1
|
Kim DH, Kim MS, Lee JS, Yoon DS, Lee JS. Genome-wide identification of 769 G protein-coupled receptor (GPCR) genes from the marine medaka Oryzias melastigma. MARINE POLLUTION BULLETIN 2024; 207:116868. [PMID: 39173477 DOI: 10.1016/j.marpolbul.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The marine medaka Oryzias melastigma is a useful fish model for marine and estuarine ecotoxicology studies and can be applied to field-based population genomics because of its distribution in Asian estuaries and other coastal areas. We identified 769 full-length G protein-coupled receptor genes in the O. melastigma genome and classified them into five distinct classes. A phylogenetic comparison of GPCR genes in O. melastigma to humans and two other small fish species revealed a high-level orthological relationship. Purinergic and chemokine receptors were highly differentiated in humans whereas significant differentiation of chemosensory receptors was evident in fish species. Our results suggest that the GPCR gene families among the species used in this study exhibit evidence of sporadic evolutionary processes. These results may help improve our understanding of the advanced repertoires of GPCR and expand our knowledge of physiological mechanisms of fish in response to various environmental stimuli.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Leonard EM, Porteus CS, Brink D, Milsom WK. Fish gill chemosensing: knowledge gaps and inconsistencies. J Comp Physiol B 2024; 194:1-33. [PMID: 38758303 DOI: 10.1007/s00360-024-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Deidre Brink
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
|
4
|
Crossley DA, Burggren WW, Reiber CL, Altimiras J, Rodnick KJ. Mass Transport: Circulatory System with Emphasis on Nonendothermic Species. Compr Physiol 2016; 7:17-66. [PMID: 28134997 DOI: 10.1002/cphy.c150010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mass transport can be generally defined as movement of material matter. The circulatory system then is a biological example given its role in the movement in transporting gases, nutrients, wastes, and chemical signals. Comparative physiology has a long history of providing new insights and advancing our understanding of circulatory mass transport across a wide array of circulatory systems. Here we focus on circulatory function of nonmodel species. Invertebrates possess diverse convection systems; that at the most complex generate pressures and perform at a level comparable to vertebrates. Many invertebrates actively modulate cardiovascular function using neuronal, neurohormonal, and skeletal muscle activity. In vertebrates, our understanding of cardiac morphology, cardiomyocyte function, and contractile protein regulation by Ca2+ highlights a high degree of conservation, but differences between species exist and are coupled to variable environments and body temperatures. Key regulators of vertebrate cardiac function and systemic blood pressure include the autonomic nervous system, hormones, and ventricular filling. Further chemical factors regulating cardiovascular function include adenosine, natriuretic peptides, arginine vasotocin, endothelin 1, bradykinin, histamine, nitric oxide, and hydrogen sulfide, to name but a few. Diverse vascular morphologies and the regulation of blood flow in the coronary and cerebral circulations are also apparent in nonmammalian species. Dynamic adjustments of cardiovascular function are associated with exercise on land, flying at high altitude, prolonged dives by marine mammals, and unique morphology, such as the giraffe. Future studies should address limits of gas exchange and convective transport, the evolution of high arterial pressure across diverse taxa, and the importance of the cardiovascular system adaptations to extreme environments. © 2017 American Physiological Society. Compr Physiol 7:17-66, 2017.
Collapse
Affiliation(s)
- Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Warren W Burggren
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Carl L Reiber
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Jordi Altimiras
- AVIAN Behavioral Genomics and Physiology, IFM Biology, Linköping University, Linköping, Sweden
| | - Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| |
Collapse
|
5
|
Lee L, Genge CE, Cua M, Sheng X, Rayani K, Beg MF, Sarunic MV, Tibbits GF. Functional Assessment of Cardiac Responses of Adult Zebrafish (Danio rerio) to Acute and Chronic Temperature Change Using High-Resolution Echocardiography. PLoS One 2016; 11:e0145163. [PMID: 26730947 PMCID: PMC4701665 DOI: 10.1371/journal.pone.0145163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/27/2015] [Indexed: 12/21/2022] Open
Abstract
The zebrafish (Danio rerio) is an important organism as a model for understanding vertebrate cardiovascular development. However, little is known about adult ZF cardiac function and how contractile function changes to cope with fluctuations in ambient temperature. The goals of this study were to: 1) determine if high resolution echocardiography (HRE) in the presence of reduced cardiodepressant anesthetics could be used to accurately investigate the structural and functional properties of the ZF heart and 2) if the effect of ambient temperature changes both acutely and chronically could be determined non-invasively using HRE in vivo. Heart rate (HR) appears to be the critical factor in modifying cardiac output (CO) with ambient temperature fluctuation as it increases from 78 ± 5.9 bpm at 18°C to 162 ± 9.7 bpm at 28°C regardless of acclimation state (cold acclimated CA- 18°C; warm acclimated WA- 28°C). Stroke volume (SV) is highest when the ambient temperature matches the acclimation temperature, though this difference did not constitute a significant effect (CA 1.17 ± 0.15 μL at 18°C vs 1.06 ± 0.14 μl at 28°C; WA 1.10 ± 0.13 μL at 18°C vs 1.12 ± 0.12 μl at 28°C). The isovolumetric contraction time (IVCT) was significantly shorter in CA fish at 18°C. The CA group showed improved systolic function at 18°C in comparison to the WA group with significant increases in both ejection fraction and fractional shortening and decreases in IVCT. The decreased early peak (E) velocity and early peak velocity / atrial peak velocity (E/A) ratio in the CA group are likely associated with increased reliance on atrial contraction for ventricular filling.
Collapse
Affiliation(s)
- Ling Lee
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Child and Family Research Institute, Department of Cardiovascular Science, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Christine E. Genge
- Child and Family Research Institute, Department of Cardiovascular Science, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Michelle Cua
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Xiaoye Sheng
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Child and Family Research Institute, Department of Cardiovascular Science, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Kaveh Rayani
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Mirza F. Beg
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Marinko V. Sarunic
- School of Engineering Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Glen F. Tibbits
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
- Child and Family Research Institute, Department of Cardiovascular Science, 950 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
6
|
Pelster B, Schwerte T. The paracrine role of 5-HT in the control of gill blood flow. Respir Physiol Neurobiol 2012; 184:340-6. [DOI: 10.1016/j.resp.2012.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/11/2012] [Accepted: 05/14/2012] [Indexed: 10/28/2022]
|
7
|
Glover DC, DeVries DR, Wright RA. Effects of temperature, salinity and body size on routine metabolism of coastal largemouth bass Micropterus salmoides. JOURNAL OF FISH BIOLOGY 2012; 81:1463-1478. [PMID: 23020556 DOI: 10.1111/j.1095-8649.2012.03385.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Routine metabolism (i.e. standard metabolism plus a low level of activity) of coastal largemouth bass Micropterus salmoides from Mobile-Tensaw Delta, AL, U.S.A. was examined as a function of temperature (15, 20, 25 and 30° C), salinity (0, 4, 8 and 12) and body mass (range 24-886 g) using flow-through respirometry. Functionally, a cubic relationship best described the effect of salinity on respiration; the magnitude of these effects increased with temperature and body mass. The best model predicted that specific respiration (mg O(2) g(-1) h(-1)) at temperatures >20° C was lowest at salinities of 0·0 and 9·7, and elevated at 3·2 and 12·0; salinity had little to no effect at temperatures ≤20° C. Respiration increased exponentially with temperature, but when compared with previously published respiration rates for M. salmoides from northern latitudes, predicted respiration was higher at cool temperatures and lower at high temperatures. The reduced energetic cost near the isosmotic level (i.e. c. 9) may be an adaptive mechanism to tolerate periods of moderate salinity levels and may help explain why M. salmoides do not flee an area in response to increased salinity. Further, these results suggest that salinity has high energetic costs for coastal populations of M. salmoides and may contribute to the observed slow growth and small maximum size within coastal systems relative to inland freshwater populations.
Collapse
Affiliation(s)
- D C Glover
- Department of Fisheries and Allied Aquacultures, Auburn University, AL 36849-5419, USA.
| | | | | |
Collapse
|
8
|
Porteus CS, Brink DL, Milsom WK. Neurotransmitter profiles in fish gills: putative gill oxygen chemoreceptors. Respir Physiol Neurobiol 2012; 184:316-25. [PMID: 22728948 DOI: 10.1016/j.resp.2012.06.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/12/2012] [Accepted: 06/15/2012] [Indexed: 12/14/2022]
Abstract
In fish, cells containing serotonin, ACh, catecholamines, NO, H(2)S, leu-5-enkephalin, met-5-enkephalin and neuropeptide Y are found in the gill filaments and lamellae. Serotonin containing neuroepithelial cells (NECs) located along the filament are most abundant and are the only group found in all fish studied to date. The presence of NECs in other locations or containing other transmitters is species specific and it is rare that any one NEC contains more than one neurochemical. The gills are innervated by both extrinsic and intrinsic nerves and they can be cholinergic, serotonergic or contain both transmitters. Some NECs are presumed to be involved in paracrine regulation of gill blood flow, while others part of the reflex pathways involved in cardiorespiratory control. There is both direct and indirect evidence to indicate that the chemosensing cells involved in these latter reflexes sit in locations where some monitor O(2) levels in water, blood or both, yet the anatomical data do not show such clear distinctions.
Collapse
Affiliation(s)
- Cosima S Porteus
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | | | |
Collapse
|
9
|
Phylogeny, taxonomy, and evolution of the endothelin receptor gene family. Mol Phylogenet Evol 2009; 52:677-87. [PMID: 19410007 DOI: 10.1016/j.ympev.2009.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 03/28/2009] [Accepted: 04/23/2009] [Indexed: 01/29/2023]
Abstract
A gene phylogeny provides the natural historical order to classify genes and to understand their functional, structural, and genomic diversity. The gene family of endothelin receptors (EDNR) is responsible for many key physiological and developmental processes of tetrapods and teleosts. This study provides a well-defined gene phylogeny for the EDNR family, which is used to classify its members and to assess their evolution. The EDNR phylogeny supports the recognition of the EDNRA, EDNRB, and EDNRC subfamilies, as well as more lineage-specific duplicates of teleosts and the African clawed frog. The duplications for these nominal genes are related to the various whole-genome amplifications of vertebrates, jawed vertebrates, fishes, and frog. The EDNR phylogeny also identifies several gene losses, including that of EDNRC from placental and marsupial (therian) mammals. When coupled with structural and biochemical information, site-specific analyses of evolutionary rate shifts reveal two distinct patterns of potential functional changes at the sequence level between therian versus non-therian EDNRA and EDNRB (i.e., between groups without and with EDNRC). An analysis of linkage maps and tetrapod synteny further suggests that the loss of therian EDNRC may be related to a chromosomal deletion in its common ancestor.
Collapse
|
10
|
Coolidge EH, Ciuhandu CS, Milsom WK. A comparative analysis of putative oxygen-sensing cells in the fish gill. ACTA ACUST UNITED AC 2008; 211:1231-42. [PMID: 18375847 DOI: 10.1242/jeb.015248] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the distribution of serotonin (5-HT)-containing neuroepithelial cells (NECs), the putative O(2) sensing cells, in the gills of four species of fish: trout (Oncorhynchus mykiss), goldfish (Carassius auratus), trairão (Hoplias lacerdae) and traira (Hoplias malabaricus) using immunohistochemical markers for 5-HT, synaptic vesicles and neural innervation. We found that all fish had a cluster of innervated, serotonergic NECs at the filament tips, but there were species-specific distributions of serotonin-containing NECs within the primary gill filaments. Trout gill filaments had a greater number of serotonin-containing NECs than both trairão and traira, whereas goldfish primary filaments had none. Serotonin-containing NECs in the secondary lamellae were most numerous in goldfish, present in trairão and traira, but absent in trout. Those found in the primary filament were generally associated with the efferent filamental artery. Innervated, serotonin-containing cells (NECs or Merkel-like cells) were also found in the gill rakers of trout and goldfish although vesicular serotonin was only found in the gill rakers of goldfish. These differences in serotonergic NEC distribution appear to reflect paracrine versus chemoreceptive roles related to hypoxia tolerance in the different fish species.
Collapse
Affiliation(s)
- Emily H Coolidge
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | | | | |
Collapse
|
11
|
Evans DH. Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 2008; 295:R704-13. [PMID: 18525009 DOI: 10.1152/ajpregu.90337.2008] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the 1930s, August Krogh, Homer Smith, and Ancel Keys knew that teleost fishes were hyperosmotic to fresh water and hyposmotic to seawater, and, therefore, they were potentially salt depleted and dehydrated, respectively. Their seminal studies demonstrated that freshwater teleosts extract NaCl from the environment, while marine teleosts ingest seawater, absorb intestinal water by absorbing NaCl, and excrete the excess salt via gill transport mechanisms. During the past 70 years, their research descendents have used chemical, radioisotopic, pharmacological, cellular, and molecular techniques to further characterize the gill transport mechanisms and begin to study the signaling molecules that modulate these processes. The cellular site for these transport pathways was first described by Keys and is now known as the mitochondrion-rich cell (MRC). The model for NaCl secretion by the marine MRC is well supported, but the model for NaCl uptake by freshwater MRC is more unsettled. Importantly, these ionic uptake mechanisms also appear to be expressed in the marine gill MRC, for acid-base regulation. A large suite of potential endocrine control mechanisms have been identified, and recent evidence suggests that paracrines such as endothelin, nitric oxide, and prostaglandins might also control MRC function.
Collapse
Affiliation(s)
- David H Evans
- Department of Zoology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
12
|
Hyndman KA, Evans DH. Endothelin and endothelin converting enzyme-1 in the fish gill:evolutionary and physiological perspectives. J Exp Biol 2007; 210:4286-97. [DOI: 10.1242/jeb.009969] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SUMMARY
In euryhaline fishes like the killifish (Fundulus heteroclitus)that experience daily fluctuations in environmental salinity, endothelin 1(EDN1) may be an important regulator molecule necessary to maintain ion homeostasis. The purpose of this study was to determine if EDN1 and the endothelin converting enzyme (ECE1; the enzyme necessary for cleaving the precursor proendothelin-1 to EDN1) are present in the killifish, to determine if environmental salinity regulates their expression, and to examine the phylogenetic relationships among the EDNs and among the ECEs. We sequenced killifish gill cDNA for two EDN1 orthologues, EDN1A and EDN1B, and also sequenced a portion of ECE1 cDNA. EDN1A and ECE1 mRNA are expressed ubiquitously in the killifish while EDN1B mRNA has little expression in the killifish opercular epithelium or gill. Using in situ hybridization and immunohistochemistry, EDN1 was localized to large round cells adjacent to the mitochondrion-rich cells of the killifish gill, and to lamellar pillar cells. In the gill, EDN1A and EDN1B mRNA levels did not differ with acute (<24 h) or chronic (30 days) acclimation to seawater (SW); however, EDN1B levels increased threefold post SW to freshwater (FW) transfer,and ECE1 mRNA levels significantly increased twofold over this period. ECE1 mRNA levels also increased sixfold over 24 h post FW to SW transfer. Chronic exposure to SW or FW had little effect on ECE1mRNA levels. Based upon our cellular localization studies, we modeled EDN1 expression in the fish gill and conclude that it is positioned to act as a paracrine regulator of gill functions in euryhaline fishes. It also may function as an autocrine on pillar cells, where it is hypothesized to regulate local blood flow in the lamellae. From our phylogenetic analyses, ECE is predicted to have an ancient origin and may be a generalist endoprotease in non-vertebrate organisms, while EDNs are vertebrate-specific peptides and may be key characters in vertebrate evolution.
Collapse
Affiliation(s)
- Kelly A. Hyndman
- Department of Zoology, University of Florida, 221 Bartram Hall,Gainesville, FL 32608, USA and Mount Desert Island Biological Laboratory,Salisbury Cove, ME 04672, USA
| | - David H. Evans
- Department of Zoology, University of Florida, 221 Bartram Hall,Gainesville, FL 32608, USA and Mount Desert Island Biological Laboratory,Salisbury Cove, ME 04672, USA
| |
Collapse
|
13
|
Sultana N, Nag K, Kato A, Hirose S. Pillar cell and erythrocyte localization of fugu ETA receptor and its implication. Biochem Biophys Res Commun 2007; 355:149-55. [PMID: 17286960 DOI: 10.1016/j.bbrc.2007.01.128] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 01/23/2007] [Indexed: 01/23/2023]
Abstract
Endothelin, a vasoconstrictor peptide, plays important roles not only in the mammalian circulatory system but also in non-mammalian systems, such as the gill lamellar vascular network with complex structural characteristics. Here, we show that (i) the contraction of pillar cells that delimit the lamellar vasculature is controlled by endothelin through the type A endothelin receptor (ET(A)) linked to the intracellular calcium signaling system and (ii) ET(A) receptor is also highly expressed on fugu erythrocytes, a hitherto unexpected finding. Database mining revealed the presence of five endothelin receptor (ETR) sequences in the fugu genome. By Northern blotting, cDNA cloning, and fura-2 monitoring, the branchial ETR subtype was shown to be ET(A) able to induce a Ca(2+) transit. Immunohistochemistry revealed its pillar cell and erythrocyte localization. These results suggest an endothelin/ET(A)-mediated coordinated regulation of the pillar cell shape and erythrocyte membrane flexibility.
Collapse
Affiliation(s)
- Naznin Sultana
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
14
|
Kudo H, Kato A, Hirose S. Fluorescence Visualization of Branchial Collagen Columns Embraced by Pillar Cells. J Histochem Cytochem 2006; 55:57-62. [PMID: 16957162 DOI: 10.1369/jhc.6a7047.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A collagen column is a structure of the extracellular matrix that helps to maintain the flatness and width of gill lamella. Collagen columns are unique in that they are enfolded by plasma membrane of pillar cells that form two-dimensional vascular networks between parallel sheets of respiratory epithelia. Despite their unique structure and fundamental importance in the physiology of aquatic animals, little is known about their properties and molecular components, owing to the lack of detection methods. In this study we demonstrated that collagen columns can be visualized by staining with fluorescencelabeled concanavalin A (ConA), a lectin that specifically recognizes the trimannoside core of N-glycosylated proteins and histidine-tagged green fluorescent protein (His6-Xpress-GFP), a fluorescent substrate for transglutaminase. We constructed a three-dimensional image of a pillar cell and visualized the spatial relationship between collagen columns and contractile apparatuses within the pillar cell body. This manuscript contains online supplemental material at http://www.jhc.org . Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Hisayuki Kudo
- Department of Biological Sciences, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
15
|
Vierimaa H, Ronkainen J, Ruskoaho H, Vuolteenaho O. Synergistic activation of salmon cardiac function by endothelin and beta-adrenergic stimulation. Am J Physiol Heart Circ Physiol 2006; 291:H1360-70. [PMID: 16565303 DOI: 10.1152/ajpheart.01326.2005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim was to find out the effects of endothelin-1 (ET-1) in salmon (Salmo salar) cardiac contractile and endocrine function and its possible interaction with beta-adrenergic regulation. We found that ET-1 has a positive inotropic effect in salmon heart. ET-1 (30 nM) increased the contraction amplitude 17+/-4.7% compared with the basal level. beta-Adrenergic activation (isoprenaline, 100 nM) increased contraction amplitude 30+/-13.1%, but it did not affect the contractile response to ET-1. ET-1 (10 nM) stimulated the secretion of salmon cardiac natriuretic peptide (sCP) from isolated salmon ventricle (3.3+/-0.14-fold compared with control) but did not have any effect on ventricular sCP mRNA. Isoprenaline alone (0.1-1,000 nM) did not stimulate sCP release, but ET-1 (10 nM) together with isoprenaline (0.1 nM) caused a significantly greater increase of sCP release than ET-1 alone (5.4+/-0.07 vs. 3.3+/-0.14 times increase compared with control). The effects on the contractile and secretory function could be inhibited by a selective ETA-receptor antagonist BQ-610 (1 microM), whereas ETB-receptor blockage (by 100 nM BQ-788) enhanced the secretory response. Thus ET-1 is a phylogenetically conserved regulator of cardiac function, which has synergistic action with beta-adrenergic stimulation. The modulatory effects of ET-1 may therefore be especially important in situations with high beta-adrenergic tone.
Collapse
Affiliation(s)
- Heidi Vierimaa
- Department of Physiology, POB 5000, FIN-90014, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
16
|
McDonald MD. ETB PUTS THE SQUEEZE ON PILLAR CELLS. J Exp Biol 2006. [DOI: 10.1242/jeb.02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|