1
|
Lindinger MI, Cairns SP, Sejersted OM. Resting membrane potential and intracellular [Na +] at rest, during fatigue and during recovery in rat soleus muscle fibres in situ. J Physiol 2024; 602:3469-3487. [PMID: 38877870 DOI: 10.1113/jp285870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Large trans-sarcolemmal ionic shifts occur with fatiguing exercise or stimulation of isolated muscles. However, it is unknown how resting membrane potential (EM) and intracellular sodium concentration ([Na+]i) change with repeated contractions in living mammals. We investigated (i) whether [Na+]i (peak, kinetics) can reveal changes of Na+-K+ pump activity during brief or fatiguing stimulation and (ii) how resting EM and [Na+]i change during fatigue and recovery of rat soleus muscle in situ. Muscles of anaesthetised rats were stimulated with brief (10 s) or repeated tetani (60 Hz for 200 ms, every 2 s, for 30 s or 300 s) with isometric force measured. Double-barrelled ion-sensitive microelectrodes were used to quantify resting EM and [Na+]i. Post-stimulation data were fitted using polynomials and back-extrapolated to time zero recovery. Mean pre-stimulation resting EM (layer 2-7 fibres) was -71 mV (surface fibres were more depolarised), and [Na+]i was 14 mM. With deeper fibres, 10 s stimulation (2-150 Hz) increased [Na+]i to 38-46 mM whilst simultaneously causing hyperpolarisations (7.3 mV for 2-90 Hz). Fatiguing stimulation for 30 s or 300 s led to end-stimulation resting EM of -61 to -53 mV, which recovered rapidly (T1/2, 8-22 s). Mean end-stimulation [Na+]i increased to 86-101 mM with both fatigue protocols and the [Na+]i recovery time-course (T1/2, 21-35 s) showed no difference between protocols. These combined findings suggest that brief stimulation hyperpolarises the resting EM, likely via maximum Na+-induced stimulation of the Na+-K+ pump. Repeated tetani caused massive depolarisation and elevations of [Na+]i that together lower force, although they likely interact with other factors to cause fatigue. [Na+]i recovery kinetics provided no evidence of impaired Na+-K+ pump activity with fatigue. KEY POINTS: It is uncertain how resting membrane potential, intracellular sodium concentration ([Na+]i), and sodium-potassium (Na+-K+) pump activity change during repeated muscle contractions in living mammals. For rat soleus muscle fibres in situ, brief tetanic stimulation for 10 s led to raised [Na+]i, anticipated to evoke maximal Na+-induced stimulation of the Na+-K+ pump causing an immediate hyperpolarisation of the sarcolemma. More prolonged stimulation with repeated tetanic contractions causes massive elevations of [Na+]i, which together with large depolarisations (via K+ disturbances) likely reduce force production. These effects occurred without impairment of Na+-K+ pump function. Together these findings suggest that rapid activation of the Na+-K+ pump occurs with brief stimulation to maintain excitability, whereas more prolonged stimulation causes rundown of the trans-sarcolemmal K+ gradient (hence depolarisation) and Na+ gradient, which in combination can impair contraction to contribute to fatigue in living mammals.
Collapse
Affiliation(s)
- Michael I Lindinger
- Research and Development, The Nutraceutical Alliance Inc., Guelph, Ontario, Canada
| | - Simeon P Cairns
- Sports Performance Research Institute New Zealand, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Ole M Sejersted
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Sobral LL, Santos MCDS, Rocha LSDO, Callegari B, Souza GDS, Teodori RM. Maximum voluntary muscle contraction and fatigue in multibacillary leprosy. FISIOTERAPIA EM MOVIMENTO 2020. [DOI: 10.1590/1980-5918.33.ao08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract Introduction: The impairment of muscle strength and fatigue in leprosy remains a problem that requires careful attention to avoid or minimize its progression, as well as prevention of disabilities and deformities. Objective: To investigate the maximum voluntary contraction and time to muscle fatigue in leprosy patients. Method: A total of 21 leprosy patients and 21 healthy subjects completed the sample. The method used to determine the maximum voluntary contraction (MVC) of the handgrip followed the recommendation of the American Society of Hand Therapists with the use of a hydraulic hand grip dynamometer. The test was performed three times with each hand, with a time interval of 60 seconds between successive trials. The subject was instructed to perform a maximal isometric force against the dynamometer for 5 seconds. The peaks were recorded and used for the fatigue test. For the fatigue test, we recorded the electromyogram of the forearm muscles to offline determine the onset time for the muscle contraction (14 bits, Miograph 2 USB®, Miotec, Brazil). Results: Leprosy patients had lower MVC compared with healthy subjects (p > 0.05), both in the dominant and the non-dominant hands. The time to fatigue in the leprosy and control groups was similar (p < 0.05). We observed that leprosy patients had more contractions than the healthy subjects (22.6 ± 11.8 contractions for the leprosy group vs. 12.3 ± 6.9 contractions for the control group, p > 0.05). Conclusion: Multibacillary leprosy patients lost muscle force without modifying the resistance to fatigue.
Collapse
|
3
|
Koganti SRK, Zhu Z, Subbotina E, Gao Z, Sierra A, Proenza M, Yang L, Alekseev A, Hodgson-Zingman D, Zingman L. Disruption of KATP channel expression in skeletal muscle by targeted oligonucleotide delivery promotes activity-linked thermogenesis. Mol Ther 2015; 23:707-16. [PMID: 25648265 DOI: 10.1038/mt.2015.21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/19/2015] [Indexed: 12/18/2022] Open
Abstract
Despite the medical, social, and economic impact of obesity, only a few therapeutic options, focused largely on reducing caloric intake, are currently available and these have limited success rates. A major impediment is that any challenge by caloric restriction is counterbalanced by activation of systems that conserve energy to prevent body weight loss. Therefore, targeting energy-conserving mechanisms to promote energy expenditure is an attractive strategy for obesity treatment. Here, in order to suppress muscle energy efficiency, we target sarcolemmal ATP-sensitive potassium (KATP) channels which have previously been shown to be important in maintaining muscle energy economy. Specifically, we employ intramuscular injections of cell-penetrating vivo-morpholinos to prevent translation of the channel pore-forming subunit. This intervention results in significant reduction of KATP channel expression and function in treated areas, without affecting the channel expression in nontargeted tissues. Furthermore, suppression of KATP channel function in a group of hind limb muscles causes a substantial increase in activity-related energy consumption, with little effect on exercise tolerance. These findings establish a proof-of-principle that selective skeletal muscle targeting of sarcolemmal KATP channel function is possible and that this intervention can alter overall bodily energetics without a disabling impact on muscle mechanical function.
Collapse
Affiliation(s)
- Siva Rama Krishna Koganti
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ekaterina Subbotina
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Zhan Gao
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ana Sierra
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Manuel Proenza
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Liping Yang
- Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Alexey Alekseev
- Department of Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Denice Hodgson-Zingman
- 1] Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA [2] Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA [3] François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Leonid Zingman
- 1] Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA [2] Veterans Affairs Medical Center, Iowa City, Iowa, USA [3] Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA [4] François Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Zhu Z, Sierra A, Burnett CML, Chen B, Subbotina E, Koganti SRK, Gao Z, Wu Y, Anderson ME, Song LS, Goldhamer DJ, Coetzee WA, Hodgson-Zingman DM, Zingman LV. Sarcolemmal ATP-sensitive potassium channels modulate skeletal muscle function under low-intensity workloads. ACTA ACUST UNITED AC 2013; 143:119-34. [PMID: 24344248 PMCID: PMC3874572 DOI: 10.1085/jgp.201311063] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ATP-sensitive potassium (KATP) channels have the unique ability to adjust membrane excitability and functions in accordance with the metabolic status of the cell. Skeletal muscles are primary sites of activity-related energy consumption and have KATP channels expressed in very high density. Previously, we demonstrated that transgenic mice with skeletal muscle–specific disruption of KATP channel function consume more energy than wild-type littermates. However, how KATP channel activation modulates skeletal muscle resting and action potentials under physiological conditions, particularly low-intensity workloads, and how this can be translated to muscle energy expenditure are yet to be determined. Here, we developed a technique that allows evaluation of skeletal muscle excitability in situ, with minimal disruption of the physiological environment. Isometric twitching of the tibialis anterior muscle at 1 Hz was used as a model of low-intensity physical activity in mice with normal and genetically disrupted KATP channel function. This workload was sufficient to induce KATP channel opening, resulting in membrane hyperpolarization as well as reduction in action potential overshoot and duration. Loss of KATP channel function resulted in increased calcium release and aggravated activity-induced heat production. Thus, this study identifies low-intensity workload as a trigger for opening skeletal muscle KATP channels and establishes that this coupling is important for regulation of myocyte function and thermogenesis. These mechanisms may provide a foundation for novel strategies to combat metabolic derangements when energy conservation or dissipation is required.
Collapse
Affiliation(s)
- Zhiyong Zhu
- Department of Internal Medicine and 2 Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
MacIntosh BR, Holash RJ, Renaud JM. Skeletal muscle fatigue--regulation of excitation-contraction coupling to avoid metabolic catastrophe. J Cell Sci 2012; 125:2105-14. [PMID: 22627029 DOI: 10.1242/jcs.093674] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ATP provides the energy in our muscles to generate force, through its use by myosin ATPases, and helps to terminate contraction by pumping Ca(2+) back into the sarcoplasmic reticulum, achieved by Ca(2+) ATPase. The capacity to use ATP through these mechanisms is sufficiently high enough so that muscles could quickly deplete ATP. However, this potentially catastrophic depletion is avoided. It has been proposed that ATP is preserved not only by the control of metabolic pathways providing ATP but also by the regulation of the processes that use ATP. Considering that contraction (i.e. myosin ATPase activity) is triggered by release of Ca(2+), the use of ATP can be attenuated by decreasing Ca(2+) release within each cell. A lower level of Ca(2+) release can be accomplished by control of membrane potential and by direct regulation of the ryanodine receptor (RyR, the Ca(2+) release channel in the terminal cisternae). These highly redundant control mechanisms provide an effective means by which ATP can be preserved at the cellular level, avoiding metabolic catastrophe. This Commentary will review some of the known mechanisms by which this regulation of Ca(2+) release and contractile response is achieved, demonstrating that skeletal muscle fatigue is a consequence of attenuation of contractile activation; a process that allows avoidance of metabolic catastrophe.
Collapse
Affiliation(s)
- Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | | | | |
Collapse
|
6
|
Andrade F, Trujillo X, Sánchez-Pastor E, Montoya-Pérez R, Saavedra-Molina A, Ortiz-Mesina M, Huerta M. Glibenclamide increases post-fatigue tension in slow skeletal muscle fibers of the chicken. J Comp Physiol B 2010; 181:403-12. [PMID: 21079972 PMCID: PMC3058534 DOI: 10.1007/s00360-010-0527-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/08/2010] [Accepted: 10/25/2010] [Indexed: 01/18/2023]
Abstract
In contrast to fast-twitch skeletal muscle fibers of the chicken, slow-twitch fibers are fatigue-resistant. In fast fibers, the fatigue process has been related to K(ATP) channels. In the present study, we investigated the action of glibenclamide (an anti-diabetic sulphonylurea that acts on K(ATP) channels) on fatigued slow skeletal muscle, studying twitch and tetanus tension after inducing the muscle to fatigue by continuous electrical stimulation. Our results showed that glibenclamide (150 μM) increased post-fatigue twitch tension by about 25% with respect to the fatigued condition (P < 0.05). In addition, glibenclamide (150 μM) increased post-fatigue tetanic tension (83.61 ± 15.7% in peak tension, and 85.0 ± 19.0% in tension-time integral, P = 0.02, and 0.04, respectively; n = 3). Moreover, after exposing the muscle to a condition that inhibits mitochondrial ATP formation in order to activate K(ATP) channels with cyanide (10 mM), tension also diminished, but in the presence of glibenclamide the effect produced by cyanide was abolished. To determine a possible increase in intracellular calcium concentration, the effects of glibenclamide on caffeine-evoked contractures were explored. After muscle pre-incubation with glibenclamide (150 μM), tension of caffeine-evoked contractures increased (6.5 ± 1.5% in maximal tension, and 5.9 ± 3.8% in tension-time integral, P < 0.05). These results suggest a possible role of K(ATP) channels in the fatigue process, since glibenclamide increases twitch and tetanus tension in fatigued slow muscle of the chicken and during metabolic inhibition, possibly by increasing intracellular calcium.
Collapse
Affiliation(s)
- Felipa Andrade
- Instituto Tecnológico de Colima, Avenida Tecnológico No. 1, C.P. 28976, Villa de Álvarez, Colima, México
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Transection of the facial nerve can result from blunt or penetrating trauma to the face or temporal bone. It can also occur accidentally during surgery, or as a planned surgical procedure carried out in the interest of eradicating disease. If transection is recognized at surgery, direct anastomosis or cable grafting is the procedure of choice. This article presents two cases with neither clinical nor electrical evidence of recovery. The authors review current understanding of the changes that occur in the neuron, axon, and muscle after injury to the nerve and the underlying pathology that led to graft failure in these cases. They also evaluate surgical options and diagnostic test results that help in selecting appropriate surgical procedures.
Collapse
Affiliation(s)
- Arvind Kumar
- Department of Otolaryngology-Head and Neck Surgery, University of Illinois, Chicago, IL 60611, USA
| | | | | |
Collapse
|
8
|
Kristensen M, Hansen T. Statistical analyses of repeated measures in physiological research: a tutorial. ADVANCES IN PHYSIOLOGY EDUCATION 2004; 28:2-14. [PMID: 14973047 DOI: 10.1152/advan.00042.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Experimental designs involving repeated measurements on experimental units are widely used in physiological research. Often, relatively many consecutive observations on each experimental unit are involved and the data may be quite nonlinear. Yet evidently, one of the most commonly used statistical methods for dealing with such data sets in physiological research is the repeated-measurements ANOVA model. The problem herewith is that it is not well suited for data sets with many consecutive measurements; it does not deal with nonlinear features of the data, and the interpretability of the model may be low. The use of inappropriate statistical models increases the likelihood of drawing wrong conclusions. The aim of this article is to illustrate, for a reasonably typical repeated-measurements data set, how fundamental assumptions of the repeated-measurements ANOVA model are inappropriate and how researchers may benefit from adopting different modeling approaches using a variety of different kinds of models. We emphasize intuitive ideas rather than mathematical rigor. We illustrate how such models represent alternatives that 1) can have much higher interpretability, 2) are more likely to meet underlying assumptions, 3) provide better fitted models, and 4) are readily implemented in widely distributed software products.
Collapse
Affiliation(s)
- Michael Kristensen
- August Krogh Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | | |
Collapse
|
9
|
Jimi T, Wakayama Y, Matsuzaki Y, Hara H, Inoue M, Shibuya S. Reduced expression of aquaporin 4 in human muscles with amyotrophic lateral sclerosis and other neurogenic atrophies. Pathol Res Pract 2004; 200:203-9. [PMID: 15200272 DOI: 10.1016/j.prp.2004.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aquaporin 4 (AQP4) is a water channel protein that is widely distributed in human tissues. However, the precise functional role of AQP4 in skeletal muscle tissue has not yet been determined. Expression of AQP4 was reported to be reduced in muscle tissue from Duchenne muscular dystrophy patients. In the regenerating phase of skeletal muscle, AQP4 expression was reduced when nerve supply was not present. However, in diseased human muscles with neurogenic atrophy including amyotrophic lateral sclerosis, there has been no data on the changes in AQP4 expression. In the present study, we investigated the expression of AQP4 at mRNA and protein levels in human muscles with neurogenic atrophy. The mean level of AQP4 mRNA was significantly lower in muscles with neurogenic atrophy than that in muscles from normal controls. The myofiber surface immunostaining with anti-AQP4 antibody in muscles with neurogenic atrophy was reduced on the surface of scattered myofibers, small angulated myofibers, and myofibers in small- and large-group atrophy despite the presence of dystrophin. Based on the present findings, we conclude that the expression of AQP4 is affected by nerve supply and is down-regulated in human muscles with neurogenic atrophy.
Collapse
Affiliation(s)
- Takahiro Jimi
- Department of Neurology, Showa University Fujigaoka Hospital, 1-30 Fujigaoka, Aoba-ku, Yokohama 227-8501, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Gosmanov AR, Fan Z, Mi X, Schneider EG, Thomason DB. ATP-sensitive potassium channels mediate hyperosmotic stimulation of NKCC in slow-twitch muscle. Am J Physiol Cell Physiol 2003; 286:C586-95. [PMID: 14592811 DOI: 10.1152/ajpcell.00247.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mildly hyperosmotic medium, activation of the Na+ -K+ -2Cl- cotransporter (NKCC) counteracts skeletal muscle cell water loss, and compounds that stimulate protein kinase A (PKA) activity inhibit the activation of the NKCC. The aim of this study was to determine the mechanism for PKA inhibition of NKCC activity in resting skeletal muscle. Incubation of rat slow-twitch soleus and fast-twitch plantaris muscles in isosmotic medium with the PKA inhibitors H-89 and KT-5720 caused activation of the NKCC only in the soleus muscle. NKCC activation caused by PKA inhibition was insensitive to MEK MAPK inhibitors and to insulin but was abolished by the PKA stimulators isoproterenol and forskolin. Furthermore, pinacidil [an ATP-sensitive potassium (KATP) channel opener] or inhibition of glycolysis increased NKCC activity in the soleus muscle but not in the plantaris muscle. Preincubation of the soleus muscle with glibenclamide (a KATP channel inhibitor) prevented the NKCC activation by hyperosmolarity, PKA inhibition, pinacidil, and glycolysis inhibitors. In contrast, glibenclamide stimulated NKCC activity in the plantaris muscle. In cells stably transfected with the Kir6.2 subunit of the of KATP channel, inhibition of glycolysis activated potassium current and NKCC activity. We conclude that activation of KATP channels in slow-twitch muscle is necessary for activation of the NKCC and cell volume restoration in hyperosmotic conditions.
Collapse
Affiliation(s)
- Aidar R Gosmanov
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Jurgen Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases/NIH, Bethesda, MD 20892, USA.
| |
Collapse
|