1
|
Straus C, Teulier M, Morel S, Wattiez N, Hajage D, Giboin C, Charbit B, Dasque E, Bodineau L, Chenuel B, Straus N, Attali V, Similowski T. Baclofen destabilises breathing during sleep in healthy humans: A randomised, controlled, double-blind crossover trial. Br J Clin Pharmacol 2020; 87:1814-1823. [PMID: 32986891 DOI: 10.1111/bcp.14569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 11/29/2022] Open
Abstract
AIMS Periodic breathing is frequent in patients with severe heart failure. Apart from being an indicator of severity, periodic breathing has its own deleterious consequences (sleep-related oxygen desaturations, sleep fragmentation), which justifies attempts to correct it irrespective of the underlying disease. Animal models and human data suggest that baclofen can reconfigure respiratory central pattern generators. We hypothesised that baclofen, a GABAB agonist, may thus be able to correct periodic breathing in humans. METHODS Healthy volunteers were exposed to hypoxia during sleep. Participants who developed periodic breathing (n = 14 [53 screened]) were randomly assigned to double-blind oral baclofen (progressively increased to 60 mg/d) or placebo. The primary outcome was the coefficient of variation (CoVar) of respiratory cycle total time considered as an indicator of breathing irregularity. Secondary outcomes included the CoVar of tidal volume, apnoea-hypopnoea index, sleep fragmentation index and ventilatory complexity (noise limit). RESULTS The analysis was conducted in 9 subjects after exclusion of incomplete datasets. CoVar of respiratory cycle total time significantly increased with baclofen during non-rapid eye movement sleep (median with placebo 56.00% [37.63-78.95]; baclofen 85.42% [68.37-86.40], P = .020; significant difference during the N1-N2 phases of sleep but not during the N3 phase). CoVar of tidal volume significantly increased during N1-N2 sleep. The apnoea-hypopnoea index, sleep fragmentation index and ventilatory complexity were not significantly different between placebo and baclofen. CONCLUSION Baclofen did not stabilise breathing in our model. On the contrary, it increased respiratory variability. Baclofen should probably not be used in patients with or at risk of periodic breathing.
Collapse
Affiliation(s)
- Christian Straus
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Département R3S, Service des Explorations Fonctionnelles de la Respiration, de l'Exercice et de la Dyspnée, Paris, France
| | - Marion Teulier
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Sébastien Morel
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Nicolas Wattiez
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - David Hajage
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP. Sorbonne Université, Hôpital Pitié Salpêtrière, Département de Santé Publique, Unité de Recherche Clinique Salpêtrière-Charles Foix, Centre de Pharmacoépidémiologie (Cephepi), Sorbonne Université, Paris, France
| | - Caroline Giboin
- AP-HP, Groupe Hospitalier APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Unité de Recherche Clinique Salpêtrière-Charles Foix, Paris, France
| | - Beny Charbit
- INSERM and AP-HP, CIC-1901 module Paris-Est, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France.,Department of Anesthesiology and Intensive Care, CHU Reims, Hôpital Robert Debré, Reims, France
| | - Eric Dasque
- INSERM and AP-HP, CIC-1901 module Paris-Est, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Bruno Chenuel
- CHRU de Nancy, Service des Explorations Fonctionnelles Respiratoires et Centre Universitaire de Médecine du Sport et Activité Physique Adaptée, Vandoeuvre-lès-Nancy, France.,Faculté de Médecine de Nancy, EA DevAH - Universié de Lorraine, Vandoeuvre-lès-Nancy, France
| | - Nicolas Straus
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Valérie Attali
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Hôpital Pitié-Salpêtrière, Département R3S, Service des Pathologies du Sommeil, Paris, France
| | - Thomas Similowski
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.,AP-HP, Groupe Hospitalier APHP-Sorbonne Université, Hôpital Pitié-Salpêtrière, Hôpital Pitié-Salpêtrière, Département R3S, Service de Pneumologie, Médecine Intensive et Réanimation, Paris, France
| |
Collapse
|
2
|
Mutolo D, Bongianni F, Cinelli E, Pantaleo T. Depression of cough reflex by microinjections of antitussive agents into caudal ventral respiratory group of the rabbit. J Appl Physiol (1985) 2010; 109:1002-10. [PMID: 20651222 DOI: 10.1152/japplphysiol.00406.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously shown that the caudal nucleus tractus solitarii is a site of action of some antitussive drugs and that the caudal ventral respiratory group (cVRG) region has a crucial role in determining both the expiratory and inspiratory components of the cough motor pattern. These findings led us to suggest that the cVRG region, and possibly other neural substrates involved in cough regulation, may be sites of action of antitussive drugs. To address this issue, we investigated changes in baseline respiratory activity and cough responses to tracheobronchial mechanical stimulation following microinjections (30-50 nl) of some antitussive drugs into the cVRG of pentobarbital-anesthetized, spontaneously breathing rabbits. [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) and baclofen at the lower concentrations (0.5 mM and 0.1 mM, respectively) decreased cough number, peak abdominal activity, and peak tracheal pressure and increased cough-related total cycle duration (Tt). At the higher concentrations (5 mM and 1 mM, respectively), both drugs abolished the cough reflex. DAMGO and baclofen also affected baseline respiratory activity. Both drugs reduced peak abdominal activity, while only DAMGO increased Tt, owing to increases in expiratory time. The neurokinin-1 (NK(1)) receptor antagonist CP-99,994 (10 mM) decreased cough number, peak abdominal activity, and peak tracheal pressure, without affecting baseline respiration. The NK(2) receptor antagonist MEN 10376 (5 mM) had no effect. The results indicate that the cVRG is a site of action of some antitussive agents and support the hypothesis that several neural substrates involved in cough regulation may share this characteristic.
Collapse
Affiliation(s)
- Donatella Mutolo
- Dipartimento di Scienze Fisiologiche, Viale G. B. Morgagni 63, 50134 Florence, Italy
| | | | | | | |
Collapse
|
3
|
MacDonald SM, Tin C, Song G, Poon CS. Use-dependent learning and memory of the Hering-Breuer inflation reflex in rats. Exp Physiol 2008; 94:269-78. [PMID: 19028808 DOI: 10.1113/expphysiol.2008.045344] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The classic Hering-Breuer inflation reflex (HBIR) is a widely held tenet for understanding the lung volume-related vagal control of respiratory rhythm. Recent evidence, however, has revealed that the fictive HBIR elicited by electrical vagal stimulation in rats is not static but may be attenuated centrally by two forms of non-associative learning (habituation and desensitization) that continually mitigate the reflex effects with exponential adaptations like a differentiator or high-pass filter. Desensitization is analogous to habituation but exhibits an explicit short-term memory (STM) in the form of a rebound response with exponential decay during recovery from stimulation. To investigate whether such learning and memory effects are lung volume related and use-dependent (practice makes perfect), we compared the time-dependent changes in inspiratory and expiratory durations (t(I) and t(E)) during and after 1 or 8 min unilateral lung inflation or high-frequency, low-intensity vagal stimulation in anaesthetized, uni- or bi-vagotomized rats. Unilateral lung inflation and vagal stimulation both elicited abrupt shortening of t(I) and lengthening of t(E) (HBIR effects) and gradual habituation and desensitization throughout the 1 or 8 min test period, followed by rebound responses in t(I) and t(E) with exponential recovery (STM effects) in the post-test period. In both cases, the STM time constants for t(I) and t(E) were significantly longer with the 8 min test than with the 1 min test (17-45 versus 4-11 s, P < 0.01). We conclude that the HBIR and its central habituation and desensitization are mediated peripherally by lung volume-related vagal afferents, and that the STM of desensitization is use-dependent. The translational implications of these findings are discussed.
Collapse
|
4
|
Mutolo D, Bongianni F, Cinelli E, Fontana GA, Pantaleo T. Modulation of the cough reflex by antitussive agents within the caudal aspect of the nucleus tractus solitarii in the rabbit. Am J Physiol Regul Integr Comp Physiol 2008; 295:R243-51. [PMID: 18480245 DOI: 10.1152/ajpregu.00184.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that ionotropic glutamate receptors in the caudal portion of the nucleus tractus solitarii (NTS), especially in the commissural NTS, play a prominent role in the mediation of tracheobronchial cough and that substance P potentiates this reflex. This NTS region could be a site of action of some centrally acting antitussive agents and a component of a drug-sensitive gating mechanism of cough. To address these issues, we investigated changes in baseline respiratory activity and cough responses to tracheobronchial mechanical stimulation following microinjections (30-50 nl) of centrally acting antitussive drugs into the caudal NTS of pentobarbitone-anesthetized, spontaneously breathing rabbits. [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) and baclofen decreased baseline respiratory frequency because of increases in the inspiratory time only at the higher concentration employed (5 mM and 1 mM, respectively). DAMGO (0.5 mM) and baclofen (0.1 mM) significantly decreased cough number, peak abdominal activity, peak tracheal pressure, and increased cough-related total cycle duration. At the higher concentrations, these agents suppressed the cough reflex. The effects of these two drugs were counteracted by specific antagonists (10 mM naloxone and 25 mM CGP-35348, respectively). The neurokinin-1 (NK1) receptor antagonist CP-99,994 (10 mM) abolished cough responses, whereas the NK2 receptor antagonist MEN 10376 (5 mM) had no effect. The results indicate that the caudal NTS is a site of action of some centrally acting drugs and a likely component of a neural system involved in cough regulation. A crucial role of substance P release in the mediation of reflex cough is also suggested.
Collapse
Affiliation(s)
- Donatella Mutolo
- Dipartimento di Scienze Fisiologiche, Unità Funzionale di Medicina Respiratoria, Università degli Studi di Firenze, Firenze, Italy
| | | | | | | | | |
Collapse
|
5
|
Partosoedarso ER, Young RL, Blackshaw LA. GABA(B) receptors on vagal afferent pathways: peripheral and central inhibition. Am J Physiol Gastrointest Liver Physiol 2001; 280:G658-68. [PMID: 11254492 DOI: 10.1152/ajpgi.2001.280.4.g658] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To investigate GABA(B) receptors along vagal afferent pathways, we recorded from vagal afferents, medullary neurons, and vagal efferents in ferrets. Baclofen (7-14 micromol/kg i.v.) reduced gastric tension receptor and nucleus tractus solitarii neuronal responses to gastric distension but not gastroduodenal mucosal receptor responses to cholecystokinin (CCK). GABA(B) antagonists CGP-35348 or CGP-62349 reversed effects of baclofen. Vagal efferents showed excitatory and inhibitory responses to distension and CCK. Baclofen (3 nmol i.c.v. or 7-14 micromol/kg i.v.) reduced both distension response types but reduced only inhibitory responses to CCK. CGP-35348 (100 nmol i.c.v. or 100 micromol/kg i.v.) reversed baclofen's effect on distension responses, but inhibitory responses to CCK remained attenuated. They were, however, reversed by CGP-62349 (0.4 nmol i.c.v.). In conclusion, GABA(B) receptors inhibit mechanosensitivity, not chemosensitivity, of vagal afferents peripherally. Mechanosensory input to brain stem neurons is also reduced centrally by GABA(B) receptors, but excitatory chemosensory input is unaffected. Inhibitory mechano- and chemosensory inputs to brain stem neurons (via inhibitory interneurons) are both reduced, but the pathway taken by chemosensory input involves GABA(B) receptors that are insensitive to CGP-35348.
Collapse
Affiliation(s)
- E R Partosoedarso
- Nerve-Gut Research Laboratory, Department of Gastroenterology, Hepatology and General Medicine, Royal Adelaide Hospital, Adelaide, South Australia 5000, Australia
| | | | | |
Collapse
|