1
|
Bahadoran Z, Mirmiran P, Ghasemi A. Type 2 diabetes-related sarcopenia: role of nitric oxide. Nutr Metab (Lond) 2024; 21:107. [PMID: 39695784 DOI: 10.1186/s12986-024-00883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
Sarcopenia, characterized by progressive and generalized loss of skeletal muscle (SkM) mass, strength, and physical performance, is a prevalent complication in type 2 diabetes (T2D). Nitric oxide (NO), a multifunctional gasotransmitter involved in whole-body glucose and insulin homeostasis, plays key roles in normal SkM physiology and function. Here, we highlight the role of NO in SkM mass maintenance and its potential contribution to the development of T2D-related sarcopenia. Physiologic NO level, primarily produced by sarcolemmal neuronal nitric oxide synthase (nNOSμ isoform), is involved in protein synthesis in muscle fibers and maintenance of SkM mass. The observed effect of nNOSμ on SkM mass is muscle-type specific and sex-dependent. Impaired NO homeostasis [due to a diminished nNOSμ-NO availability and excessive NO production through inducible NOS (iNOS) in response to atrophic stimuli, e.g., inflammatory cytokines] in SkM occurred during the development and progression of T2D, may cause sarcopenia. Theoretically, restoration of NO through nNOS overexpression, supplying NOS substrates (e.g., L-arginine and L-citrulline), phosphodiesterase (PDE) inhibition, and supplementation with NO donors (e.g., inorganic nitrate) may be potential therapeutic approaches to preserve SkM mass and prevents sarcopenia in T2D.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Micronutrient Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Sahid-Erabi St, Yemen St, Chamran Exp, P.O. Box 19395-4763, Tehran, Iran.
| |
Collapse
|
2
|
Li X, Huang Y, Zu D, Liu H, He H, Bao Q, He Y, Liang C, Luo G, Teng Y, Shi Y, Ye Z, Cheng X. PMMA nanoplastics induce gastric epithelial cellular senescence and cGAS-STING-mediated inflammation via ROS overproduction and NHEJ suppression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117284. [PMID: 39515200 DOI: 10.1016/j.ecoenv.2024.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/11/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The increasing environmental presence of nanoplastics (NPs) has raised concerns about their potential impact on biological systems. We investigated the repercussions of polymethyl methacrylate (PMMA) NPs exposure on normal gastric epithelial cells and revealed a pronounced increase in senescence-associated β-galactosidase activity and G1 phase cell cycle arrest. Our study demonstrated a dose-dependent increase in reactive oxygen species (ROS) and DNA damage, underscoring the pivotal role of ROS in PMMA NPs-mediated effects, a novel contribution to the existing body of knowledge dominated by polystyrene particles. Furthermore, we explored the influence of PMMA NPs on DNA damage response mechanisms, highlighting the significant inhibition of nonhomologous end-joining (NHEJ). Our findings help to elucidate the consequent genomic instability, as evidenced by increased chromosomal aberrations and micronuclei formation. By connecting these cellular manifestations to organism-level effects, we hypothesize that PMMA NPs play a critical role in aging processes. Our work revealed an activated cGAS-STING signaling pathway after PMMA NPs exposure, which correlated with aging-related inflammation and behavioral changes in mice. Importantly, our study provides comprehensive evidence of PMMA NPs-induced premature aging in gastric epithelial cells, shedding light on the molecular intricacies underlying DNA damage, repair impairment, and inflammation. Our research prompts heightened caution regarding the risks of NPs exposure and calls for further investigation into the broader implications of these environmental pollutants on aging processes in higher organisms.
Collapse
Affiliation(s)
- Xiao Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Yixing Huang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Otorhinolaryngology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Dan Zu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; School of Life Sciences, Tianjin University, Tianjin 300100, China
| | - Haidong Liu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Hanyi He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Qimei Bao
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Yanhua He
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Chen Liang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China
| | - Guoyan Luo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yaoshu Teng
- Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Otorhinolaryngology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yin Shi
- Department of Biochemistry, and Department of Pulmonology Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Zu Ye
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| |
Collapse
|
3
|
Liu X, Shangguan N, Zhang F, Duan R. Aronia-derived anthocyanins and metabolites ameliorate TNFα-induced disruption of myogenic differentiation in satellite cells. Biochem Biophys Res Commun 2024; 733:150687. [PMID: 39278091 DOI: 10.1016/j.bbrc.2024.150687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
This study investigates the effects of Aronia berries, their primary anthocyanins and other second metabolites-mimicking dietary anthocyanin consumption-on enhancing muscular myogenesis under chronic inflammation. Murine muscle satellite cells (MuSCs) were cultured ex vivo, allowing for expansion and differentiation into myotubes. Myogenic differentiation was disrupted by TNFα at both early and terminal stages, with treatment using Aronia berries applied at physiologically relevant concentrations alongside TNFα. The results demonstrated that Aronia berries treatments, particularly phenolic metabolites, significantly stimulated the proliferative capacity of MuSCs. Furthermore, Aronia berries treatment enhanced early-stage myogenesis, marked by increased MymX and MyoG expression and nascent myotube formation, with metabolites showing the most pronounced effects. Aronia berry powder and individual anthocyanins exerted milder regulatory effects. Similar trends were observed during terminal differentiation, where Aronia berries treatment promoted myotube growth and inhibited TNFα-induced inflammatory atrophic ubiquitin-conjugating activity. Additionally, the secondary metabolites of Aronia berries significantly prevented muscle-specific ubiquitination in the dexamethasone-induced atrophy model. Overall, the treatment with Aronia berries enhanced myogenesis in a cellular model of chronic muscular inflammation, with Aronia-derived metabolites showing the strongest response, likely through TLR4/NF-κB modulation. In this case, enhanced regeneration capacity and anti-atrophy potential were associated with TLR4/NF-κB modulation.
Collapse
Affiliation(s)
- Xiaocao Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Nina Shangguan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Fulong Zhang
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
4
|
Wang J, Han K, Lu J. Screening of hub genes for sepsis-induced myopathy by weighted gene co-expression network analysis and protein-protein interaction network construction. BMC Musculoskelet Disord 2024; 25:834. [PMID: 39438952 PMCID: PMC11494751 DOI: 10.1186/s12891-024-07967-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Sepsis-induced myopathy is one of the serious complications of sepsis, which severely affects the respiratory and peripheral motor systems of patients, reduces their quality of life, and jeopardizes their lives, as evidenced by muscle atrophy, loss of strength, and impaired regeneration after injury. The pathogenesis of sepsis-induced myopathy is complex, mainly including cytokine action, enhances free radical production in muscle, increases muscle protein hydrolysis, and decreases skeletal muscle protein synthesis, etc. The above mechanisms have been demonstrated in existing studies. However, it is still unclear how the overall pattern of gene co-expression affects the pathological process of sepsis-induced myopathy. Therefore, we intend to identify hub genes and signaling pathways. Weighted gene co-expression network analysis was our main approach to study gene expression profiles: skeletal muscle transcriptome in ICU patients with sepsis-induced multi-organ failure (GSE13205). After data pre-processing, about 15,181 genes were used to identify 13 co-expression modules. Then, 16 genes (FEM1B, KLHDC3, GPX3, NIFK, GNL2, EBNA1BP2, PES1, FBP2, PFKP, BYSL, HEATR1, WDR75, TBL3, and WDR43) were selected as the hub genes including 3 up-regulated genes and 13 down-regulated genes. Then, Gene Set Enrichment Analysis was performed to show that the hub genes were closely associated with skeletal muscle dysfunction, necrotic and apoptotic skeletal myoblasts, and apoptosis in sepsis-induced myopathy. Overall, 16 candidate biomarkers were certified as reliable features for more in-depth exploration of sepsis-induced myopathy in basic and clinical studies.
Collapse
Affiliation(s)
- Jianhao Wang
- Postgraduate School, Xinjiang Medical University, Xinjiang, 830000, China
| | - Kun Han
- Postgraduate School, Xinjiang Medical University, Xinjiang, 830000, China
| | - Jinshuai Lu
- Department of Emergency, People's Hospital of Xinjiang Uygur Autonomous Region, No 91, Tian Chi Road, Xinjiang, 830001, China.
| |
Collapse
|
5
|
Wright VJ, Schwartzman JD, Itinoche R, Wittstein J. The musculoskeletal syndrome of menopause. Climacteric 2024; 27:466-472. [PMID: 39077777 DOI: 10.1080/13697137.2024.2380363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Fifty-one percent of humans are born with ovaries. As the ovarian production of estrogen diminishes in midlife and ultimately stops, it is estimated that more than 47 million women worldwide enter the menopause transition annually. More than 70% will experience musculoskeletal symptoms and 25% will be disabled by them through the transition from perimenopause to postmenopause. This often-unrecognized collective of musculoskeletal symptoms, largely influenced by estrogen flux, includes arthralgia, loss of muscle mass, loss of bone density and progression of osteoarthritis, among others. In isolation, it can be difficult for clinicians and patients to adequately appreciate the substantial role of decreasing estrogen, anticipate the onset of related symptoms and actively treat to mitigate future detrimental processes. Thus, in this review we introduce a new term, the musculoskeletal syndrome of menopause, to describe the collective musculoskeletal signs and symptoms associated with the loss of estrogen. Given the significant effects of these processes on quality of life and the associated personal and financial costs, it is important for clinicians and the women they care for to be aware of this terminology and the constellation of musculoskeletal processes for which proper risk assessment and prophylactic management are of consequence.
Collapse
Affiliation(s)
- Vonda J Wright
- University of Central Florida College of Medicine, Orlando, FL, USA
| | | | - Rafael Itinoche
- University of Central Florida College of Medicine, Orlando, FL, USA
| | | |
Collapse
|
6
|
Wang Y, Xu Y, Zhao T, Ma YJ, Qin W, Hu WL. PEI/MMNs@LNA-542 nanoparticles alleviate ICU-acquired weakness through targeted autophagy inhibition and mitochondrial protection. Open Life Sci 2024; 19:20220952. [PMID: 39290495 PMCID: PMC11406224 DOI: 10.1515/biol-2022-0952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/21/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Intensive care unit-acquired weakness (ICU-AW) is prevalent in critical care, with limited treatment options. Certain microRNAs, like miR-542, are highly expressed in ICU-AW patients. This study investigates the regulatory role and mechanisms of miR-542 in ICU-AW and explores the clinical potential of miR-542 inhibitors. ICU-AW models were established in C57BL/6 mice through cecal ligation and puncture (CLP) and in mouse C2C12 myoblasts through TNF-α treatment. In vivo experiments demonstrated decreased muscle strength, muscle fiber atrophy, widened intercellular spaces, and increased miR-542-3p/5p expression in ICU-AW mice model. In vitro experiments indicated suppressed ATG5, ATG7 and LC3II/I, elevated MDA and ROS levels, decreased SOD levels, and reduced MMP in the model group. Similar to animal experiments, the expression of miR-542-3p/5p was upregulated. Gel electrophoresis explored the binding of polyethyleneimine/mesoporous silica nanoparticles (PEI/MMNs) to locked nucleic acid (LNA) miR-542 inhibitor (LNA-542). PEI/MMNs@LNA-542 with positive charge (3.03 ± 0.363 mV) and narrow size (206.94 ± 6.19 nm) were characterized. Immunofluorescence indicated significant internalization with no apparent cytotoxicity. Biological activity, examined through intraperitoneal injection, showed that PEI/MMNs@LNA-542 alleviated muscle strength decline, restored fiber damage, and recovered mitochondrial injury in mice. In conclusion, PEI/MMNs nanoparticles effectively delivered LNA-542, targeting ATG5 to inhibit autophagy and alleviate mitochondrial damage, thereby improving ICU-AW.
Collapse
Affiliation(s)
- Yun Wang
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tun Zhao
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Ya-Jun Ma
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wei Qin
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Wen-Li Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
7
|
Marzan AL, Chitti SV, Gummadi S, Kang T, Ang CS, Mathivanan S. Proteomics analysis of C2C12 myotubes treated with atrophy inducing cancer cell-derived factors. Proteomics 2024; 24:e2300020. [PMID: 37882347 DOI: 10.1002/pmic.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Cancer-associated cachexia is a wasting syndrome that results in dramatic loss of whole-body weight, predominantly due to loss of skeletal muscle mass. It has been established that cachexia inducing cancer cells secrete proteins and extracellular vesicles (EVs) that can induce muscle atrophy. Though several studies examined these cancer-cell derived factors, targeting some of these components have shown little or no clinical benefit. To develop new therapies, understanding of the dysregulated proteins and signaling pathways that regulate catabolic gene expression during muscle wasting is essential. Here, we sought to examine the effect of conditioned media (CM) that contain secreted factors and EVs from cachexia inducing C26 colon cancer cells on C2C12 myotubes using mass spectrometry-based label-free quantitative proteomics. We identified significant changes in the protein profile of C2C12 cells upon exposure to C26-derived CM. Functional enrichment analysis revealed enrichment of proteins associated with inflammation, mitochondrial dysfunction, muscle catabolism, ROS production, and ER stress in CM treated myotubes. Furthermore, strong downregulation in muscle structural integrity and development and/or regenerative pathways were observed. Together, these enriched proteins in atrophied muscle could be utilized as potential muscle wasting markers and the dysregulated biological processes could be employed for therapeutic benefit in cancer-induced muscle wasting.
Collapse
Affiliation(s)
- Akbar L Marzan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sai V Chitti
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sriram Gummadi
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Taeyoung Kang
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
9
|
Mathew Thomas V, Chigarira B, Gebrael G, Sayegh N, Tripathi N, Nussenzveig R, Jo Y, Dal E, Galarza Fortuna G, Li H, Sahu KK, Srivastava A, Maughan BL, Agarwal N, Swami U. Differential Tumor Gene Expression Profiling of Patients With Prostate Adenocarcinoma on the Basis of BMI. JCO Precis Oncol 2024; 8:e2300574. [PMID: 38781543 DOI: 10.1200/po.23.00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/23/2023] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE An increased BMI is linked to increased prostate adenocarcinoma incidence and mortality. Baseline tumor gene expression profiling (GEP) can provide a comprehensive picture of the biological processes related to treatment response and disease progression. We interrogate and validate the underlying differences in tumor GEP on the basis of BMI in patients with prostate adenocarcinoma. METHODS The inclusion criteria consisted of histologically confirmed prostate adenocarcinoma and the availability of RNA sequencing data obtained from treatment-naïve primary prostate tissue. RNA sequencing was performed by a Clinical Laboratory Improvement Amendments-certified laboratory (Tempus or Caris Life Sciences). The Tempus cohort was used for interrogation and the Caris cohort for validation. Patients were stratified on the basis of BMI at the time of prostate cancer diagnosis: BMI-high (BMIH; BMI ≥30) and BMI-low (BMIL; BMI <30). Differential gene expression analysis between the two cohorts was conducted using the DEseq2 pipeline. The resulting GEPs were further analyzed using Gene Set Enrichment software to identify pathways that exhibited enrichment in each cohort. RESULTS Overall, 102 patients were eligible, with 60 patients in the Tempus cohort (BMIL = 38, BMIH = 22) and 42 patients in the Caris cohort (BMIL = 24, BMIH = 18). Tumor tissues obtained from patients in the BMIL group exhibited higher expression of genes associated with inflammation pathways. BMIH displayed increased expression of genes involved in pathways such as heme metabolism and androgen response. CONCLUSION Our study shows the upregulation of distinct genomic pathways in BMIL compared with BMIH patients with prostate cancer. These hypothesis-generating data could explain different survival outcomes in both groups and guide personalized therapy for men with prostate cancer.
Collapse
Affiliation(s)
- Vinay Mathew Thomas
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Beverly Chigarira
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Georges Gebrael
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Nicolas Sayegh
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Nishita Tripathi
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Roberto Nussenzveig
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Yeonjung Jo
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT
| | - Emre Dal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Gliceida Galarza Fortuna
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Haoran Li
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, Westwood, KS
| | - Kamal Kant Sahu
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Ayana Srivastava
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Benjamin L Maughan
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Neeraj Agarwal
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Umang Swami
- Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
10
|
Falsetti I, Palmini G, Donati S, Aurilia C, Iantomasi T, Brandi ML. Irisin and Its Role in Postmenopausal Osteoporosis and Sarcopenia. Biomedicines 2024; 12:928. [PMID: 38672282 PMCID: PMC11048342 DOI: 10.3390/biomedicines12040928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Menopause, an extremely delicate phase in a woman's life, is characterized by a drop in estrogen levels. This decrease has been associated with the onset of several diseases, including postmenopausal osteoporosis and sarcopenia, which often coexist in the same person, leading to an increased risk of fractures, morbidity, and mortality. To date, there are no approved pharmacological treatments for sarcopenia, while not all of those approved for postmenopausal osteoporosis are beneficial to muscles. In recent years, research has focused on the field of myokines, cytokines, or peptides secreted by skeletal muscle fibers following exercise. Among these, irisin has attracted great interest as it possesses myogenic properties but at the same time exerts anabolic effects on bone and could therefore represent the link between muscle and bone. Therefore, irisin could represent a new therapeutic strategy for the treatment of osteoporosis and also serve as a new biomarker of sarcopenia, thus facilitating diagnosis and pharmacological intervention. The purpose of this review is to provide an updated summary of what we know about the role of irisin in postmenopausal osteoporosis and sarcopenia.
Collapse
Affiliation(s)
- Irene Falsetti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Gaia Palmini
- Fondazione Italiana Ricerca Sulle Malattie dell’Osso (F.I.R.M.O Onlus), 50129 Florence, Italy;
| | - Simone Donati
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (I.F.); (S.D.); (C.A.); (T.I.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca Sulle Malattie dell’Osso (F.I.R.M.O Onlus), 50129 Florence, Italy;
| |
Collapse
|
11
|
Chen L, Chen Y, Wang M, Lai L, Zheng L, Lu H. Ursolic acid alleviates cancer cachexia by inhibiting STAT3 signaling pathways in C2C12 myotube and CT26 tumor-bearing mouse model. Eur J Pharmacol 2024; 969:176429. [PMID: 38423241 DOI: 10.1016/j.ejphar.2024.176429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Cancer cachexia, a multi-organ disorder resulting from tumor and immune system interactions, prominently features muscle wasting and affects the survival of patients with cancer. Ursolic acid (UA) is known for its antioxidant, anti-inflammatory, and anticancer properties. However, its impact on cancer cachexia remains unexplored. This study aimed to assess the efficacy of UA in addressing muscle atrophy and organ dysfunction in cancer cachexia and reveal the mechanisms involved. UA dose-dependently ameliorated C2C12 myotube atrophy. Mechanistically, it inhibited the expression of muscle-specific RING finger containing protein 1 (MURF1) and the phosphorylation of signal transducer and activator of transcription 3 (STAT3), and upregulated the mRNA or protein levels of myogenic differentiation antigen and myogenin in cultured C2C12 myotubes treated with conditioned medium. In vivo, UA protected CT26 tumor-bearing mice against loss of body weight, as well as increased skeletal muscle and epididymal fat without affecting tumor growth. Additionally, UA increased food intake in CT26 tumor-bearing mice. The mRNA expression of tumor necrosis-α and interleukin 6 was significantly downregulated in the intestine, gastrocnemius, and heart tissues following 38 d UA administration. UA treatment reversed the levels of myocardial function indicators, including creatine kinase, creatine kinase-MB, lactate dehydrogenase, car-dial troponin T, and glutathione. Finally, UA treatment significantly inhibited the expression of MURF1, the phosphorylation of nuclear factor kappa-B p65, and STAT3 in the gastrocnemius muscle and heart tissues of cachexic mice. Our findings suggest that UA is a promising natural compound for developing dietary supplements for cancer cachexia therapy owing to its anti-catabolic effects.
Collapse
Affiliation(s)
- Li Chen
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China.
| | - Yan Chen
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Mengxia Wang
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Linglin Lai
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Linbo Zheng
- Department Traditional Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Huiqin Lu
- Department of Clinical Research, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| |
Collapse
|
12
|
Lee MH, Lee B, Park SE, Yang GE, Cheon S, Lee DH, Kang S, Sun YJ, Kim Y, Jung DS, Kim W, Kang J, Kim YR, Choi JW. Transcriptome-based deep learning analysis identifies drug candidates targeting protein synthesis and autophagy for the treatment of muscle wasting disorder. Exp Mol Med 2024; 56:904-921. [PMID: 38556548 PMCID: PMC11059359 DOI: 10.1038/s12276-024-01189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 04/02/2024] Open
Abstract
Sarcopenia, the progressive decline in skeletal muscle mass and function, is observed in various conditions, including cancer and aging. The complex molecular biology of sarcopenia has posed challenges for the development of FDA-approved medications, which have mainly focused on dietary supplementation. Targeting a single gene may not be sufficient to address the broad range of processes involved in muscle loss. This study analyzed the gene expression signatures associated with cancer formation and 5-FU chemotherapy-induced muscle wasting. Our findings suggest that dimenhydrinate, a combination of 8-chlorotheophylline and diphenhydramine, is a potential therapeutic for sarcopenia. In vitro experiments demonstrated that dimenhydrinate promotes muscle progenitor cell proliferation through the phosphorylation of Nrf2 by 8-chlorotheophylline and promotes myotube formation through diphenhydramine-induced autophagy. Furthermore, in various in vivo sarcopenia models, dimenhydrinate induced rapid muscle tissue regeneration. It improved muscle regeneration in animals with Duchenne muscular dystrophy (DMD) and facilitated muscle and fat recovery in animals with chemotherapy-induced sarcopenia. As an FDA-approved drug, dimenhydrinate could be applied for sarcopenia treatment after a relatively short development period, providing hope for individuals suffering from this debilitating condition.
Collapse
Affiliation(s)
- Min Hak Lee
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Pharmacology, Institute of Regulatory Innovation Through Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Bada Lee
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Se Eun Park
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ga Eul Yang
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea
| | - Seungwoo Cheon
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea
| | - Dae Hoon Lee
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sukyeong Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ye Ji Sun
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Pharmacology, Institute of Regulatory Innovation Through Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yongjin Kim
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea
| | - Dong-Sub Jung
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea
| | - Wonwoo Kim
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea
| | - Jihoon Kang
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea
| | - Yi Rang Kim
- Department of Pharmacology, Institute of Regulatory Innovation Through Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea.
| | - Jin Woo Choi
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Pharmacology, Institute of Regulatory Innovation Through Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
13
|
Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism 2023; 146:155639. [PMID: 37380015 PMCID: PMC11448314 DOI: 10.1016/j.metabol.2023.155639] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Sarcopenic obesity, or the loss of muscle mass and function associated with excess adiposity, is a largely untreatable medical condition associated with diminished quality of life and increased risk of mortality. To date, it remains somewhat paradoxical and mechanistically undefined as to why a subset of adults with obesity develop muscular decline, an anabolic stimulus generally associated with retention of lean mass. Here, we review evidence surrounding the definition, etiology, and treatment of sarcopenic obesity with an emphasis on emerging regulatory nodes with therapeutic potential. We review the available clinical evidence largely focused on diet, lifestyle, and behavioral interventions to improve quality of life in patients with sarcopenic obesity. Based upon available evidence, relieving consequences of energy burden, such as oxidative stress, myosteatosis, and/or mitochondrial dysfunction, is a promising area for therapeutic development in the treatment and management of sarcopenic obesity.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
14
|
Sheptulina AF, Antyukh KY, Kiselev AR, Mitkovskaya NP, Drapkina OM. Possible Mechanisms Linking Obesity, Steroidogenesis, and Skeletal Muscle Dysfunction. Life (Basel) 2023; 13:1415. [PMID: 37374197 DOI: 10.3390/life13061415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Increasing evidence suggests that skeletal muscles may play a role in the pathogenesis of obesity and associated conditions due to their impact on insulin resistance and systemic inflammation. Skeletal muscles, as well as adipose tissue, are largely recognized as endocrine organs, producing biologically active substances, such as myokines and adipokines. They may have either beneficial or harmful effects on the organism and its functions, acting through the endocrine, paracrine, and autocrine pathways. Moreover, the collocation of adipose tissue and skeletal muscles, i.e., the amount of intramuscular, intermuscular, and visceral adipose depots, may be of major importance for metabolic health. Traditionally, the generalized and progressive loss of skeletal muscle mass and strength or physical function, named sarcopenia, has been thought to be associated with age. That is why most recently published papers are focused on the investigation of the effect of obesity on skeletal muscle function in older adults. However, accumulated data indicate that sarcopenia may arise in individuals with obesity at any age, so it seems important to clarify the possible mechanisms linking obesity and skeletal muscle dysfunction regardless of age. Since steroids, namely, glucocorticoids (GCs) and sex steroids, have a major impact on the amount and function of both adipose tissue and skeletal muscles, and are involved in the pathogenesis of obesity, in this review, we will also discuss the role of steroids in the interaction of these two metabolically active tissues in the course of obesity.
Collapse
Affiliation(s)
- Anna F Sheptulina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Karina Yu Antyukh
- Republican Scientific and Practical Center of Cardiology, 220036 Minsk, Belarus
| | - Anton R Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | - Natalia P Mitkovskaya
- Republican Scientific and Practical Center of Cardiology, 220036 Minsk, Belarus
- Department of Cardiology and Internal Diseases, Belarusian State Medical University, 220116 Minsk, Belarus
| | - Oxana M Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Department of Therapy and Preventive Medicine, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| |
Collapse
|
15
|
Grapentine S, Singh RK, Bakovic M. Skeletal Muscle Consequences of Phosphatidylethanolamine Synthesis Deficiency. FUNCTION 2023; 4:zqad020. [PMID: 37342414 PMCID: PMC10278983 DOI: 10.1093/function/zqad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/22/2023] Open
Abstract
The maintenance of phospholipid homeostasis is increasingly being implicated in metabolic health. Phosphatidylethanolamine (PE) is the most abundant phospholipid on the inner leaflet of cellular membranes, and we have previously shown that mice with a heterozygous ablation of the PE synthesizing enzyme, Pcyt2 (Pcyt2+/-), develop obesity, insulin resistance, and NASH. Skeletal muscle is a major determinant of systemic energy metabolism, making it a key player in metabolic disease development. Both the total PE levels and the ratio of PE to other membrane lipids in skeletal muscle are implicated in insulin resistance; however, the underlying mechanisms and the role of Pcyt2 regulation in this association remain unclear. Here, we show how reduced phospholipid synthesis due to Pcyt2 deficiency causes Pcyt2+/- skeletal muscle dysfunction and metabolic abnormalities. Pcyt2+/- skeletal muscle exhibits damage and degeneration, with skeletal muscle cell vacuolization, disordered sarcomeres, mitochondria ultrastructure irregularities and paucity, inflammation, and fibrosis. There is intramuscular adipose tissue accumulation, and major disturbances in lipid metabolism with impaired FA mobilization and oxidation, elevated lipogenesis, and long-chain fatty acyl-CoA, diacylglycerol, and triacylglycerol accumulation. Pcyt2+/- skeletal muscle exhibits perturbed glucose metabolism with elevated glycogen content, impaired insulin signaling, and reduced glucose uptake. Together, this study lends insight into the critical role of PE homeostasis in skeletal muscle metabolism and health with broad implications on metabolic disease development.
Collapse
Affiliation(s)
- Sophie Grapentine
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Rathnesh K Singh
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph N1G 2W1, Canada
| |
Collapse
|
16
|
Simões E Silva AC, Oliveira EA, Cheung WW, Mak RH. Redox Signaling in Chronic Kidney Disease-Associated Cachexia. Antioxidants (Basel) 2023; 12:antiox12040945. [PMID: 37107320 PMCID: PMC10136196 DOI: 10.3390/antiox12040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Redox signaling alterations contribute to chronic kidney disease (CKD)-associated cachexia. This review aims to summarize studies about redox pathophysiology in CKD-associated cachexia and muscle wasting and to discuss potential therapeutic approaches based on antioxidant and anti-inflammatory molecules to restore redox homeostasis. Enzymatic and non-enzymatic systems of antioxidant molecules have been studied in experimental models of kidney diseases and patients with CKD. Oxidative stress is increased by several factors present in CKD, including uremic toxins, inflammation, and metabolic and hormone alterations, leading to muscle wasting. Rehabilitative nutritional and physical exercises have shown beneficial effects for CKD-associated cachexia. Anti-inflammatory molecules have also been tested in experimental models of CKD. The importance of oxidative stress has been shown by experimental studies in which antioxidant therapies ameliorated CKD and its associated complications in the 5/6 nephrectomy model. Treatment of CKD-associated cachexia is a challenge and further studies are necessary to investigate potential therapies involving antioxidant therapy.
Collapse
Affiliation(s)
- Ana Cristina Simões E Silva
- Department of Pediatrics, Division of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Eduardo A Oliveira
- Department of Pediatrics, Division of Pediatric Nephrology, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| | - Wai W Cheung
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert H Mak
- Department of Pediatrics, Rady Children's Hospital San Diego, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
McClelland TJ, Davies T, Puthucheary Z. Novel nutritional strategies to prevent muscle wasting. Curr Opin Crit Care 2023; 29:108-113. [PMID: 36762680 DOI: 10.1097/mcc.0000000000001020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
PURPOSE OF REVIEW Muscle wasting in critical illness has proven to be refractory to physical rehabilitation, and to conventional nutritional strategies. This presents one of the central challenges to critical care medicine in the 21st century. Novel strategies are needed that facilitate nutritional interventions, identify patients that will benefit and have measurable, relevant benefits. RECENT FINDINGS Drug repurposing was demonstrated to be a powerful technique in the coronavirus disease 2019 pandemic, and may have similar applications to address the metabolic derangements of critical illness. Newer biological signatures may aid the application of these techniques and the association between changes in urea:creatinine ratio and the development of skeletal muscle wasting is increasing. A core outcome set for nutrition interventions in critical illness, supported by multiple international societies, was published earlier this year should be adopted by future nutrition trials aiming to attenuate muscle wasting. SUMMARY The evidence base for the lack of efficacy for conventional nutritional strategies in preventing muscle wasting in critically ill patients continues to grow. Novel strategies such as metabolic modulators, patient level biological signatures of nutritional response and standardized outcome for measurements of efficacy will be central to future research and clinical care of the critically ill patient.
Collapse
Affiliation(s)
- Thomas J McClelland
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London
| | - Thomas Davies
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London
| | - Zudin Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London
- Adult Critical Care Unit, Royal London Hospital, London, UK
| |
Collapse
|
18
|
Mendes S, Leal DV, Baker LA, Ferreira A, Smith AC, Viana JL. The Potential Modulatory Effects of Exercise on Skeletal Muscle Redox Status in Chronic Kidney Disease. Int J Mol Sci 2023; 24:ijms24076017. [PMID: 37046990 PMCID: PMC10094245 DOI: 10.3390/ijms24076017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic Kidney Disease (CKD) is a global health burden with high mortality and health costs. CKD patients exhibit lower cardiorespiratory and muscular fitness, strongly associated with morbidity/mortality, which is exacerbated when they reach the need for renal replacement therapies (RRT). Muscle wasting in CKD has been associated with an inflammatory/oxidative status affecting the resident cells' microenvironment, decreasing repair capacity and leading to atrophy. Exercise may help counteracting such effects; however, the molecular mechanisms remain uncertain. Thus, trying to pinpoint and understand these mechanisms is of particular interest. This review will start with a general background about myogenesis, followed by an overview of the impact of redox imbalance as a mechanism of muscle wasting in CKD, with focus on the modulatory effect of exercise on the skeletal muscle microenvironment.
Collapse
Affiliation(s)
- Sara Mendes
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| | - Diogo V Leal
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| | - Luke A Baker
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Aníbal Ferreira
- Nova Medical School, 1169-056 Lisbon, Portugal
- NephroCare Portugal SA, 1750-233 Lisbon, Portugal
| | - Alice C Smith
- Leicester Kidney Lifestyle Team, Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - João L Viana
- Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University of Maia, 4475-690 Maia, Portugal
| |
Collapse
|
19
|
Teixeira VON, Bartikoski BJ, do Espirito Santo RC, Alabarse PVG, Ghannan K, Silva JMS, Filippin LI, Visioli F, Martinez-Gamboa L, Feist E, Xavier RM. The role of proteasome in muscle wasting of experimental arthritis. Adv Rheumatol 2023; 63:14. [PMID: 36949513 DOI: 10.1186/s42358-023-00292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/05/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis is an autoimmune inflammatory disease that often leads patients to muscle impairment and physical disability. This study aimed to evaluate changes in the activity of proteasome system in skeletal muscles of mice with collagen-induced arthritis (CIA) and treated with etanercept or methotrexate. METHODS Male DBA1/J mice were divided into four groups (n = 8 each): CIA-Vehicle (treated with saline), CIA-ETN (treated with etanercept, 5.5 mg/kg), CIA-MTX (treated with methotrexate, 35 mg/kg) and CO (healthy control group). Mice were treated two times a week for 6 weeks. Clinical score and hind paw edema were measured. Muscles were weighted after euthanasia and used to quantify proteasome activity, gene (MuRF-1, PMSα4, PSMβ5, PMSβ6, PSMβ7, PSMβ8, PSMβ9, and PSMβ10), and protein (PSMβ1, PSMβ5, PSMβ1i, PSMβ5i) expression of proteasome subunits. RESULTS Both treatments slowed disease development, but only CIA-ETN maintained muscle weight compared to CIA-MTX and CIA-Vehicle groups. Etanercept treatment showed caspase-like activity of 26S proteasome similar to CO group, while CIA-Vehicle and CIA-MTX had higher activity compared to CO group (p: 0.0057). MuRF-1 mRNA expression was decreased after etanercept administration compared to CIA-Vehicle and CO groups (p: 0.002, p: 0.007, respectively). PSMβ8 and PSMβ9 mRNA levels were increased in CIA-Vehicle and CIA-MTX compared to CO group, while CIA-ETN presented no difference from CO. PMSβ6 mRNA expression was higher in CIA-Vehicle and CIA-MTX groups than in CO group. Protein levels of the PSMβ5 subunit were increased in CO group compared to CIA-Vehicle; after both etanercept and methotrexate treatments, PSMβ5 expression was higher than in CIA-Vehicle group and did not differ from CO group expression (p: 0.0025, p: 0.001, respectively). The inflammation-induced subunit β1 (LMP2) was enhanced after methotrexate treatment compared to CO group (p: 0.043). CONCLUSIONS The results of CIA-Vehicle show that arthritis increases muscle proteasome activation by enhanced caspase-like activity of 26S proteasome and increased PSMβ8 and PSMβ9 mRNA levels. Etanercept treatment was able to maintain the muscle weight and to modulate proteasome so that its activity and gene expression were compared to CO after TNF inhibition. The protein expression of inflammation-induced proteasome subunit was increased in muscle of CIA-MTX group but not following etanercept treatment. Thus, anti-TNF treatment may be an interesting approach to attenuate the arthritis-related muscle wasting.
Collapse
Affiliation(s)
- Vivian Oliveira Nunes Teixeira
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
| | - Bárbara Jonson Bartikoski
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
| | - Rafaela Cavalheiro do Espirito Santo
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil.
| | - Paulo Vinícius Gil Alabarse
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
- University of California San Diego Medical Center Library, University of California San Diego School of Medicine, San Diego, USA
| | - Khetam Ghannan
- Schwerpunkt Rheumatologie und Klinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jordana Miranda Souza Silva
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
| | - Lidiane Isabel Filippin
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
- Health and Human Development Department, Universidade La Salle, Canoas, Brazil
| | - Fernanda Visioli
- Patology Department, Faculdade de Odontologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lorena Martinez-Gamboa
- Schwerpunkt Rheumatologie und Klinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eugen Feist
- Schwerpunkt Rheumatologie und Klinische Immunologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ricardo Machado Xavier
- Medical Sciences Program, Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Laboratório de Doenças Autoimunes, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos Street, Santa Cecília, Porto Alegre, 2350, Brazil
| |
Collapse
|
20
|
Sepsis-Associated Muscle Wasting: A Comprehensive Review from Bench to Bedside. Int J Mol Sci 2023; 24:ijms24055040. [PMID: 36902469 PMCID: PMC10003568 DOI: 10.3390/ijms24055040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Sepsis-associated muscle wasting (SAMW) is characterized by decreased muscle mass, reduced muscle fiber size, and decreased muscle strength, resulting in persistent physical disability accompanied by sepsis. Systemic inflammatory cytokines are the main cause of SAMW, which occurs in 40-70% of patients with sepsis. The pathways associated with the ubiquitin-proteasome and autophagy systems are particularly activated in the muscle tissues during sepsis and may lead to muscle wasting. Additionally, expression of muscle atrophy-related genes Atrogin-1 and MuRF-1 are seemingly increased via the ubiquitin-proteasome pathway. In clinical settings, electrical muscular stimulation, physiotherapy, early mobilization, and nutritional support are used for patients with sepsis to prevent or treat SAMW. However, there are no pharmacological treatments for SAMW, and the underlying mechanisms are still unknown. Therefore, research is urgently required in this field.
Collapse
|
21
|
Mitochondrial Oxidative Stress and Mitophagy Activation Contribute to TNF-Dependent Impairment of Myogenesis. Antioxidants (Basel) 2023; 12:antiox12030602. [PMID: 36978858 PMCID: PMC10044935 DOI: 10.3390/antiox12030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Many muscular pathologies are associated with oxidative stress and elevated levels of the tumor necrosis factor (TNF) that cause muscle protein catabolism and impair myogenesis. Myogenesis defects caused by TNF are mediated in part by reactive oxygen species (ROS), including those produced by mitochondria (mitoROS), but the mechanism of their pathological action is not fully understood. We hypothesized that mitoROS act by triggering and enhancing mitophagy, an important tool for remodelling the mitochondrial reticulum during myogenesis. We used three recently developed probes—MitoTracker Orange CM-H2TMRos, mito-QC, and MitoCLox—to study myogenesis in human myoblasts. Induction of myogenesis resulted in a significant increase in mitoROS generation and phospholipid peroxidation in the inner mitochondrial membrane, as well as mitophagy enhancement. Treatment of myoblasts with TNF 24 h before induction of myogenesis resulted in a significant decrease in the myoblast fusion index and myosin heavy chain (MYH2) synthesis. TNF increased the levels of mitoROS, phospholipid peroxidation in the inner mitochondrial membrane and mitophagy at an early stage of differentiation. Trolox and SkQ1 antioxidants partially restored TNF-impaired myogenesis. The general autophagy inducers rapamycin and AICAR, which also stimulate mitophagy, completely blocked myogenesis. The autophagy suppression by the ULK1 inhibitor SBI-0206965 partially restored myogenesis impaired by TNF. Thus, suppression of myogenesis by TNF is associated with a mitoROS-dependent increase in general autophagy and mitophagy.
Collapse
|
22
|
Yuenyongchaiwat K, Akekawatchai C, Khattiya J. Effects of a Pedometer-Based Walking Home Program Plus Resistance Training on Inflammatory Cytokines and Depression in Thai Older People with Sarcopenia: A Three-Arm Randomized Controlled Trial. Clin Gerontol 2023; 46:717-728. [PMID: 36461909 DOI: 10.1080/07317115.2022.2150396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
OBJECTIVE To examine the effects of daily walking steps plus resistive exercise on chronic inflammatory markers and depressive symptoms in older adults with sarcopenia. METHODS Ninety men and women aged over 60 years were enrolled and divided into 60 and 30 adults with and without sarcopenia, respectively. Older individuals were screened for sarcopenia using the Asian Working Group for Sarcopenia in 2019. A simple random sample was conducted to divide the older adults with sarcopenia into two groups: control and intervention. Thirty older adults with sarcopenia were assigned to perform 12 weeks of step walking (>7500 steps) daily for 5 days/week plus resistance exercise with an elastic band twice/week; the control groups (i.e., no sarcopenia and sarcopenia) performed routine daily life Changes in depression and expression of the pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) were measured before and after the 12-week intervention program. Two-way mixed ANOVA models were computed for group and interaction effects for each variable. RESULTS Changes in depressive symptom scores (Δ2.86 ± 0.92) and TNF-α levels (Δ22.16 ± 2.30) were observed in the intervention group after the 12-week program. In addition, an interaction effect between the intervention (Δ4.04 ± 3.10) and control groups (Δ8.10 ± 4.88) was found for the symptoms of depression. CONCLUSION Older people with sarcopenia who accumulated >7,500 steps/day, 5 days/week plus resistive elastic band twice /week show improvements in inflammation and depressive symptoms. CLINICAL IMPLICATIONS Encourage physical activity had a positive effect on reducing inflammation and depression among older people with sarcopenia.
Collapse
Affiliation(s)
- Kornanong Yuenyongchaiwat
- Physiotherapy Department, Faculty of Allied Health Sciences, Thammasat University, Bangkok, Thailand
- Thammasat University Research Unit for Physical Therapy in Respiratory and Cardiovascular Systems, Thammasat University, Pathumthani, Thailand
| | - Chareeporn Akekawatchai
- Medical Technology Department, Faculty of Allied Health Sciences, Thammasat University, Pathumtani, Thailand
- Thammasat University Research Unit in Diagnostic Molecular Biology of Chronic Diseases related to Cancer (DMB-CDC), Pathumthani, Thailand
| | - Janya Khattiya
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Bangkok, Thailand
| |
Collapse
|
23
|
Llanos P, Palomero J. Reactive Oxygen and Nitrogen Species (RONS) and Cytokines-Myokines Involved in Glucose Uptake and Insulin Resistance in Skeletal Muscle. Cells 2022; 11:cells11244008. [PMID: 36552772 PMCID: PMC9776436 DOI: 10.3390/cells11244008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Insulin resistance onset in skeletal muscle is characterized by the impairment of insulin signaling, which reduces the internalization of glucose, known as glucose uptake, into the cell. Therefore, there is a deficit of intracellular glucose, which is the main source for energy production in the cell. This may compromise cellular viability and functions, leading to pathological dysfunction. Skeletal muscle fibers continuously generate reactive oxygen and nitrogen species (RONS). An excess of RONS produces oxidative distress, which may evoke cellular damage and dysfunction. However, a moderate level of RONS, which is called oxidative eustress, is critical to maintain, modulate and regulate cellular functions through reversible interactions between RONS and the components of cellular signaling pathways that control those functions, such as the facilitation of glucose uptake. The skeletal muscle releases peptides called myokines that may have endocrine and paracrine effects. Some myokines bind to specific receptors in skeletal muscle fibers and might interact with cellular signaling pathways, such as PI3K/Akt and AMPK, and facilitate glucose uptake. In addition, there are cytokines, which are peptides produced by non-skeletal muscle cells, that bind to receptors at the plasma membrane of skeletal muscle cells and interact with the cellular signaling pathways, facilitating glucose uptake. RONS, myokines and cytokines might be acting on the same signaling pathways that facilitate glucose uptake in skeletal muscle. However, the experimental studies are limited and scarce. The aim of this review is to highlight the current knowledge regarding the role of RONS, myokines and cytokines as potential signals that facilitate glucose uptake in skeletal muscle. In addition, we encourage researchers in the field to lead and undertake investigations to uncover the fundamentals of glucose uptake evoked by RONS, myokines, and cytokines.
Collapse
Affiliation(s)
- Paola Llanos
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 8380544, Chile
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Jesus Palomero
- Department of Physiology and Pharmacology, Faculty of Medicine, Campus Miguel de Unamuno, Universidad de Salamanca, Av. Alfonso X El Sabio, 37007 Salamanca, Spain
- Institute of Neurosciences of Castilla y León (INCyL), 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-666-589-153
| |
Collapse
|
24
|
Jin X, Xu XT, Tian MX, Dai Z. Omega-3 polyunsaterated fatty acids improve quality of life and survival, but not body weight in cancer cachexia: A systematic review and meta-analysis of controlled trials. Nutr Res 2022; 107:165-178. [PMID: 36283229 DOI: 10.1016/j.nutres.2022.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 12/27/2022]
Abstract
Several clinical trials have reported that patients with cancer cachexia can benefit from n-3 polyunsaturated fatty acids (n-3 PUFAs) supplements; however, the results have been conflicting. This systematic review and meta-analysis aimed to evaluate the effect of n-3 PUFAs on cancer cachexia. A search of the PubMed, Embase, and Cochrane Library databases was performed to identify the included randomized controlled trials. Trials including patients with cancer cachexia who were administered a course of n-3 PUFAs were included. A meta-analysis on body weight, lean body weight, proinflammatory factors, quality of life, and median duration of survival was conducted. A total of 12 randomized controlled trials with 1184 patients were included. No effect on body weight (standard mean difference [SMD], 0.10; 95% CI, -0.06 to 0.26; P = .236), lean body weight (SMD, -0.17; 95% CI, -0.36 to 0.03, P = .095), or proinflammatory factors (interleukin-6: SMD, 0.31; 95% CI, -0.14 to 0.75; P = .18; tumor necrosis factor-α: SMD, -0.85; 95% CI, -2.39 to 0.69; P = .28) was observed. The use of n-3 PUFAs was associated with a significant improvement in quality of life (SMD, 0.70; 95% CI, 0.01-1.40; P = .048) and median duration of survival (median survival ratio, 1.10; 95% CI, 1.02-1.19; P = .014). For patients with cancer cachexia, our meta-analysis indicated that n-3 PUFAs improved quality of life and survival, but not body weight.
Collapse
Affiliation(s)
- Xin Jin
- Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xin-Tian Xu
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng-Xing Tian
- Department of Clinical Nutrition, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhu Dai
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
Wu S, Lin S, Zhang X, Alizada M, Wang L, Zheng Y, Ke Q, Xu J. Recent advances in cell-based and cell-free therapeutic approaches for sarcopenia. FASEB J 2022; 36:e22614. [PMID: 36250337 DOI: 10.1096/fj.202200675r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/02/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Sarcopenia is a progressive loss of muscle mass and function that is connected with increased hospital expenditures, falls, fractures, and mortality. Although muscle loss has been related to aging, injury, hormonal imbalances, and diseases such as malignancies, chronic obstructive pulmonary disease, heart failure, and kidney failure, the underlying pathogenic mechanisms of sarcopenia are unclear. Exercise-based interventions and multimodal strategies are currently being considered as potential therapeutic approaches to prevent or treat these diseases. Although drug therapy research is ongoing, no drug has yet been proven to have a substantial safety and clinical value to be the first drug therapy to be licensed for sarcopenia. To better understand the molecular alterations underlying sarcopenia and effective treatments, we review leading research and available findings from the systemic change to the muscle-specific microenvironment. Furthermore, we explore possible mechanisms of sarcopenia and provide new knowledge for the development of novel cell-free and cell-based therapeutics. This review will assist researchers in developing better therapies to improve muscle health in the elderly.
Collapse
Affiliation(s)
- Shiqiang Wu
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Xiaolu Zhang
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mujahid Alizada
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Liangmin Wang
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yiqiang Zheng
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingfeng Ke
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jie Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Orthopedic, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
26
|
Gupta P, Kumar S. Sarcopenia and Endocrine Ageing: Are They Related? Cureus 2022; 14:e28787. [PMID: 36225400 PMCID: PMC9533189 DOI: 10.7759/cureus.28787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/04/2022] [Indexed: 11/05/2022] Open
|
27
|
TNF-α Suppresses Apelin Receptor Expression in Mouse Quadriceps Femoris-Derived Cells. Curr Issues Mol Biol 2022; 44:3146-3155. [PMID: 35877441 PMCID: PMC9315797 DOI: 10.3390/cimb44070217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Expression of the apelin receptor, APJ, in skeletal muscle (SM) is known to decrease with age, but the underlying mechanism remains unclear. Increased tumor necrosis factor (TNF)-α levels are observed in SM with age and are associated with muscle atrophy. To investigate the possible interconnection between TNF-α elevation and APJ reduction with aging, we investigated the effect of TNF-α on APJ expression in cells derived from the quadriceps femoris of C57BL/6J mice. Expression of Tnfa and Apj in the quadriceps femoris was compared between 4- (young) and 24-month-old (old) C57BL/6J mice (n = 10 each) using qPCR. Additionally, APJ-positive cells and TNF-α protein were analyzed by flow cytometry and Western blotting, respectively. Further, quadricep-derived cells were exposed to 0 (control) or 25 ng/mL TNF-α, and the effect on Apj expression was examined by qRT-PCR. Apj expression and the ratio of APJ-positive cells among quadricep cells were significantly lower in old compared to young mice. In contrast, levels of Tnfa mRNA and TNF-α protein were significantly elevated in old compared to young mice. Exposing young and old derived quadricep cells to TNF-α for 8 and 24 h caused Apj levels to significantly decrease. TNF-α suppresses APJ expression in muscle cells in vitro. The increase in TNF-α observed in SM with age may induce a decrease in APJ expression.
Collapse
|
28
|
Deyhle MR, Callaway CS, Neyroud D, D’Lugos AC, Judge SM, Judge AR. Depleting Ly6G Positive Myeloid Cells Reduces Pancreatic Cancer-Induced Skeletal Muscle Atrophy. Cells 2022; 11:1893. [PMID: 35741022 PMCID: PMC9221479 DOI: 10.3390/cells11121893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/22/2022] Open
Abstract
Immune cells can mount desirable anti-cancer immunity. However, some immune cells can support cancer disease progression. The presence of cancer can lead to production of immature myeloid cells from the bone marrow known as myeloid-derived suppressor cells (MDSCs). The immunosuppressive and pro-tumorigenic effects of MDSCs are well understood. Whether MDSCs are involved in promoting cancer cachexia is not well understood. We orthotopically injected the pancreas of mice with KPC cells or PBS. One group of tumor-bearing mice was treated with an anti-Ly6G antibody that depletes granulocytic MDSCs and neutrophils; the other received a control antibody. Anti-Ly6G treatment delayed body mass loss, reduced tibialis anterior (TA) muscle wasting, abolished TA muscle fiber atrophy, reduced diaphragm muscle fiber atrophy of type IIb and IIx fibers, and reduced atrophic gene expression in the TA muscles. Anti-ly6G treatment resulted in greater than 50% Ly6G+ cell depletion efficiency in the tumors and TA muscles. These data show that, in the orthotopic KPC model, anti-Ly6G treatment reduces the number of Ly6G+ cells in the tumor and skeletal muscle and reduces skeletal muscle atrophy. These data implicate Ly6G+ cells, including granulocytic MDSCs and neutrophils, as possible contributors to the development of pancreatic cancer-induced skeletal muscle wasting.
Collapse
Affiliation(s)
- Michael R. Deyhle
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
- Department of Health, Exercise & Sports Sciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Chandler S. Callaway
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
| | - Daria Neyroud
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
- Faculty of Biology and Medicine, Institute of Sport Sciences, University of Lausanne, Quartier UNIL-Centre, Building Synathlon, 1015 Lausanne, Switzerland
| | - Andrew C. D’Lugos
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
| | - Sarah M. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
| | - Andrew R. Judge
- Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; (M.R.D.); (C.S.C.); (D.N.); (A.C.D.); (S.M.J.)
| |
Collapse
|
29
|
Askari G, Sahebkar A, Soleimani D, Mahdavi A, Rafiee S, Majeed M, Khorvash F, Iraj B, Elyasi M, Rouhani MH, Bagherniya M. The efficacy of curcumin-piperine co-supplementation on clinical symptoms, duration, severity, and inflammatory factors in COVID-19 outpatients: a randomized double-blind, placebo-controlled trial. Trials 2022; 23:472. [PMID: 35668500 PMCID: PMC9167899 DOI: 10.1186/s13063-022-06375-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND COVID-19 pandemic has made the disease a major global problem by creating a significant burden on health, economic, and social status. To date, there are no effective and approved medications for this disease. Curcumin as an anti-inflammatory agent can have a positive effect on the control of COVID-19 complications. This study aimed to assess the efficacy of curcumin-piperine supplementation on clinical symptoms, duration, severity, and inflammatory factors in patients with COVID-19. METHODS Forty-six outpatients with COVID-19 disease were randomly allocated to receive two capsules of curcumin-piperine; each capsule contained 500 mg curcumin plus 5 mg piperine or placebo for 14 days. RESULTS Mean changes in complete blood count, liver enzymes, blood glucose levels, lipid parameters, kidney function, and c-reactive protein (CRP) were not significantly different between the two groups. There was a significant improvement in health status, including dry cough, sputum cough, ague, sore throat, weakness, muscular pain, headache, and dyspnea at week 2 in both curcumin-piperine and placebo groups (P value < 0.05); however, the improvement in weakness was more in the curcumin-piperine group than with placebo group (P value 025). CONCLUSION The present study results showed that curcumin-piperine co-supplementation in outpatients with COVID-19 could significantly reduce weakness. However, in this study, curcumin-piperine co-supplementation could not significantly affect the other indices, including biochemical and clinical indices. TRIAL REGISTRATION Iranian Registry of Clinical Trials IRCT20121216011763N46 . 2020-10-31.
Collapse
Affiliation(s)
- Gholamreza Askari
- Food Security Research Center, Isfahan University of Medical Sciences, PO Box: 00983137922110, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
| | - Davood Soleimani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Atena Mahdavi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Rafiee
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Farzin Khorvash
- Nosocomial Infection Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bijan Iraj
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Elyasi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Rouhani
- Food Security Research Center, Isfahan University of Medical Sciences, PO Box: 00983137922110, Isfahan, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, PO Box: 00983137922110, Isfahan, Iran
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Aoi W, Iwasa M, Aiso C, Tabata Y, Gotoh Y, Kosaka H, Suzuki T. Lactococcus cremoris subsp. cremoris FC-fermented milk activates protein synthesis and increases skeletal muscle mass in middle-aged mice. Biochem Biophys Res Commun 2022; 612:176-180. [PMID: 35550504 DOI: 10.1016/j.bbrc.2022.04.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/26/2022]
Abstract
Age-related muscle atrophy is associated with decreased protein anabolic capacity. Dietary intervention is an important strategy for the treatment of age-related muscle atrophy. This study examined the effect of Lactococcus cremoris subsp. cremoris FC-fermented milk on muscle mass and protein anabolic signaling in middle-aged mice. Male C57BL/6J mice (18-month-old) were divided into the control and Lactococcus cremoris subsp. cremoris FC-fermented milk supplementation groups. Mice were administered unfermented or fermented milk (300 μL/day) by gavage every alternate day for 8 weeks; thereafter, muscle weight, protein metabolic signaling factors, and inflammatory factors were investigated. Soleus muscle weight was higher in the fermented milk group than in the control group. Expression of insulin growth factor-1, a typical anabolic factor, and phosphorylation levels of anabolic signaling factors (mTOR and p70S6K) were higher after fermented milk supplementation. Levels of tumor necrosis factor-α, an inhibitor of protein anabolism, were lower in the fermented milk group. These data suggest that the daily intake of Lactococcus cremoris subsp. cremoris FC-fermented milk increased skeletal muscle mass as well as protein synthesis in the middle-aged mice, which may be mediated by reduction in the levels of inflammatory factors. Therefore, accelerated protein synthesis, induced by the consumption of fermented milk, has a potential role in counteracting muscle atrophy.
Collapse
Affiliation(s)
- Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.
| | - Masayo Iwasa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Zschüntzsch J, Meyer S, Shahriyari M, Kummer K, Schmidt M, Kummer S, Tiburcy M. The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells 2022; 11:1233. [PMID: 35406795 PMCID: PMC8997482 DOI: 10.3390/cells11071233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Many neuromuscular disease entities possess a significant disease burden and therapeutic options remain limited. Innovative human preclinical models may help to uncover relevant disease mechanisms and enhance the translation of therapeutic findings to strengthen neuromuscular disease precision medicine. By concentrating on idiopathic inflammatory muscle disorders, we summarize the recent evolution of the novel in vitro models to study disease mechanisms and therapeutic strategies. A particular focus is laid on the integration and simulation of multicellular interactions of muscle tissue in disease phenotypes in vitro. Finally, the requirements of a neuromuscular disease drug development workflow are discussed with a particular emphasis on cell sources, co-culture systems (including organoids), functionality, and throughput.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Stefanie Meyer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Mina Shahriyari
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Karsten Kummer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Matthias Schmidt
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Susann Kummer
- Risk Group 4 Pathogens–Stability and Persistence, Biosafety Level-4 Laboratory, Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| |
Collapse
|
32
|
Paeoniflorin Alleviates Skeletal Muscle Atrophy in Ovariectomized Mice through the ERα/NRF1 Mitochondrial Biogenesis Pathway. Pharmaceuticals (Basel) 2022; 15:ph15040390. [PMID: 35455387 PMCID: PMC9025649 DOI: 10.3390/ph15040390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Muscle atrophy in postmenopausal women is caused by estrogen deficiency and a variety of inflammatory factors, including tumor necrosis factor alpha (TNFα). Paeoniflorin (PNF), a natural compound with anti-inflammatory properties, improves estradiol synthesis. Here, we demonstrate that PNF inhibits the progression of TNFα-induced skeletal muscle atrophy after menopause by restoring mitochondrial biosynthesis. Differentiated myoblasts damaged by TNFα were restored by PNF, as evident by the increase in the expression of myogenin (MyoG) and myosin heavy chain 3 (Myh3)—the markers of muscle differentiation. Moreover, diameter of atrophied myotubes was restored by PNF treatment. TNFα-repressed nuclear respiratory factor 1 (NRF1) and mitochondrial transcription factor A (TFAM) (a major regulator of mitochondrial biosynthesis) were restored by PNF, via regulation by estrogen receptor alpha (ERα), an upregulator of NRF1. This mechanism was confirmed in ovariectomized (OVX) mice with a ~40% reduction in the cross-sectional area of the anterior tibialis muscle. OVX mice administered PNF (100, 300 mg/kg/day) for 12 weeks recovered more than ~20%. Behavioral, rotarod, and inverted screen tests showed that PNF enhances reduced muscle function in OVX mice. ERα restored expression of mitofusin 1 (MFN1) and mitofusin 2 (MFN2) (mitochondrial fusion markers) and dynamin-related protein (DRP1) and fission 1 (FIS1) (mitochondrial fission markers). Therefore, PNF can prevent muscle atrophy in postmenopausal women by inhibiting dysfunctional mitochondrial biogenesis.
Collapse
|
33
|
Khutami C, Sumiwi SA, Khairul Ikram NK, Muchtaridi M. The Effects of Antioxidants from Natural Products on Obesity, Dyslipidemia, Diabetes and Their Molecular Signaling Mechanism. Int J Mol Sci 2022; 23:ijms23042056. [PMID: 35216172 PMCID: PMC8875143 DOI: 10.3390/ijms23042056] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is a risk factor that leads to the development of other diseases such as dyslipidemia and diabetes. These three metabolic disorders can occur simultaneously, hence, the treatment requires many drugs. Antioxidant compounds have been reported to have activities against obesity, dyslipidemia and diabetes via several mechanisms. This review aims to discuss the antioxidant compounds that have activity against obesity, dyslipidemia and diabetes together with their molecular signaling mechanism. The literature discussed in this review was obtained from the PUBMED database. Based on the collection of literature obtained, antioxidant compounds having activity against the three disorders (obesity, dyslipidemia and diabetes) were identified. The activity is supported by various molecular signaling pathways that are influenced by these antioxidant compounds, further study of which would be useful in predicting drug targets for a more optimal effect. This review provides insights on utilizing one of these antioxidant compounds as opposed to several drugs. It is hoped that in the future, the number of drugs in treating obesity, dyslipidemia and diabetes altogether can be minimized consequently reducing the risk of side effects.
Collapse
Affiliation(s)
- Chindiana Khutami
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia; (C.K.); (S.A.S.)
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia; (C.K.); (S.A.S.)
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Centre for Research in Biotechnology for Agriculture (CEBAR), Kuala Lumpur 50603, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Sumedang 45363, Indonesia
- Correspondence:
| |
Collapse
|
34
|
Abstract
Diverse inflammatory diseases, infections and malignancies are associated with wasting syndromes. In many of these conditions, the standards for diagnosis and treatment are lacking due to our limited understanding of the causative molecular mechanisms. Here, we discuss the complex immunological context of cachexia, a systemic catabolic syndrome that depletes both fat and muscle mass with profound consequences for patient prognosis. We highlight the main cytokine and immune cell-driven pathways that have been linked to weight loss and tissue wasting in the context of cancer-associated and infection-associated cachexia. Moreover, we discuss the potential immunometabolic consequences of cachexia on the basis of newly identified pathways and explore the multilayered area of immunometabolic crosstalk both upstream and downstream of tissue catabolism. Collectively, this Review highlights the intricate relationship of the immune system with cachexia in the context of malignant and infectious diseases.
Collapse
|
35
|
Low-Grade Systemic Inflammation Interferes with Anabolic and Catabolic Characteristics of the Aged Human Skeletal Muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8376915. [PMID: 34917235 PMCID: PMC8670932 DOI: 10.1155/2021/8376915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
Aging is associated with the development of chronic low-grade systemic inflammation (LGSI) characterized by increased circulating levels of proinflammatory cytokines and acute phase proteins such as C-reactive protein (CRP). Collective evidence suggests that elevated levels of inflammatory mediators such as CRP, interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) are correlated with deteriorated skeletal muscle mass and function, though the molecular footprint of this observation in the aged human skeletal muscle remains obscure. Based on animal models showing impaired protein synthesis and enhanced degradation in response to LGSI, we compared here the response of proteolysis- and protein synthesis-related signaling proteins as well as the satellite cell and amino acid transporter protein content between healthy older adults with increased versus physiological blood hs-CRP levels in the fasted (basal) state and after an anabolic stimulus comprised of acute resistance exercise (RE) and protein feeding. Our main findings indicate that older adults with increased hs-CRP levels demonstrate (i) increased proteasome activity, accompanied by increased protein carbonylation and IKKα/β phosphorylation; (ii) reduced Pax7+ satellite cells; (iii) increased insulin resistance, at the basal state; and (iv) impaired S6 ribosomal protein phosphorylation accompanied by hyperinsulinemia following an acute RE bout combined with protein ingestion. Collectively, these data provide support to the concept that age-related chronic LGSI may upregulate proteasome activity via induction of the NF-κB signaling and protein oxidation and impair the insulin-dependent anabolic potential of human skeletal muscle.
Collapse
|
36
|
Finke D, Heckmann MB, Frey N, Lehmann LH. Cancer-A Major Cardiac Comorbidity With Implications on Cardiovascular Metabolism. Front Physiol 2021; 12:729713. [PMID: 34899373 PMCID: PMC8662519 DOI: 10.3389/fphys.2021.729713] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases have multifactorial causes. Classical cardiovascular risk factors, such as arterial hypertension, smoking, hyperlipidemia, and diabetes associate with the development of vascular stenoses and coronary heart disease. Further comorbidities and its impact on cardiovascular metabolism have gotten more attention recently. Thus, also cancer biology may affect the heart, apart from cardiotoxic side effects of chemotherapies. Cancer is a systemic disease which primarily leads to metabolic alterations within the tumor. An emerging number of preclinical and clinical studies focuses on the interaction between cancer and a maladaptive crosstalk to the heart. Cachexia and sarcopenia can have dramatic consequences for many organ functions, including cardiac wasting and heart failure. These complications significantly increase mortality and morbidity of heart failure and cancer patients. There are concurrent metabolic changes in fatty acid oxidation (FAO) and glucose utilization in heart failure as well as in cancer, involving central molecular regulators, such as PGC-1α. Further, specific inflammatory cytokines (IL-1β, IL-6, TNF-α, INF-β), non-inflammatory cytokines (myostatin, SerpinA3, Ataxin-10) and circulating metabolites (D2-HG) may mediate a direct and maladaptive crosstalk of both diseases. Additionally, cancer therapies, such as anthracyclines and angiogenesis inhibitors target common metabolic mechanisms in cardiomyocytes and malignant cells. This review focuses on cardiovascular, cancerous, and cancer therapy-associated alterations on the systemic and cardiac metabolic state.
Collapse
Affiliation(s)
- Daniel Finke
- Cardio-Oncology Unit, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Markus B Heckmann
- Cardio-Oncology Unit, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Lorenz H Lehmann
- Cardio-Oncology Unit, University Hospital Heidelberg, Heidelberg, Germany.,Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Deutsches Krebsfoschungszentrum (DKFZ), Heidelberg, Germany
| |
Collapse
|
37
|
AlSudais H, Wiper-Bergeron N. From quiescence to repair: C/EBPβ as a regulator of muscle stem cell function in health and disease. FEBS J 2021; 289:6518-6530. [PMID: 34854237 DOI: 10.1111/febs.16307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/21/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
CCAAT/Enhancer Binding protein beta (C/EBPβ) is a transcriptional regulator involved in numerous physiological processes. Herein, we describe a role for C/EBPβ as a regulator of skeletal muscle stem cell function. In particular, C/EBPβ is expressed in muscle stem cells in healthy muscle where it inhibits myogenic differentiation. Downregulation of C/EBPβ expression at the protein and transcriptional level allows for differentiation. Persistence of C/EBPβ promotes stem cell self-renewal and C/EBPβ expression is required for mitotic quiescence in this cell population. As a critical regulator of skeletal muscle homeostasis, C/EBPβ expression is stimulated in pathological conditions such as cancer cachexia, which perturbs muscle regeneration and promotes myofiber atrophy in the context of systemic inflammation. C/EBPβ is also an important regulator of cytokine expression and immune response genes, a mechanism by which it can influence muscle stem cell function. In this viewpoint, we describe a role for C/EBPβ in muscle stem cells and propose a functional intersection between C/EBPβ and NF-kB action in the regulation of cancer cachexia.
Collapse
Affiliation(s)
- Hamood AlSudais
- Graduate Program in Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Canada
| |
Collapse
|
38
|
Kim JE, Kwon EY, Han Y. Allulose Attenuated Age-Associated Sarcopenia via Regulating IGF-1 and Myostatin in Aged Mice. Mol Nutr Food Res 2021; 66:e2100549. [PMID: 34710274 DOI: 10.1002/mnfr.202100549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/29/2021] [Indexed: 12/25/2022]
Abstract
SCOPE Allulose is shown to increase the muscle weight in diet-induced obese mice. However, there are no studies on the effects of allulose in age-associated sarcopenia. This study aims to elucidate the mechanisms of action for allulose in age associated by analyzing the transcriptional patterns in aged mice. METHODS AND RESULTS The 48-week-old mice are fed with AIN-93diet containing allulose for 12 weeks. Allulose supplementation increases the muscle mass and grip strength in aged mice. Allulose increases the insulin-like growth factor 1 (IGF-1) and its downstream factor expressions which 40 are related protein synthesis, while inhibits the myostatin expression related protein degradation. In mRNA-seq analysis, allulose supplementation significantly decreases in Adiponectin, Adipsin, cell death inducing DFFA like effector (CIDEC), Haptoglobin, Neuroglobin, and stearoyl-CoA desaturase-1 (SCD1) and increases in cytokine-inducible SH2-containing protein (CISH) and ceramide synthase 1 (CerS1) that are regulate protein turn over in gastrocnemius. Also, allulose alleviates autophagy in muscle with regulated mammalian target of rapamycin (mTOR) signaling pathway and increases the anti-oxidant enzyme activity. CONCLUSION These findings suggest that allulose improves the age-associated sarcopenia with enhancing antioxidant properties by altering mRNA and protein expression.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu, 702-701, Republic of Korea.,Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu, 702-701, Republic of Korea.,Center for Beautiful Aging, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu, 702-701, Republic of Korea
| | - Eun-Young Kwon
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu, 702-701, Republic of Korea.,Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu, 702-701, Republic of Korea.,Center for Beautiful Aging, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu, 702-701, Republic of Korea
| | - Youngji Han
- Department of Food Science and Nutrition, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu, 702-701, Republic of Korea.,Center for Food and Nutritional Genomics Research, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu, 702-701, Republic of Korea.,Center for Beautiful Aging, Kyungpook National University, 1370 San-Kyuk Dong, Puk-Ku, Daegu, 702-701, Republic of Korea
| |
Collapse
|
39
|
Wong L, Duque G, McMahon LP. Sarcopenia and Frailty: Challenges in Mainstream Nephrology Practice. Kidney Int Rep 2021; 6:2554-2564. [PMID: 34622096 PMCID: PMC8484128 DOI: 10.1016/j.ekir.2021.05.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia and frailty are prevalent in the chronic kidney disease (CKD) population. Sarcopenia is characterised by the loss of muscle mass and function, while frailty is defined as a multi-system impairment associated with increased vulnerability to stressors. There is substantial overlap between the 2 conditions, particularly with regards to physical aspects: low grip strength, gait speed and low muscle mass. Both sarcopenia and frailty have been associated with a wide range of adverse health outcomes. Although there is no recommended pharmacological treatment as yet, it is widely accepted that exercise training and nutritional supplementation are the key interventions to maintain skeletal muscle mass and strength. This review aims to present a comprehensive overview of sarcopenia and frailty in patients with CKD.
Collapse
Affiliation(s)
- Limy Wong
- Eastern Health Integrated Renal Service, Box Hill Hospital, Victoria, Australia.,Department of Renal Medicine, Monash University Eastern Health Clinical School, Victoria, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Victoria, Australia.,Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, Victoria, Australia
| | - Lawrence P McMahon
- Eastern Health Integrated Renal Service, Box Hill Hospital, Victoria, Australia.,Department of Renal Medicine, Monash University Eastern Health Clinical School, Victoria, Australia
| |
Collapse
|
40
|
Stoian A, Bajko Z, Maier S, Cioflinc RA, Grigorescu BL, Moțățăianu A, Bărcuțean L, Balașa R, Stoian M. High-dose intravenous immunoglobulins as a therapeutic option in critical illness polyneuropathy accompanying SARS-CoV-2 infection: A case-based review of the literature (Review). Exp Ther Med 2021; 22:1182. [PMID: 34475972 PMCID: PMC8406741 DOI: 10.3892/etm.2021.10616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
The still ongoing COVID-19 pandemic has exposed the medical community to a number of major challenges. A significant number of patients require admission to intensive care unit (ICU) services due to severe respiratory, thrombotic and septic complications and require long-term hospitalization. Neuromuscular weakness is a common complication in critically ill patients who are treated in ICUs and are mechanically ventilated. This complication is frequently caused by critical illness myopathy (CIM) or critical illness polyneuropathy (CIP) and leads to difficulty in weaning from the ventilator. It is thought to represent an important neurologic manifestation of the systemic inflammatory response syndrome (SIRS). COVID-19 infection is known to trigger strong immune dysregulation, with an intense cytokine storm, as a result, the frequency of CIP is expected to be higher in this setting. The mainstay in the diagnosis of this entity beside the high level of clinical awareness is the electrophysiological examination that provides evidence of axonal motor and sensory polyneuropathy. The present article presents the case of a 54-year-old woman with severe COVID 19 infection who developed neuromuscular weakness, which turned out to be secondary to CIP and was treated successfully with a high dose of human intravenous immunoglobulins. Related to this case, we reviewed the relevant literature data regarding the epidemiology, pathophysiology and clinical features of this important complication and discussed also the treatment options and prognosis.
Collapse
Affiliation(s)
- Adina Stoian
- Department of Pathophysiology, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| | - Zoltan Bajko
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| | - Smaranda Maier
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| | | | - Bianca Liana Grigorescu
- Department of Pathophysiology, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| | - Anca Moțățăianu
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| | - Laura Bărcuțean
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| | - Rodica Balașa
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| | - Mircea Stoian
- Department of Anesthesiology and Intensive Therapy, ‘George Emil Palade’ University of Medicine, Pharmacy, Sciences and Technology, 540136 Targu Mures, Romania
| |
Collapse
|
41
|
Haberecht-Müller S, Krüger E, Fielitz J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021; 11:biom11091327. [PMID: 34572540 PMCID: PMC8468834 DOI: 10.3390/biom11091327] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Collapse
Affiliation(s)
- Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (E.K.); (J.F.)
| | - Jens Fielitz
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (E.K.); (J.F.)
| |
Collapse
|
42
|
Widner DB, Liu C, Zhao Q, Sharp S, Eber MR, Park SH, Files DC, Shiozawa Y. Activated mast cells in skeletal muscle can be a potential mediator for cancer-associated cachexia. J Cachexia Sarcopenia Muscle 2021; 12:1079-1097. [PMID: 34008339 PMCID: PMC8350201 DOI: 10.1002/jcsm.12714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Eighty per cent of United States advanced cancer patients faces a worsened prognosis due to cancer-associated cachexia. Inflammation is one driver of muscle atrophy in cachexia, and skeletal muscle-resident immune cells could be a source of inflammation. This study explores the efficacy of cancer activated skeletal muscle-resident mast cells as a biomarker and mediator of cachexia. METHODS Individual gene markers for immune cells were assessed in a publicly available colon carcinoma cohort of normal (n = 3), moderate cachexia (n = 3), and severe cachexia (n = 4) mice. Lewis lung carcinoma (LL/2) cells induced cachexia in C57BL/6 mice, and a combination of toluidine blue staining, immunofluorescence, quantitative polymerase chain reaction, and western blots measured innate immune cell expression in hind limb muscles. In vitro measurements included C2C12 myotube diameter before and after treatment with media from primary murine mast cells activated with LL/2 conditioned media. To assess translational potential in human samples, innate immune cell signatures were assessed for correlation with skeletal muscle atrophy and apoptosis, dietary excess, and cachexia signatures in normal skeletal muscle tissue. Gene set enrichment analysis was performed with innate immune cell signatures in publicly available cohorts for upper gastrointestinal (GI) cancer and pancreatic ductal adenocarcinoma (PDAC) patients (accession: GSE34111 and GSE130563, respectively). RESULTS Individual innate immunity genes (TPSAB1 and CD68) showed significant increases in severe cachexia (weight loss > 15%) mice in a C26 cohort (GSE24112). Induction of cachexia in C57BL/6 mice with LL/2 subcutaneous injection significantly increased the number of activated skeletal muscle-resident degranulating mast cells. Murine mast cells activated with LL/2 conditioned media decreased C2C12 myotube diameter (P ≤ 0.05). Normal human skeletal muscle showed significant positive correlations between innate immune cell signatures and muscle apoptosis and atrophy, dietary excess, and cachexia signatures. The mast cell signature was up-regulated (positive normalized enrichment score and false discovery rate ≤ 0.1) in upper GI cachectic patients (n = 12) compared with control (n = 6), as well as in cachectic PDAC patients (n = 17) compared with control patients (n = 16). CONCLUSIONS Activated skeletal muscle-resident mast cells are enriched in cachectic muscles, suggesting skeletal-muscle resident mast cells may serve as a biomarker and mediator for cachexia development to improve patient diagnosis and prognosis.
Collapse
Affiliation(s)
- D Brooke Widner
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Chun Liu
- Internal Medicine-Sections in Pulmonary and Critical Care Medicine and Geriatrics and the Critical Illness Injury and Recovery Research Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Qingxia Zhao
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Sarah Sharp
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA.,Department of Biology, Wake Forest University, Winston-Salem, NC, USA
| | - Matthew R Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Sun H Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - D Clark Files
- Internal Medicine-Sections in Pulmonary and Critical Care Medicine and Geriatrics and the Critical Illness Injury and Recovery Research Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
43
|
Zhou Y, Cao F, Wu Q, Luo Y, Guo T, Han S, Huang M, Hu Z, Bai J, Luo F, Lin Q. Dietary Supplementation of Octacosanol Improves Exercise-Induced Fatigue and Its Molecular Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7603-7618. [PMID: 34223764 DOI: 10.1021/acs.jafc.1c01764] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Several publications report that octacosanol (OCT) has different biological functions. This study was designed to evaluate the antifatigue effect and molecular mechanism of octacosanol (200 mg/(kg day)) in forced exercise-induced fatigue models of trained male C57BL/6 mice. Results showed that octacosanol ameliorated the mice's autonomic activities, forelimb grip strength, and swimming endurance, and the levels of liver glycogen (LG), muscle glycogen (MG), blood lactic acid (BLA), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were also regulated. Gene analysis results showed that treatment with OCT upregulated 29 genes, while 38 genes were downregulated in gastrocnemius tissue. Gene ontology (GO) analyses indicated that these genes enriched functions in relation to myofibril, contractile fiber, and calcium-dependent adenosinetriphosphatase (ATPase) activity. Octacosanol supplementation significantly adjusted the messenger RNA (mRNA) and protein expression levels related to fatigue performance. Octacosanol has an observably mitigating effect in exercise-induced fatigue models, and its molecular mechanism may be related to the regulation of tripartite motif-containing 63 (Trim63), periaxin (Prx), calcium voltage-gated channel subunit α1 H (Cacna1h), and myosin-binding protein C (Mybpc3) expression.
Collapse
Affiliation(s)
- Yaping Zhou
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Fuliang Cao
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qiang Wu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Yi Luo
- Department of Clinical Medicine, Medical College of Xiangya, Central South University, Changsha 410008, Hunan, China
| | - Tianyi Guo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Shuai Han
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Mengzhen Huang
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Zuomin Hu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Feijun Luo
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| | - Qinlu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, Hunan, China
| |
Collapse
|
44
|
Sonsalla MM, Love SL, Hoh LJ, Summers LN, Follett HM, Bojang A, Duddleston KN, Kurtz CC. Development of metabolic inflammation during pre-hibernation fattening in 13-lined ground squirrels (Ictidomys tridecemlineatus). J Comp Physiol B 2021; 191:941-953. [PMID: 34165591 DOI: 10.1007/s00360-021-01384-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/07/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
Obesity is a worldwide pandemic with significant comorbidities. It is often accompanied by mild inflammation of the intestine followed by inflammation of metabolic tissues such as liver, adipose tissue, and skeletal muscle. Several laboratory models of obesity exist, but seasonal models like hibernators may be valuable for understanding the pathogenesis of obesity independent of genetic or high-fat diet-induced changes. As part of their annual cycle, obligate hibernators, like the 13-lined ground squirrel (Ictidomys tridecemlineatus), undergo a rapid shift from a lean to an obese state to store energy in the form of fat for their prolonged winter fast. Here, we show that ground squirrels gained mass steadily throughout the active season despite a drop in energy intake starting around 9 weeks post-hibernation. Glucose tolerance tests revealed a significant decrease in tolerance late in the active season. In visceral adipose, we found increases in adipocyte size, tumor necrosis factor (TNF)-α and interleukin (IL)-6 levels. IL-6 levels also increased in liver and muscle and TNF-α increased in the ileum late in the active season. Levels of the anti-inflammatory cytokine, IL-10, decreased in visceral adipose and colon tissues around the same time. These data suggest metabolic inflammation develops along with adiposity late in the squirrels' active season.
Collapse
Affiliation(s)
- Michelle M Sonsalla
- Department of Biology, College of Letters and Science, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI, 54901, USA
| | - Santidra L Love
- Department of Biology, College of Letters and Science, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI, 54901, USA
| | - Laurana J Hoh
- Department of Biology, College of Letters and Science, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI, 54901, USA
| | - Lauren N Summers
- Department of Biology, College of Letters and Science, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI, 54901, USA
| | - Hannah M Follett
- Department of Biology, College of Letters and Science, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI, 54901, USA
| | - Aminata Bojang
- Department of Biology, College of Letters and Science, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI, 54901, USA
| | - Khrystyne N Duddleston
- Department of Biological Sciences, College of Arts and Sciences, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK, 99508, USA
| | - Courtney C Kurtz
- Department of Biology, College of Letters and Science, University of Wisconsin-Oshkosh, 800 Algoma Boulevard, Oshkosh, WI, 54901, USA.
| |
Collapse
|
45
|
Cancer cachexia: molecular mechanism and pharmacological management. Biochem J 2021; 478:1663-1688. [PMID: 33970218 DOI: 10.1042/bcj20201009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Cancer cachexia often occurs in malignant tumors and is a multifactorial and complex symptom characterized by wasting of skeletal muscle and adipose tissue, resulting in weight loss, poor life quality and shorter survival. The pathogenic mechanism of cancer cachexia is complex, involving a variety of molecular substrates and signal pathways. Advancements in understanding the molecular mechanisms of cancer cachexia have provided a platform for the development of new targeted therapies. Although recent outcomes of early-phase trials have showed that several drugs presented an ideal curative effect, monotherapy cannot be entirely satisfactory in the treatment of cachexia-associated symptoms due to its complex and multifactorial pathogenesis. Therefore, the lack of definitive therapeutic strategies for cancer cachexia emphasizes the need to develop a better understanding of the underlying mechanisms. Increasing evidences show that the progression of cachexia is associated with metabolic alternations, which mainly include excessive energy expenditure, increased proteolysis and mitochondrial dysfunction. In this review, we provided an overview of the key mechanisms of cancer cachexia, with a major focus on muscle atrophy, adipose tissue wasting, anorexia and fatigue and updated the latest progress of pharmacological management of cancer cachexia, thereby further advancing the interventions that can counteract cancer cachexia.
Collapse
|
46
|
Lee MK, Choi YH, Nam TJ. Pyropia yezoensis protein protects against TNF‑α‑induced myotube atrophy in C2C12 myotubes via the NF‑κB signaling pathway. Mol Med Rep 2021; 24:486. [PMID: 33955507 PMCID: PMC8127067 DOI: 10.3892/mmr.2021.12125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
The protein extracted from red algae Pyropia yezoensis has various biological activities, including anti-inflammatory, anticancer, antioxidant, and antiobesity properties. However, the effects of P. yezoensis protein (PYCP) on tumor necrosis factor-α (TNF-α)-induced muscle atrophy are unknown. Therefore, the present study investigated the protective effects and related mechanisms of PYCP against TNF-α-induced myotube atrophy in C2C12 myotubes. Treatment with TNF-α (20 ng/ml) for 48 h significantly reduced myotube viability and diameter and increased intracellular reactive oxygen species levels; these effects were significantly reversed in a dose-dependent manner following treatment with 25–100 µg/ml PYCP. PYCP inhibited the expression of TNF receptor-1 in TNF-α-induced myotubes. In addition, PYCP markedly downregulated the nuclear translocation of nuclear factor-κB (NF-κB) by inhibiting the phosphorylation of inhibitor of κB. Furthermore, PYCP treatment suppressed 20S proteasome activity, IL-6 production, and the expression of the E3 ubiquitin ligases, atrogin-1/muscle atrophy F-box and muscle RING-finger protein-1. Finally, PYCP treatment increased the protein expression levels of myoblast determination protein 1 and myogenin in TNF-α-induced myotubes. The present findings indicate that PYCP may protect against TNF-α-induced myotube atrophy by inhibiting the proinflammatory NF-κB pathway.
Collapse
Affiliation(s)
- Min-Kyeong Lee
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Youn Hee Choi
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
| |
Collapse
|
47
|
Cheung K, Rathbone A, Melanson M, Trier J, Ritsma BR, Allen MD. Pathophysiology and management of critical illness polyneuropathy and myopathy. J Appl Physiol (1985) 2021; 130:1479-1489. [PMID: 33734888 PMCID: PMC8143786 DOI: 10.1152/japplphysiol.00019.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/19/2022] Open
Abstract
Critical illness-associated weakness (CIAW) is an umbrella term used to describe a group of neuromuscular disorders caused by severe illness. It can be subdivided into three major classifications based on the component of the neuromuscular system (i.e. peripheral nerves or skeletal muscle or both) that are affected. This includes critical illness polyneuropathy (CIP), critical illness myopathy (CIM), and an overlap syndrome, critical illness polyneuromyopathy (CIPNM). It is a common complication observed in people with critical illness requiring intensive care unit (ICU) admission. Given CIAW is found in individuals experiencing grave illness, it can be challenging to study from a practical standpoint. However, over the past 2 decades, many insights into the pathophysiology of this condition have been made. Results from studies in both humans and animal models have found that a profound systemic inflammatory response and factors related to bioenergetic failure as well as microvascular, metabolic, and electrophysiological alterations underlie the development of CIAW. Current management strategies focus on early mobilization, achieving euglycemia, and nutritional optimization. Other interventions lack sufficient evidence, mainly due to a dearth of large trials. The goal of this Physiology in Medicine article is to highlight important aspects of the pathophysiology of these enigmatic conditions. It is hoped that improved understanding of the mechanisms underlying these disorders will lead to further study and new investigations for novel pharmacologic, nutritional, and exercise-based interventions to optimize patient outcomes.
Collapse
Affiliation(s)
- Kevin Cheung
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alasdair Rathbone
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
| | - Michel Melanson
- Division of Neurology, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jessica Trier
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
| | - Benjamin R Ritsma
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, Ontario, Canada
- School of Kinesiology, Faculty of Arts and Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
48
|
Sarcopenia in Inflammatory Bowel Disease: A Narrative Overview. Nutrients 2021; 13:nu13020656. [PMID: 33671473 PMCID: PMC7922969 DOI: 10.3390/nu13020656] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Malnutrition is a common condition encountered in patients with inflammatory bowel disease (IBD) and is often associated with sarcopenia (the reduction of muscle mass and strength) which is an ever-growing consideration in chronic diseases. Recent data suggest the prevalence of sarcopenia is 52% and 37% in Crohn's disease and ulcerative colitis, respectively, however it is challenging to fully appreciate the prevalence of sarcopenia in IBD. Sarcopenia is an important consideration in the management of IBD, including the impact on quality of life, prognostication, and treatment such as surgical interventions, biologics and immunomodulators. There is evolving research in many chronic inflammatory states, such as chronic liver disease and rheumatoid arthritis, whereby interventions have begun to be developed to counteract sarcopenia. The purpose of this review is to evaluate the current literature regarding the impact of sarcopenia in the management of IBD, from mechanistic drivers through to assessment and management.
Collapse
|
49
|
Leal LG, Lopes MA, Peres SB, Batista ML. Exercise Training as Therapeutic Approach in Cancer Cachexia: A Review of Potential Anti-inflammatory Effect on Muscle Wasting. Front Physiol 2021; 11:570170. [PMID: 33613297 PMCID: PMC7890241 DOI: 10.3389/fphys.2020.570170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cachexia is a multifactorial inflammatory syndrome with high prevalence in cancer patients. It is characterized by a metabolic chaos culminating in drastic reduction in body weight, mainly due to skeletal muscle and fat depletion. Currently, there is not a standard intervention for cachexia, but it is believed that a dynamic approach should be applied early in the course of the disease to maintain or slow the loss of physical function. The present review sought to explain the different clinical and experimental applications of different models of exercise and their contribution to a better prognosis of the disease. Here the advances in knowledge about the application of physical training in experimental models are elucidated, tests that contribute substantially to elucidate the cellular and biochemical mechanisms of exercise in different ways, as well as clinical trials that present not only the impacts of exercise in front cachexia but also the challenges of its application in clinical practice.
Collapse
Affiliation(s)
- Luana G Leal
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, Mogi das Cruzes, Brazil.,Technological Research Group, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| | - Magno A Lopes
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Sidney B Peres
- Department of Physiological Sciences, State University of Maringá, Maringá, Brazil
| | - Miguel L Batista
- Integrated Group of Biotechnology, Laboratory of Adipose Tissue Biology, University of Mogi das Cruzes, Mogi das Cruzes, Brazil.,Technological Research Group, University of Mogi das Cruzes, Mogi das Cruzes, Brazil
| |
Collapse
|
50
|
Owumi SE, Nwozo SO, Arunsi UO, Oyelere AK, Odunola OA. Co-administration of Luteolin mitigated toxicity in rats' lungs associated with doxorubicin treatment. Toxicol Appl Pharmacol 2021; 411:115380. [PMID: 33358696 DOI: 10.1016/j.taap.2020.115380] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX), is a drug against lung malignancies with undesirable side effect including oxidative, inflammatory and apoptotic effects. Luteolin (LUT), present in fruits and vegetables is pharmacologically active against oxido-inflammatory and apoptotic responses. The present study examined the effect of LUT on DOX-induced lungs and blood dysfunction in Wistars rat (sex: male; 10 weeks old, 160 ± 5 g). Randomly grouped (n = 10) rats were treated as follows: control, LUT alone (100 mg/kg; per os), DOX (2 mg/kg; i. p), and co-treated rats with LUT (50 or 100 mg/kg) and DOX for two consecutive weeks. DOX alone adversely altered the final body and relative organ weights, red and white blood cell and platelet counts. DOX significantly (p > 0.05) reduced lungs antioxidant capacity, and anti-inflammatory cytokines; increased biomarkers of oxidative stress, caspase-3 activity, and pro-inflammatory cytokine. Morphological damages accompanied these biochemical alterations in the lung of experimental rats. Co-treatment with LUT, dose-dependently reversed DOX-mediated changes in rats' survival, toxic responses, and diminished oxidative stress in rat's lungs. Furthermore, co-treatment with LUT resulted in the reduction of pro-inflammatory cytokines and apoptotic biomarkers, increased red and white blood cell, platelet counts and abated pathological injuries in rat lungs treated with DOX alone. In essence, our findings indicate that LUT dose-dependently mitigated DOX-induced toxicities in the lungs and haematopoietic systems. Supplementation of patients on DOX-chemotherapy with phytochemicals exhibiting antioxidant activities, specifically LUT, could circumvent the onset of unintended toxic responses in the lungs and haematopoietic system exposed to DOX.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, University of Ibadan, Ibadan, Nigeria.
| | - Sarah O Nwozo
- Nutrition and Industrial Biochemistry Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham NG8 1AF, UK
| | - Adegboyega K Oyelere
- School of Chemistry & Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | - Oyeronke A Odunola
- Cancer Research and Molecular Biology Laboratories, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|