Katie A McCrink
- From the Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, 3200 S. University Dr., Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
4
|
Hoover DB, Girard BM, Hoover JL, Parsons RL. PAC₁ receptors mediate positive chronotropic responses to PACAP-27 and VIP in isolated mouse atria. Eur J Pharmacol 2013; 713:25-30. [PMID: 23665113 DOI: 10.1016/j.ejphar.2013.04.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/02/2013] [Accepted: 04/26/2013] [Indexed: 11/26/2022]
Abstract
PACAP and VIP have prominent effects on cardiac function in several species, but little is known about their influence on the murine heart. Accordingly, we evaluated the expression of PACAP/VIP receptors in mouse heart and the response of isolated atria to peptide agonists. Quantitative PCR demonstrated that PAC₁, VPAC₁, and VPAC₂ receptor mRNAs are present throughout the mouse heart. Expression of all three receptor transcripts was low, PAC₁ being the lowest. No regional differences in expression were detected for individual receptor mRNAs after normalization to L32. Pharmacological effects of PACAP-27, VIP, and the selective PAC₁ agonist maxadilan were evaluated in isolated, spontaneously beating atria from C57BL/6 mice of either sex. Incremental additions of PACAP-27 at 1 min intervals caused a concentration-dependent tachycardia with a logEC₅₀=-9.08 ± 0.15 M (n=7) and a maximum of 96.3 ± 5.9% above baseline heart rate. VIP and maxadilan also caused tachycardia but their potencies were about two orders of magnitude less. Increasing the dosing interval to 5 min caused a leftward shift of the concentration-response curve to maxadilan but no changes in the curves for PACAP-27 or VIP. Under this condition, neither the potency nor the efficacy of maxadilan differed from those of PACAP-27. Neither PACAP-27 nor maxadilan caused tachyphylaxis, and maximal responses to maxadilan were maintained for at least 2 h. We conclude that all three VIP/PACAP family receptors are expressed by mouse cardiac tissue, but only PAC₁ receptors mediate positive chronotropic responses to PACAP-27 and VIP.
Collapse
Affiliation(s)
- Donald B Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, USA.
| | | | | | | |
Collapse
|
5
|
Thouennon E, Pierre A, Yon L, Anouar Y. Expression of trophic peptides and their receptors in chromaffin cells and pheochromocytoma. Cell Mol Neurobiol 2010; 30:1383-9. [PMID: 21046451 DOI: 10.1007/s10571-010-9594-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/02/2010] [Indexed: 10/18/2022]
Abstract
Pheochromocytomas are catecholamine-producing tumors arising from chromaffin cells of the adrenal medulla or extra-adrenal location. Along with catecholamines, tumoral cells produce and secrete elevated quantities of trophic peptides which are normally released in a regulated manner by the normal adrenal medulla. Among these peptides, the amounts of pituitary adenylate cyclase-activating polypeptide (PACAP), adrenomedullin (AM), and neuropeptide Y (NPY) are particularly high. These peptides can exert endocrine, paracrine or autocrine effects in numerous cell types. In particular, they have been shown to be involved in cell proliferation and survival, catecholamine production and secretion, and angiogenesis. Some of these processes are exacerbated in pheochromocytomas, raising the possibility of the involvement of trophic peptides. Here, we review the expression levels of NPY, PACAP, and AM and theirs receptors in chromaffin cells and pheochromocytomas, and address their possible implication in the adrenal medulla tumorigenesis and malignant development of pheochromocytomas.
Collapse
Affiliation(s)
- Erwan Thouennon
- INSERM, U982, DC2N, IFRMP23, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
6
|
Kumar NN, Allen K, Parker L, Damanhuri H, Goodchild AK. Neuropeptide coding of sympathetic preganglionic neurons; focus on adrenally projecting populations. Neuroscience 2010; 170:789-99. [PMID: 20674686 DOI: 10.1016/j.neuroscience.2010.07.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 01/04/2023]
Abstract
Chemical coding of sympathetic preganglionic neurons (SPN) suggests that the chemical content of subpopulations of SPN can define their function. Since neuropeptides, once synthesized are transported to the axon terminal, most demonstrated chemical coding has been identified using immunoreactive terminals at the target organ. Here, we use a different approach to identify and quantify the subpopulations of SPN that contain the mRNA for pituitary adenylate cyclase activating polypeptide (PACAP) or enkephalin. Using double-labeled immunohistochemistry combined with in situ hybridization (ISH) we firstly identified the distribution of these mRNAs in the spinal cord and determined quantitatively, in Sprague-Dawley rats, that many SPN at the T4-T10 spinal level contain preproPACAP (PPP+, 80 ± 3%, n=3), whereas a very small percentage contain preproenkephalin (PPE+, 4 ± 2%, n=4). A similar neurochemical distribution was found at C8-T3 spinal level. These data suggest that PACAP potentially regulates a large number of functions dictated by SPN whereas enkephalins are involved in few functions. We extended the study to explore those SPN that control adrenal chromaffin cells. We found 97 ± 5% of adrenally projecting SPN (AP-SPN) to be PPP+ (n=4) with only 47 ± 3% that were PPE+ (n=5). These data indicate that adrenally projecting PACAPergic SPN regulate both adrenal adrenaline (Ad) and noradrenaline (NAd) release whereas the enkephalinergic SPN subpopulation must control a (sub) population of chromaffin cells - most likely those that release Ad. The sensory innervation of the adrenal gland was also determined. Of the few adrenally projecting dorsal root ganglia (AP-DRG) observed, 74 ± 12% were PPP+ (n=3), whereas 1 ± 1% were PPE+ (n=3). Therefore, if sensory neurons release peptides to the adrenal medulla, PACAP is most likely involved. Together, these data provide a neurochemical basis for differential control of sympathetic outflow particularly that to the adrenal medulla.
Collapse
Affiliation(s)
- N N Kumar
- The Australian School of Advanced Medicine, Faculty of Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | | | | | | |
Collapse
|
7
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacol Rev 2009; 61:283-357. [DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 829] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
8
|
Wilson RJ, Cummings KJ. Pituitary adenylate cyclase-activating polypeptide is vital for neonatal survival and the neuronal control of breathing. Respir Physiol Neurobiol 2008; 164:168-78. [DOI: 10.1016/j.resp.2008.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 05/20/2008] [Accepted: 06/03/2008] [Indexed: 01/28/2023]
|
9
|
Cummings KJ, Willie C, Wilson RJA. Pituitary adenylate cyclase-activating polypeptide maintains neonatal breathing but not metabolism during mild reductions in ambient temperature. Am J Physiol Regul Integr Comp Physiol 2008; 294:R956-65. [DOI: 10.1152/ajpregu.00637.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mild reductions in ambient temperature dramatically increase the mortality of neonatal mice deficient in pituitary adenylate cyclase-activating polypeptide (PACAP), with the majority of animals succumbing in the second postnatal week. During anesthesia-induced hypothermia, PACAP−/− mice at this age are also vulnerable to prolonged apneas and sudden death. From these observations, we hypothesized that before the onset of genotype-specific mortality and in the absence of anesthetic, the breathing of PACAP-deficient mice is more susceptible to mild reductions in ambient temperature than wild-type littermates. To test this hypothesis, we recorded breathing in one group of postnatal day 4 PACAP+/+, +/−, and −/− neonates (using unrestrained, flow-through plethysmography) and metabolic rate in a separate group (using indirect calorimetry), both of which were exposed acutely to ambient temperatures slightly below (29°C), slightly above (36°C), or at thermoneutrality (32°C). At 32°C, the breathing frequency of PACAP−/− neonates was significantly less than PACAP+/+ littermates. Reducing the ambient temperature to 29°C caused a significant suppression of tidal volume and ventilation in both PACAP+/− and −/− animals, while the tidal volume and ventilation of PACAP+/+ animals remained unchanged. Genotype had no effect on the ventilatory responses to ambient warming. At all three ambient temperatures, genotype had no influence on oxygen consumption or body temperature. These results suggest that during mild reductions in ambient temperature, PACAP is vital for the preservation of neonatal tidal volume and ventilation, but not for metabolic rate or body temperature.
Collapse
|
10
|
Ghzili H, Grumolato L, Thouënnon E, Tanguy Y, Turquier V, Vaudry H, Anouar Y. Role of PACAP in the physiology and pathology of the sympathoadrenal system. Front Neuroendocrinol 2008; 29:128-41. [PMID: 18048093 DOI: 10.1016/j.yfrne.2007.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/24/2007] [Accepted: 10/01/2007] [Indexed: 01/09/2023]
Abstract
Sympathetic neurons and chromaffin cells derive from common sympathoadrenal precursors which arise from the neural crest. Cells from this lineage migrate to their final destination and differentiate by acquiring a catecholaminergic phenotype in response to different environmental factors. It has been shown that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its PAC1 receptor are expressed at early stages of sympathetic development, and participate to the control of neuroblast proliferation and differentiation. PACAP also acts as a neurotransmitter to stimulate catecholamine and neuropeptide biosynthesis and release from sympathetic neurons and chromaffin cells, during development and in adulthood. In addition, PACAP and its receptors have been described in neuroblastoma and pheochromocytoma, and the neuropeptide regulates the differentiation and activity of sympathoadrenal-derived tumoral cell lines, suggestive of an important role in the pathophysiology of the sympathoadrenal lineage. Transcriptome studies uncovered genes and pathways of known and unknown roles that underlie the effects of PACAP in the sympathoadrenal system.
Collapse
Affiliation(s)
- Hafida Ghzili
- INSERM, U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Birk S, Sitarz JT, Petersen KA, Oturai PS, Kruuse C, Fahrenkrug J, Olesen J. The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers. ACTA ACUST UNITED AC 2007; 140:185-91. [PMID: 17320198 DOI: 10.1016/j.regpep.2006.12.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 12/10/2006] [Accepted: 12/21/2006] [Indexed: 11/18/2022]
Abstract
PACAP38 is an endogenous peptide located in trigeminal perivascular nerve fibers in the brain. It reduces neuronal loss and infarct size in animal stroke models and has been proposed a candidate substance for human clinical studies of stroke. The effect on systemic hemodynamics and regional cerebral blood flow (rCBF) is not well understood. We here present the first study of the effect of PACAP38 on cerebral hemodynamics in humans. PACAP (10 pmol kg(-1) min(-1)) or placebo (0.9% saline) was infused for 20 min into 12 healthy young volunteers in a cross over, double blind study. rCBF was measured with SPECT and (133)Xe inhalation and mean blood flow velocity in the middle cerebral artery was measured with transcranial Doppler ultrasonography. End tidal partial pressure of CO(2) (P(et)CO(2)) and vital parameters were recorded throughout the 2 hour study period. PACAP38 decreased rCBF in all regions of interest (ROIs) by approximately 3-10%, though not uniformly significant. P(et)CO(2) decreased significantly during PACAP38 infusion compared to placebo (P=0.032), peak decrease was 8.9+/-3.8%. After correction for P(et)CO(2), rCBF remained unchanged in most ROIs. Heart rate increased 61.9+/-22.4% (P<0.0001 vs. placebo). These findings suggest that PACAP38 has no major direct effect on rCBF in healthy volunteers. The marked increase in heart rate and the reduction in rCBF caused by decreased P(et)CO(2) are important dose-limiting factors to consider in future clinical studies.
Collapse
Affiliation(s)
- Steffen Birk
- Danish Headache Center, Department of Neurology, Glostrup Hospital, University of Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
12
|
Skøtt O. Pituitary adenylate cyclase-activating polypeptide and adrenomedullary function. Am J Physiol Regul Integr Comp Physiol 2003; 284:R586-7. [PMID: 12529290 DOI: 10.1152/ajpregu.00695.2002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|