1
|
Shi YW, Yuan W, Wang X, Gong J, Zhu SX, Chai LL, Qi JL, Qin YY, Gao Y, Zhou YL, Fan XL, Ji CY, Wu JY, Wang ZW, Liu D. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish. Sci Rep 2016; 6:30189. [PMID: 27452835 PMCID: PMC4958954 DOI: 10.1038/srep30189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022] Open
Abstract
Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7-9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4.
Collapse
Affiliation(s)
- Yun-Wei Shi
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Wei Yuan
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Xin Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Jie Gong
- School of life science, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Shun-Xing Zhu
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Lin-Lin Chai
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Jia-Ling Qi
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Yin-Yin Qin
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Yu Gao
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Yu-Ling Zhou
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Xiao-Le Fan
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Chun-Ya Ji
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Jia-Yi Wu
- School of medicine, Nantong University, Nantong, Jiangsu 226001, PRC
| | - Zhi-Wei Wang
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC.,Department of Pharmacology, University of California, Irvine, CA 92697, USA
| | - Dong Liu
- Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, PRC
| |
Collapse
|
2
|
Fenton RA, Poulsen SB, de la Mora Chavez S, Soleimani M, Busslinger M, Dominguez Rieg JA, Rieg T. Caffeine-induced diuresis and natriuresis is independent of renal tubular NHE3. Am J Physiol Renal Physiol 2015; 308:F1409-20. [PMID: 25925253 DOI: 10.1152/ajprenal.00129.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/18/2015] [Indexed: 01/15/2023] Open
Abstract
Caffeine is one of the most widely consumed behavioral substances. We have previously shown that caffeine- and theophylline-induced inhibition of renal reabsorption causes diuresis and natriuresis, an effect that requires functional adenosine A1 receptors. In this study, we tested the hypothesis that blocking the Gi protein-coupled adenosine A1 receptor via the nonselective adenosine receptor antagonist caffeine changes Na(+)/H(+) exchanger isoform 3 (NHE3) localization and phosphorylation, resulting in diuresis and natriuresis. We generated tubulus-specific NHE3 knockout mice (Pax8-Cre), where NHE3 abundance in the S1, S2, and S3 segments of the proximal tubule was completely absent or severely reduced (>85%) in the thick ascending limb. Consumption of fluid and food, as well as glomerular filtration rate, were comparable in control or tubulus-specific NHE3 knockout mice under basal conditions, while urinary pH was significantly more alkaline without evidence for metabolic acidosis. Caffeine self-administration increased total fluid and food intake comparably between genotypes, without significant differences in consumption of caffeinated solution. Acute caffeine application via oral gavage elicited a diuresis and natriuresis that was comparable between control and tubulus-specific NHE3 knockout mice. The diuretic and natriuretic response was independent of changes in total NHE3 expression, phosphorylation of serine-552 and serine-605, or apical plasma membrane NHE3 localization. Although caffeine had no clear effect on localization of the basolateral Na(+)/bicarbonate cotransporter NBCe1, pretreatment with DIDS inhibited caffeine-induced diuresis and natriuresis. In summary, NHE3 is not required for caffeine-induced diuresis and natriuresis.
Collapse
Affiliation(s)
- Robert A Fenton
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Søren B Poulsen
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Manoocher Soleimani
- Department of Medicine, University of Cincinnati, Cincinnati, Ohio; Research Services, Veterans Affairs Medical Center, Cincinnati, Ohio
| | | | - Jessica A Dominguez Rieg
- VA San Diego Healthcare System, San Diego, California; Bastyr University California, San Diego, California; and
| | - Timo Rieg
- VA San Diego Healthcare System, San Diego, California; Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
3
|
Recombinant human erythropoietin pretreatment attenuates acute renal tubular injury against ischemia-reperfusion by restoring transient receptor potential channel-6 expression and function in collecting ducts. Crit Care Med 2014; 42:e663-72. [PMID: 25072760 DOI: 10.1097/ccm.0000000000000542] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Acute renal tubular injury is a serious complication in the postoperative period, which is associated with high mortality and increased ICU stay. We aimed to demonstrate the protective effect of rhEPO against acute tubular injury induced by ischemia-reperfusion and to explore the mechanism of canonical transient receptor potential channel-6. DESIGN Randomized laboratory animal study. SETTINGS Animal research laboratory. INTERVENTIONS Male Sprague-Dawley rats were randomly divided into three groups: the sham group, the control group, and the rhEPO group. Experimental acute tubular injury was established in rats by bilateral renal arterial occlusion for 30 minutes followed by reperfusion. MEASUREMENTS AND MAIN RESULTS Blood samples were obtained for cystatin-C and neutrophil gelatinase-associated lipocalin measurements by enzyme-linked immunosorbance assays. Seventy-two hours after reperfusion, urine samples were collected for osmolality and fractional excretion of sodium (%) assays on a chemistry analyzer. Kidneys were harvested at 24, 48, and 72 hours after reperfusion. Transient receptor potential channel-6, aquaporin-2, and Na,K-ATPase expression in collecting ducts were studied by immunofluorescence and Western blot. Coimmunoprecipitations were also performed to identify the possible signalplex relation between transient receptor potential channel-6 and aquaporin-2 or Na,K-ATPase channels. RhEPO pretreatment significantly inhibited serum cystatin-C (2 hr: 453 ± 64 μg/L vs 337 ± 28 μg/L, p < 0.01), serum neutrophil gelatinase-associated lipocalin (72 hr: 1,175 ± 107 ng/L vs 1,737 ± 402 ng/L, p < 0.05), and urinary fractional excretion of sodium (%) increase (0.9 ± 0.1 vs 2.2 ± 0.8, p < 0.05) and alleviated the decrease of urinary osmolality (1,293 ± 101 mosmol/kg H2O vs 767 ± 91 mosmol/kg H2O, p < 0.05) induced by ischemia-reperfusion injury. Meanwhile, recombinant human erythropoietin greatly improved the ischemia-reperfusion-induced attenuation of transient receptor potential channel-6 expression (48 hr: 42% ± 2% vs 67% ± 2% and 72 hr: 55% ± 2% vs 66% ± 2%), as well as aquaporin-2 and Na,K-ATPase expression in collecting ducts. Transient receptor potential channel-6 functionally interacted with Na,K-ATPase but not aquaporin-2. CONCLUSIONS Recombinant human erythropoietin pretreatment at the dose of 5,000 IU/kg potently prevented ischemia-reperfusion-induced acute tubular injury, which might be partly attributed to the restoring the effect of transient receptor potential channel-6 expression and collecting duct function.
Collapse
|
4
|
A combretastatin-mediated decrease in neutrophil concentration in peripheral blood and the impact on the anti-tumor activity of this drug in two different murine tumor models. PLoS One 2014; 9:e110091. [PMID: 25299269 PMCID: PMC4192533 DOI: 10.1371/journal.pone.0110091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 09/15/2014] [Indexed: 12/19/2022] Open
Abstract
The vascular disrupting agent combretastatin A-4 disodium phosphate (CA4P) induces fluctuations in peripheral blood neutrophil concentration. Because neutrophils have the potential to induce both vascular damage and angiogenesis we analyzed neutrophil involvement in the anti-tumoral effects of CA4P in C3H mammary carcinomas in CDF1 mice and in SCCVII squamous cell carcinomas in C3H/HeN mice. Flow cytometry analyses of peripheral blood before and up to 144 h after CA4P administration (25 and 250 mg/kg) revealed a decrease 1 h after treatment, followed by an early (3–6 h) and a late (>72 h) increase in the granulocyte concentration. We suggest that the early increase (3–6 h) in granulocyte concentration was caused by the initial decrease at 1 h and found that the late increase was associated with tumor size, and hence independent of CA4P. No alterations in neutrophil infiltration into the C3H tumor after CA4P treatment (25 and 250 mg/kg) were found. Correspondingly, neutrophil depletion in vivo, using an anti-neutrophil antibody, followed by CA4P treatment (25 mg/kg) did not increase the necrotic fraction in C3H tumors significantly. However, by increasing the CA4P dose to 250 mg/kg we found a significant increase of 359% in necrotic fraction when compared to neutrophil-depleted mice; in mice with no neutrophil depletion CA4P induced an 89% change indicating that the presence of neutrophils reduced the effect of CA4P. In contrast, neither CA4P nor 1A8 affected the necrotic fraction in the SCCVII tumors significantly. Hence, we suggest that the initial decrease in granulocyte concentration was caused by non-tumor-specific recruitment of neutrophils and that neutrophils may attenuate CA4P-mediated anti-tumor effect in some tumor models.
Collapse
|
5
|
Rieg T, Tang T, Uchida S, Hammond HK, Fenton RA, Vallon V. Adenylyl cyclase 6 enhances NKCC2 expression and mediates vasopressin-induced phosphorylation of NKCC2 and NCC. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:96-106. [PMID: 23123217 DOI: 10.1016/j.ajpath.2012.09.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 08/28/2012] [Accepted: 09/04/2012] [Indexed: 12/11/2022]
Abstract
Arginine vasopressin (AVP) affects kidney function via vasopressin V2 receptors that are linked to activation of adenylyl cyclase (AC) and an increase in cyclic adenosine monophosphate formation. AVP/cyclic adenosine monophosphate enhance the phosphorylation of the Na-K-2Cl cotransporter (NKCC2) at serine residue 126 (pS126 NKCC2) and of the Na-Cl cotransporter (NCC) at threonine 58 (pT58 NCC). The isoform(s) of AC involved in these responses, however, were unknown. Phosphorylation of S126 NKCC2 and T58 NCC, induced by the V2 receptor agonist (1-desamino-8-D-arginine vasopressin) in wild-type mice, is lacking in knockout mice for AC isoform 6 (AC6). With regard to NKCC2 phosphorylation, the stimulatory effect of 1-desamino-8-D-AVP and the defect in AC6(-/-) mice seem to be restricted to the medullary portion of the thick ascending limb. AC6 is also a stimulator of total renal NKCC2 protein abundance in medullary and cortical thick ascending limb. Consequently, mice lacking AC6 have lower NKCC2 expression and a mild Bartter syndrome-like phenotype, including lower plasma concentrations of K+ and H+ and compensatory upregulation of NCC. Increased AC6-independent phosphorylation of NKCC2 at S126 might help to stabilize NKCC2 activity in the absence of AC6. Renal AC6 determines total NKCC2 expression and mediates vasopressin-induced NKCC2/NCC phosphorylation. These regulatory mechanisms, which are defective in AC knockout mice, are likely responsible for the observed mild Bartter syndrome.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Medicine, University of California San Diego, La Jolla, California 92161, USA.
| | | | | | | | | | | |
Collapse
|