1
|
Skattebo Ø, Capelli C, Calbet JAL, Hallén J. Endurance Training Improves Leg Proton Release and Decreases Potassium Release During High-Intensity Exercise in Normoxia and Hypobaric Hypoxia. Scand J Med Sci Sports 2024; 34:e14688. [PMID: 38973702 DOI: 10.1111/sms.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
AIM To assess the impact of endurance training on skeletal muscle release of H+ and K+. METHODS Nine participants performed one-legged knee extension endurance training at moderate and high intensities (70%-85% of Wpeak), three to four sessions·week-1 for 6 weeks. Post-training, the trained and untrained (control) leg performed two-legged knee extension at low, moderate, and high intensities (40%, 62%, and 83% of Wpeak) in normoxia and hypoxia (~4000 m). The legs were exercised simultaneously to ensure identical arterial inflow concentrations of ions and metabolites, and identical power output was controlled by visual feedback. Leg blood flow was measured (ultrasound Doppler), and acid-base variables, lactate- and K+ concentrations were assessed in arterial and femoral venous blood to study K+ and H+ release. Ion transporter abundances were assessed in muscle biopsies. RESULTS Lactate-dependent H+ release was similar in hypoxia to normoxia (p = 0.168) and was lower in the trained than the control leg at low-moderate intensities (p = 0.060-0.006) but similar during high-intensity exercise. Lactate-independent and total H+ releases were higher in hypoxia (p < 0.05) and increased more with power output in the trained leg (leg-by-power output interactions: p = 0.02). K+ release was similar at low intensity but lower in the trained leg during high-intensity exercise in normoxia (p = 0.024) and hypoxia (p = 0.007). The trained leg had higher abundances of Na+/H+ exchanger 1 (p = 0.047) and Na+/K+ pump subunit α (p = 0.036). CONCLUSION Moderate- to high-intensity endurance training increases lactate-independent H+ release and reduces K+ release during high-intensity exercise, coinciding with increased Na+/H+ exchanger 1 and Na+/K+ pump subunit α muscle abundances.
Collapse
Affiliation(s)
- Øyvind Skattebo
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Carlo Capelli
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jose A L Calbet
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
- Department of Physical Education, University of las Palmas de Gran Canaria, Las Palmas, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Spain
| | - Jostein Hallén
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
2
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Lindinger MI, Cairns SP. Regulation of muscle potassium: exercise performance, fatigue and health implications. Eur J Appl Physiol 2021; 121:721-748. [PMID: 33392745 DOI: 10.1007/s00421-020-04546-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/29/2020] [Indexed: 12/30/2022]
Abstract
This review integrates from the single muscle fibre to exercising human the current understanding of the role of skeletal muscle for whole-body potassium (K+) regulation, and specifically the regulation of skeletal muscle [K+]. We describe the K+ transport proteins in skeletal muscle and how they contribute to, or modulate, K+ disturbances during exercise. Muscle and plasma K+ balance are markedly altered during and after high-intensity dynamic exercise (including sports), static contractions and ischaemia, which have implications for skeletal and cardiac muscle contractile performance. Moderate elevations of plasma and interstitial [K+] during exercise have beneficial effects on multiple physiological systems. Severe reductions of the trans-sarcolemmal K+ gradient likely contributes to muscle and whole-body fatigue, i.e. impaired exercise performance. Chronic or acute changes of arterial plasma [K+] (hyperkalaemia or hypokalaemia) have dangerous health implications for cardiac function. The current mechanisms to explain how raised extracellular [K+] impairs cardiac and skeletal muscle function are discussed, along with the latest cell physiology research explaining how calcium, β-adrenergic agonists, insulin or glucose act as clinical treatments for hyperkalaemia to protect the heart and skeletal muscle in vivo. Finally, whether these agents can also modulate K+-induced muscle fatigue are evaluated.
Collapse
Affiliation(s)
- Michael I Lindinger
- Research and Development, The Nutraceutical Alliance, Burlington, ON, L7N 2Z9, Canada
| | - Simeon P Cairns
- SPRINZ, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 1020, New Zealand.
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, 1020, New Zealand.
| |
Collapse
|
4
|
Hoppe K, Chaiklieng S, Lehmann‐Horn F, Jurkat‐Rott K, Wearing S, Klingler W. Elevation of extracellular osmolarity improves signs of myotonia congenita in vitro: a preclinical animal study. J Physiol 2019; 597:225-235. [PMID: 30284249 PMCID: PMC6312412 DOI: 10.1113/jp276528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/01/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS During myotonia congenita, reduced chloride (Cl- ) conductance results in impaired muscle relaxation and increased muscle stiffness after forceful voluntary contraction. Repetitive contraction of myotonic muscle decreases or even abolishes myotonic muscle stiffness, a phenomenon called 'warm up'. Pharmacological inhibition of low Cl- channels by anthracene-9-carboxylic acid in muscle from mice and ADR ('arrested development of righting response') muscle from mice showed a relaxation deficit under physiological conditions compared to wild-type muscle. At increased osmolarity up to 400 mosmol L-1 , the relaxation deficit of myotonic muscle almost reached that of control muscle. These effects were mediated by the cation and anion cotransporter, NKCC1, and anti-myotonic effects of hypertonicity were at least partly antagonized by the application of bumetanide. ABSTRACT Low chloride-conductance myotonia is caused by mutations in the skeletal muscle chloride (Cl- ) channel gene type 1 (CLCN1). Reduced Cl- conductance of the mutated channels results in impaired muscle relaxation and increased muscle stiffness after forceful voluntary contraction. Exercise decreases muscle stiffness, a phenomena called 'warm up'. To gain further insight into the patho-mechanism of impaired muscle stiffness and the warm-up phenomenon, we characterized the effects of increased osmolarity on myotonic function. Functional force and membrane potential measurements were performed on muscle specimens of ADR ('arrested development of righting response') mice (an animal model for low gCl- conductance myotonia) and pharmacologically-induced myotonia. Specimens were exposed to solutions of increasing osmolarity at the same time as force and membrane potentials were monitored. In the second set of experiments, ADR muscle and pharmacologically-induced myotonic muscle were exposed to an antagonist of NKCC1. Upon osmotic stress, ADR muscle was depolarized to a lesser extent than control wild-type muscle. High osmolarity diminished myotonia and facilitated the warm-up phenomenon as depicted by a faster muscle relaxation time (T90/10 ). Osmotic stress primarily resulted in the activation of the NKCC1. The inhibition of NKCC1 with bumetanide prevented the depolarization and reversed the anti-myotonic effect of high osmolarity. Increased osmolarity decreased signs of myotonia and facilitated the warm-up phenomenon in different in vitro models of myotonia. Activation of NKCC1 activity promotes warm-up and reduces the number of contractions required to achieve normal relaxation kinetics.
Collapse
Affiliation(s)
- Kerstin Hoppe
- Department of AnaesthesiaCritical Care Medicine and Pain TherapyUniversity of FrankfurtFrankfurtGermany
| | - Sunisa Chaiklieng
- Division of Neurophysiology in the Center of Rare DiseasesUlm UniversityUlmGermany
- Faculty of Public HealthKhon Knen UniversityMuang Khon KaenThailand
| | - Frank Lehmann‐Horn
- Division of Neurophysiology in the Center of Rare DiseasesUlm UniversityUlmGermany
| | - Karin Jurkat‐Rott
- Department of NeuroanaesthesiologyNeurosurgical UniversityGuenzburgGermany
| | - Scott Wearing
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQLDAustralia
| | - Werner Klingler
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQLDAustralia
- Department of NeuroanaesthesiologyNeurosurgical UniversityGuenzburgGermany
- Department of AnaesthesiologyIntensive Care Medicine and Pain TherapySRH KlinikumSigmarringenGermany
| |
Collapse
|
5
|
Shahidullah M, Mandal A, Delamere NA. Activation of TRPV1 channels leads to stimulation of NKCC1 cotransport in the lens. Am J Physiol Cell Physiol 2018; 315:C793-C802. [PMID: 30207782 DOI: 10.1152/ajpcell.00252.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lens ion homeostasis is crucial in maintaining water content and, in turn, refractive index and transparency of the multicellular syncytium-like structure. New information is emerging on the regulation of ion transport in the lens by mechanisms that rely on transient receptor potential vanilloid (TRPV) ion channels. We found recently that TRPV1 activation leads to Ca2+/PKC-dependent ERK1/2 signaling. Here, we show that the TRPV1 agonist capsaicin (100 nM) and hyperosmotic solution (350 vs. 300 mosM) each caused an increase of bumetanide-inhibitable Rb uptake by intact porcine lenses and Na-K-2Cl cotransporter 1 (NKCC1) phosphorylation in the lens epithelium. The TRPV1 antagonist A889425 (1 µM) abolished the increases of Rb uptake and NKCC1 phosphorylation in response to hyperosmotic solution. Exposing lenses to hyperosmotic solution in the presence of MEK/ERK inhibitor U0126 (10 µM) or the with-no-lysine kinase (WNK) inhibitor WNK463 (1 µM) also prevented NKCC1 phosphorylation and the Rb uptake responses to hyperosmotic solution. WNK463 did not prevent the increase in ERK1/2 phosphorylation that occurs in response to capsaicin or hyperosmotic solution, suggesting that ERK1/2 activation occurs before WNK activation in the sequence of signaling events. Taken together, the evidence indicates that activation of TRPV1 is a critical early step in a signaling mechanism that responds to a hyperosmotic stimulus, possibly lens shrinkage. By activating ERK1/2 and WNK, TRPV1 activation leads to NKCC1 phosphorylation and stimulation of NKCC1-mediated ion transport.
Collapse
Affiliation(s)
- Mohammad Shahidullah
- Department of Physiology, University of Arizona , Tucson, Arizona.,Department of Ophthalmology and Vision Science, University of Arizona , Tucson, Arizona
| | - Amritlal Mandal
- Department of Physiology, University of Arizona , Tucson, Arizona
| | - Nicholas A Delamere
- Department of Physiology, University of Arizona , Tucson, Arizona.,Department of Ophthalmology and Vision Science, University of Arizona , Tucson, Arizona
| |
Collapse
|
6
|
Atanasovska T, Smith R, Graff C, Tran CT, Melgaard J, Kanters JK, Petersen AC, Tobin A, Kjeldsen KP, McKenna MJ. Protection against severe hypokalemia but impaired cardiac repolarization after intense rowing exercise in healthy humans receiving salbutamol. J Appl Physiol (1985) 2018; 125:624-633. [PMID: 29745804 DOI: 10.1152/japplphysiol.00680.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intense exercise induces pronounced hyperkalemia, followed by transient hypokalemia in recovery. We investigated whether the β2 agonist salbutamol attenuated the exercise hyperkalemia and exacerbated the postexercise hypokalemia, and whether hypokalemia was associated with impaired cardiac repolarization (QT hysteresis). Eleven healthy adults participated in a randomized, counterbalanced, double-blind trial receiving either 1,000 µg salbutamol (SAL) or placebo (PLAC) by inhalation. Arterial plasma potassium concentration ([K+]a) was measured at rest, during 3 min of intense rowing exercise, and during 60 min of recovery. QT hysteresis was calculated from ECG ( n = 8). [K+]a increased above baseline during exercise (rest, 3.72 ± 0.7 vs. end-exercise, 6.81 ± 1.4 mM, P < 0.001, mean ± SD) and decreased rapidly during early recovery to below baseline; restoration was incomplete at 60 min postexercise ( P < 0.05). [K+]a was less during SAL than PLAC (4.39 ± 0.13 vs. 4.73 ± 0.19 mM, pooled across all times, P = 0.001, treatment main effect). [K+]a was lower after SAL than PLAC, from 2 min preexercise until 2.5 min during exercise, and at 50 and 60 min postexercise ( P < 0.05). The postexercise decline in [K+]a was correlated with QT hysteresis ( r = 0.343, n = 112, pooled data, P = 0.001). Therefore, the decrease in [K+]a from end-exercise by ~4 mM was associated with reduced QT hysteresis by ~75 ms. Although salbutamol lowered [K+]a during exercise, no additive hypokalemic effects occurred in early recovery, suggesting there may be a protective mechanism against severe or prolonged hypokalemia after exercise when treated by salbutamol. This is important because postexercise hypokalemia impaired cardiac repolarization, which could potentially trigger arrhythmias and sudden cardiac death in susceptible individuals with preexisting hypokalemia and/or heart disease. NEW & NOTEWORTHY Intense rowing exercise induced a marked increase in arterial potassium, followed by a pronounced decline to hypokalemic levels. The β2 agonist salbutamol lowered potassium during exercise and late recovery but not during early postexercise, suggesting a protective effect against severe hypokalemia. The decreased potassium in recovery was associated with impaired cardiac QT hysteresis, suggesting a link between postexercise potassium and the heart, with implications for increased risk of cardiac arrhythmias and, potentially, sudden cardiac death.
Collapse
Affiliation(s)
- Tania Atanasovska
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Robert Smith
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia.,Department of Anaesthesia, Western Hospital , Melbourne, Victoria , Australia
| | - Claus Graff
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University , Aalborg , Denmark
| | - Cao T Tran
- Division of Cardiology, John Hopkins University School of Medicine , Baltimore, Maryland
| | - Jacob Melgaard
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University , Aalborg , Denmark
| | - Jørgen K Kanters
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, Copenhagen University , Copenhagen , Denmark
| | - Aaron C Petersen
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| | - Antony Tobin
- Intensive Care Unit, St. Vincent Hospital , Melbourne, Victoria , Australia
| | - Keld P Kjeldsen
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University , Aalborg , Denmark.,Medical Department, Copenhagen University Hospital (Holbæk Hospital), Holbæk, Denmark.,Institute of Clinical Medicine, Faculty of Medicine, Copenhagen University , Copenhagen , Denmark
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University , Melbourne, Victoria , Australia
| |
Collapse
|
7
|
Quan-Jun Y, Yan H, Yong-Long H, Li-Li W, Jie L, Jin-Lu H, Jin L, Peng-Guo C, Run G, Cheng G. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation. Mol Cancer Ther 2016; 16:334-343. [PMID: 27599525 DOI: 10.1158/1535-7163.mct-16-0324] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 11/16/2022]
Abstract
Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR.
Collapse
Affiliation(s)
- Yang Quan-Jun
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Huo Yan
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Han Yong-Long
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Wan Li-Li
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Li Jie
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Huang Jin-Lu
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Lu Jin
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Chen Peng-Guo
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Gan Run
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Guo Cheng
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, P.R. China.
| |
Collapse
|
8
|
Cairns SP, Borrani F. β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling. J Physiol 2016; 593:4713-27. [PMID: 26400207 DOI: 10.1113/jp270909] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/28/2015] [Indexed: 02/04/2023] Open
Abstract
Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists influence muscle performance during exercise/stress in humans.
Collapse
Affiliation(s)
- Simeon P Cairns
- Sports Performance Research Institute New Zealand, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Department of Physiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
DiNuzzo M, Mangia S, Maraviglia B, Giove F. Regulatory mechanisms for glycogenolysis and K+ uptake in brain astrocytes. Neurochem Int 2013; 63:458-64. [PMID: 23968961 DOI: 10.1016/j.neuint.2013.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/29/2022]
Abstract
Recent advances in brain energy metabolism support the notion that glycogen in astrocytes is necessary for the clearance of neuronally-released K(+) from the extracellular space. However, how the multiple metabolic pathways involved in K(+)-induced increase in glycogen turnover are regulated is only partly understood. Here we summarize the current knowledge about the mechanisms that control glycogen metabolism during enhanced K(+) uptake. We also describe the action of the ubiquitous Na(+)/K(+) ATPase for both ion transport and intracellular signaling cascades, and emphasize its importance in understanding the complex relation between glycogenolysis and K(+) uptake.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- MARBILab, Museo storico della fisica e Centro di studi e ricerche "Enrico Fermi", Rome, Italy.
| | | | | | | |
Collapse
|
10
|
β2-adrenoceptor agonists can both stimulate and inhibit glucose uptake in mouse soleus muscle through ligand-directed signalling. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2013; 386:761-73. [PMID: 23564017 DOI: 10.1007/s00210-013-0860-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
The β-adrenoceptor agonists BRL37344 and clenbuterol have opposite effects on glucose uptake in mouse soleus muscle, even though the β2-adrenoceptor mediates both effects. Different agonists may direct the soleus muscle β2-adrenoceptor to different signalling mechanisms. Soleus muscles were incubated with 2-deoxy[1-(14)C]-glucose, β-adrenoceptor agonists, other modulators of cyclic AMP, and inhibitors of intracellular signalling. The adenylyl cyclase activator forskolin (1 μM), the phosphodiesterase inhibitor rolipram (10 μM) and BRL37344 (10, but not 100 or 1,000, nM) increased, whereas clenbuterol (100 nM) decreased, glucose uptake. Forskolin increased, whereas clenbuterol decreased, muscle cyclic AMP content. BRL37344 (10 nM) did not increase cyclic AMP. Nevertheless, protein kinase A (PKA) inhibitors prevented the stimulatory effect of BRL37344. Nanomolar but not micromolar concentrations of adrenaline stimulated glucose uptake. After preincubation of muscles with pertussis toxin (100 ng/ml), 100 nM clenbuterol, 0.1-10 μM adrenaline and 100 nM BRL37344 stimulated glucose uptake. Clenbuterol increased the proportion of phosphorylated to total β2-adrenoceptor. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and the stress-activated mitogen-activated protein kinase (MAPK), but not of the classical MAPK pathway, prevented stimulation of glucose uptake by BRL37344. Elevation of the cyclic AMP content of soleus muscle stimulates glucose uptake. Clenbuterol, and high concentrations of adrenaline and BRL37344 direct the β2-adrenoceptor partly to Gαi, possibly mediated by β2-adrenoceptor phosphorylation. The stimulatory effect of 10 nM BRL37344 requires the activity of PKA, PI3K and p38 MAPK, consistent with BRL37344 directing the β2-adrenoceptor to Gαs. Ligand-directed signalling may explain why β2-adrenoceptor agonists have differing effects on glucose uptake in soleus muscle.
Collapse
|
11
|
Iaia FM, Perez-Gomez J, Thomassen M, Nordsborg NB, Hellsten Y, Bangsbo J. Relationship between performance at different exercise intensities and skeletal muscle characteristics. J Appl Physiol (1985) 2011; 110:1555-63. [DOI: 10.1152/japplphysiol.00420.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hypothesis investigated whether exercise performance over a broad range of intensities is determined by specific skeletal muscle characteristics. Seven subjects performed 8–10 exhaustive cycle trials at different workloads, ranging from 150 to 700 W (150 min to 20 s). No relationships between the performance times at high and low workloads were observed. A relationship ( P < 0.05) was noticed between the percentage of fast-twitch x fibers and the exercise time at 579 ± 21 W (∼30 s; r2 = 0.88). Capillary-to-fiber-ratio ( r2: 0.58–0.85) was related ( P < 0.05) to exercise time at work intensities ranging from 395 to 270 W (2.5–21 min). Capillary density was correlated ( r2 = 0.68; P < 0.05) with the net rate of plasma K+ accumulation during an ∼3-min bout and was estimated to explain 50–80% ( P < 0.05) of the total variance observed in exercise performances lasting ∼30 s to 3 min. The Na+-K+ pump β1-subunit expression was found to account for 13–34% ( P < 0.05) during exhaustive exercise of ∼1–4 min. In conclusion, exercise performance at different intensities is related to specific physiological variables. A large distribution of fast-twitch x fibers may play a role during very intense efforts, i.e., ∼30 s. Muscle capillaries and the Na+-K+ pump β1-subunit seem to be important determinants for performance during exhaustive high-intensity exercises lasting between 30 s and 4 min.
Collapse
Affiliation(s)
- F. Marcello Iaia
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jorge Perez-Gomez
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Thomassen
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Nikolai B. Nordsborg
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Jayakumar AR, Panickar KS, Curtis KM, Tong XY, Moriyama M, Norenberg MD. Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J Neurochem 2011; 117:437-48. [PMID: 21306384 DOI: 10.1111/j.1471-4159.2011.07211.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Brain edema and associated increased intracranial pressure are major consequences of traumatic brain injury (TBI). An important early component of the edema associated with TBI is astrocyte swelling (cytotoxic edema). Mechanisms for such swelling, however, are poorly understood. Ion channels/transporters/exchangers play a major role in cell volume regulation, and a disturbance in one or more of these systems may result in cell swelling. To examine potential mechanisms in TBI-mediated brain edema, we employed a fluid percussion model of in vitro barotrauma and examined the role of the ion transporter Na(+)-K(+)-2Cl(-)-cotransporter 1 (NKCC1) in trauma-induced astrocyte swelling as this transporter has been strongly implicated in the mechanism of cell swelling in various neurological conditions. Cultures exposed to trauma (3, 4, 5 atm pressure) caused a significant increase in NKCC1 activity (21%, 42%, 110%, respectively) at 3 h. At 5 atm pressure, trauma significantly increased NKCC1 activity at 1 h and it remained increased for up to 3 h. Trauma also increased the phosphorylation (activation) of NKCC1 at 1 and 3 h. Inhibition of MAPKs and oxidative/nitrosative stress diminished the trauma-induced NKCC1 phosphorylation as well as its activity. Bumetanide, an inhibitor of NKCC1, significantly reduced the trauma-induced astrocyte swelling (61%). Silencing NKCC1 with siRNA led to a reduction in trauma-induced NKCC1 activity as well as in cell swelling. These findings demonstrate the critical involvement of NKCC1 in the astrocyte swelling following in vitro trauma, and suggest that blocking NKCC1 activity may represent a useful therapeutic strategy for the cytotoxic brain edema associated with the early phase of TBI.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Department of Pathology, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | |
Collapse
|
13
|
Jayakumar AR, Valdes V, Norenberg MD. The Na-K-Cl cotransporter in the brain edema of acute liver failure. J Hepatol 2011; 54:272-8. [PMID: 21056502 DOI: 10.1016/j.jhep.2010.06.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/15/2010] [Accepted: 06/28/2010] [Indexed: 01/29/2023]
Abstract
BACKGROUND & AIMS Astrocyte swelling and brain edema associated with increased intracranial pressure are major complications of acute liver failure (ALF). The mechanism for such astrocyte swelling/brain edema, however, is not well understood. We recently found that ammonia, a key etiological factor in ALF, caused the activation of the Na-K-Cl cotransporter-1 (NKCC1) in cultured astrocytes, and that inhibition of such activation led to a reduction in astrocyte swelling, suggesting that NKCC1 activation may be an important factor in the mechanism of brain edema in ALF. To determine whether NKCC activation is also involved in brain edema in vivo, we examined whether NKCC activation occurs in the thioacetamide (TAA) rat model of ALF and determined whether treatment with the NKCC inhibitor bumetanide reduces the severity of brain edema in TAA-treated rats. METHODS Brain water content was measured using the gravimetric method. NKCC1 phosphorylation and protein expression were measured by Western blots. NKCC activity was measured in brain cortical slices. RESULTS NKCC activity was elevated in brain cortical slices of TAA-treated rats as compared to sham animals. Western blot analysis showed significant increases in total as well as phosphorylated (activated) NKCC1 protein expression in the cortical tissue. These findings were associated with a significant increase in brain water content which was attenuated by treatment with the NKCC inhibitor bumetanide. CONCLUSIONS Our studies suggest the involvement of NKCC in the development of brain edema in experimental ALF, and that targeting NKCC may represent a useful therapeutic strategy in humans with ALF.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Department of Pathology, University of Miami, School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
14
|
Gagnon KB, Delpire E. Molecular determinants of hyperosmotically activated NKCC1-mediated K+/K+ exchange. J Physiol 2010; 588:3385-96. [PMID: 20530115 DOI: 10.1113/jphysiol.2010.191932] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Na(+)-K(+)-2Cl(-) cotransport (NKCC) mediates the movement of two Cl(-) ions for one Na(+) and one K(+) ion. Under isosmotic conditions or with activation of the kinases SPAK/WNK4, the NKCC1-mediated Cl(-) uptake in Xenopus laevis oocytes, as measured using (36)Cl, is twice the value of K(+) uptake, as determined using (86)Rb. Under hyperosmotic conditions, there is a significant activation of the bumetanide-sensitive K(+) uptake with only a minimal increase in bumetanide-sensitive Cl(-) uptake. This suggests that when stimulated by hypertonicity, the cotransporter mediates K(+)/K(+) and Cl(-)/Cl(-) exchange. Although significant stimulation of K(+)/K(+) exchange was observed with NKCC1, a significantly smaller hyperosmotic stimulatory effect was observed with NKCC2. In order to identify the molecular determinant(s) of this NKCC1-specific activation, we created chimeras of the mouse NKCC1 and the rat NKCC2. Swapping the regulatory amino termini of the cotransporters neither conferred activation to NKCC2 nor prevented activation of NKCC1. Using unique restrictions sites, we created additional chimeric molecules and determined that the first intracellular loop between membrane-spanning domains one and two and the second extracellular loop between membrane-spanning domains three and four of NKCC1 are necessary components of the hyperosmotic stimulation of K(+)/K(+) exchange.
Collapse
Affiliation(s)
- Kenneth B Gagnon
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | |
Collapse
|
15
|
Thomassen M, Christensen PM, Gunnarsson TP, Nybo L, Bangsbo J. Effect of 2-wk intensified training and inactivity on muscle Na+-K+ pump expression, phospholemman (FXYD1) phosphorylation, and performance in soccer players. J Appl Physiol (1985) 2010; 108:898-905. [DOI: 10.1152/japplphysiol.01015.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined muscle adaptations and alterations in performance of highly trained soccer players with intensified training or training cessation. Eighteen elite soccer players were, for a 2-wk period, assigned to either a group that performed high-intensity training with a reduction in the amount of training (HI, n = 7), or an inactivity group without training (IN, n = 11). HI improved ( P < 0.05) performance of the 4th, 6th, and 10th sprint in a repeated 20-m sprint test, and IN reduced ( P < 0.05) performance in the 5th to the 10th sprints after the 2-wk intervention period. In addition, the Yo-Yo intermittent recovery level 2 test performance of IN was lowered from 845 ± 48 to 654 ± 30 m. In HI, the protein expression of the Na+-K+ pump α2-isoform was 15% higher ( P < 0.05) after the intervention period, whereas no changes were observed in α1- and β1-isoform expression. In IN, Na+-K+ pump expression was not changed. In HI, the FXYD1ser68-to-FXYD1 ratio was 27% higher ( P < 0.01) after the intervention period, and, in IN, the AB_FXYD1ser68 signal was 18% lower ( P < 0.05) after inactivity. The change in FXYD1ser68-to-FXYD1 ratio was correlated ( r2 = 0.35; P < 0.05) with change in performance in repeated sprint test. The present data suggest that short-term intensified training, even for trained soccer players, can increase muscle Na+-K+ pump α2-isoform expression, and that cessation of training for 2 wk does not affect the expression of Na+-K+ pump isoforms. Resting phosphorylation status of the Na+-K+ pump is changed by training and inactivity and may play a role in performance during repeated, intense exercise.
Collapse
Affiliation(s)
- Martin Thomassen
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Peter M. Christensen
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas P. Gunnarsson
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lars Nybo
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Jayakumar AR, Norenberg MD. The Na-K-Cl Co-transporter in astrocyte swelling. Metab Brain Dis 2010; 25:31-8. [PMID: 20336356 DOI: 10.1007/s11011-010-9180-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Ion channels, exchangers and transporters are known to be involved in cell volume regulation. A disturbance in one or more of these systems may result in loss of ion homeostasis and cell swelling. In particular, activation of the Na(+)-K(+)-Cl(-) cotransporters has been shown to regulate cell volume in many conditions. The Na(+)-K(+)-Cl- cotransporters (NKCC) are a class of membrane proteins that transport Na, K, and Cl ions into and out of a wide variety of epithelial and nonepithelial cells. Studies have established the role of NKCC1 in astrocyte swelling/brain edema in ischemia and trauma. Our recent studies suggest that NKCC1 activation is also involved in astrocyte swelling induced by ammonia and in the brain edema in the thioacetamide model of acute liver failure. This review will focus on mechanisms of NKCC1 activation and its contribution to astrocyte swelling/brain edema in neurological disorders, with particular emphasis on ammonia neurotoxicity and acute liver failure.
Collapse
Affiliation(s)
- Arumugam R Jayakumar
- Department of Pathology (D-33), University of Miami Miller School of Medicine, P.O. Box 016960, Miami, FL 33125, USA.
| | | |
Collapse
|
17
|
Kristensen M, Juel C. Potassium-transporting proteins in skeletal muscle: cellular location and fibre-type differences. Acta Physiol (Oxf) 2010; 198:105-23. [PMID: 19769637 DOI: 10.1111/j.1748-1716.2009.02043.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract Potassium (K(+)) displacement in skeletal muscle may be an important factor in the development of muscle fatigue during intense exercise. It has been shown in vitro that an increase in the extracellular K(+) concentration ([K(+)](e)) to values higher than approx. 10 mm significantly reduce force development in unfatigued skeletal muscle. Several in vivo studies have shown that [K(+)](e) increases progressively with increasing work intensity, reaching values higher than 10 mm. This increase in [K(+)](e) is expected to be even higher in the transverse (T)-tubules than the concentration reached in the interstitium. Besides the voltage-sensitive K(+) (K(v)) channels that generate the action potential (AP) it is suggested that the big-conductance Ca(2+)-dependent K(+) (K(Ca)1.1) channel contributes significantly to the K(+) release into the T-tubules. Also the ATP-dependent K(+) (K(ATP)) channel participates, but is suggested primarily to participate in K(+) release to the interstitium. Because there is restricted diffusion of K(+) to the interstitium, K(+) released to the T-tubules during AP propagation will be removed primarily by reuptake mediated by transport proteins located in the T-tubule membrane. The most important protein that mediates K(+) reuptake in the T-tubules is the Na(+),K(+)-ATPase alpha(2) dimers, but a significant contribution of the strong inward rectifier K(+) (Kir2.1) channel is also suggested. The Na(+), K(+), 2Cl(-) 1 (NKCC1) cotransporter also participates in K(+) reuptake but probably mainly from the interstitium. The relative content of the different K(+)-transporting proteins differs in oxidative and glycolytic muscles, and might explain the different [K(+)](e) tolerance observed.
Collapse
Affiliation(s)
- M Kristensen
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2200, Copenhagen N, Denmark.
| | | |
Collapse
|
18
|
Bangsbo J, Gunnarsson TP, Wendell J, Nybo L, Thomassen M. Reduced volume and increased training intensity elevate muscle Na+-K+ pump alpha2-subunit expression as well as short- and long-term work capacity in humans. J Appl Physiol (1985) 2009; 107:1771-80. [PMID: 19797693 DOI: 10.1152/japplphysiol.00358.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study examined muscle adaptations and alterations in work capacity in endurance-trained runners as a result of a reduced amount of training combined with speed endurance training. For a 6- to 9-wk period, 17 runners were assigned to either a speed endurance group with a 25% reduction in the amount of training but including speed endurance training consisting of six to twelve 30-s sprint runs 3-4 times/wk (SET group n = 12) or a control group (n = 5), which continued the endurance training ( approximately 55 km/wk). For the SET group, the expression of the muscle Na(+)-K(+) pump alpha(2)-subunit was 68% higher (P < 0.05) and the plasma K(+) level was reduced (P < 0.05) during repeated intense running after 9 wk. Performance in a 30-s sprint test and the first of the supramaximal exhaustive runs was improved (P < 0.05) by 7% and 36%, respectively, after the speed endurance training period. In the SET group, maximal O(2) uptake was unaltered, but the 3-km (3,000-m) time was reduced (P < 0.05) from 10.4 +/- 0.1 to 10.1 +/- 0.1 min and the 10-km (10,000-m) time was improved from 37.3 +/- 0.4 to 36.3 +/- 0.4 min (means +/- SE). Muscle protein expression and performance remained unaltered in the control group. The present data suggest that both short- and long-term exercise performances can be improved with a reduction in training volume if speed endurance training is performed and that the Na(+)-K(+) pump plays a role in the control of K(+) homeostasis and in the development of fatigue during repeated high-intensity exercise.
Collapse
Affiliation(s)
- Jens Bangsbo
- Department of Exercise and Sport Sciences, Section of Human Physiology, Copenhagen Muscle Research Centre, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
19
|
Stentz FB, Kitabchi AE. Transcriptome and proteome expressions involved in insulin resistance in muscle and activated T-lymphocytes of patients with type 2 diabetes. GENOMICS PROTEOMICS & BIOINFORMATICS 2008; 5:216-35. [PMID: 18267303 PMCID: PMC5054231 DOI: 10.1016/s1672-0229(08)60009-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We analyzed the genes expressed (transcriptomes) and the proteins translated (pro- teomes) in muscle tissues and activated CD4(+) and CD8(+) T-lymphocytes (T-cells) of five Type 2 diabetes (T2DM) subjects using Affymetrix microarrays and mass spectrometry, and compared them with matched non-diabetic controls. Gene expressions of insulin receptor (INSR), vitamin D receptor, insulin degrading enzyme, Akt, insulin receptor substrate-1 (IRS-1), IRS-2, glucose transporter 4 (GLUT4), and enzymes of the glycolytic pathway were decreased at least 50% in T2DM than in controls. However, there was greater than two-fold gene upregulation of plasma cell glycoprotein-1, tumor necrosis factor alpha (TNFalpha, and gluconeogenic enzymes in T2DM than in controls. The gene silencing for INSR or TNFalpha resulted in the inhibition or stimulation of GLUT4, respectively. Proteome profiles corresponding to molecular weights of the above translated transcriptomes showed different patterns of changes between T2DM and controls. Meanwhile, changes in transcriptomes and proteomes between muscle and activated T-cells of T2DM were comparable. Activated T-cells, analogous to muscle cells, expressed insulin signaling and glucose metabolism genes and gene products. In conclusion, T-cells and muscle in T2DM exhibited differences in expression of certain genes and gene products relative to non-diabetic controls. These alterations in transcriptomes and proteomes in T2DM may be involved in insulin resistance.
Collapse
Affiliation(s)
- Frankie B Stentz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | |
Collapse
|
20
|
Iaia FM, Thomassen M, Kolding H, Gunnarsson T, Wendell J, Rostgaard T, Nordsborg N, Krustrup P, Nybo L, Hellsten Y, Bangsbo J. Reduced volume but increased training intensity elevates muscle Na+-K+ pump α1-subunit and NHE1 expression as well as short-term work capacity in humans. Am J Physiol Regul Integr Comp Physiol 2008; 294:R966-74. [DOI: 10.1152/ajpregu.00666.2007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study examined muscle adaptations and alterations in work capacity in endurance-trained runners after a change from endurance to sprint training. Fifteen runners were assigned to either a sprint training (ST, n = 8) or a control (CON, n = 7) group. ST replaced their normal training by 30-s sprint runs three to four times a week, whereas CON continued the endurance training (∼45 km/wk). After the 4-wk sprint period, the expression of the muscle Na+-K+ pump α1-subunit and Na+/H+-exchanger isoform 1 was 29 and 30% higher ( P < 0.05), respectively. Furthermore, plasma K+ concentration was reduced ( P < 0.05) during repeated intense running. In ST, performance in a 30-s sprint test, Yo-Yo intermittent recovery test, and two supramaximal exhaustive runs was improved ( P < 0.05) by 7, 19, 27, and 19%, respectively, after the sprint training period, whereas pulmonary maximum oxygen uptake and 10-k time were unchanged. No changes in CON were observed. The present data suggest a role of the Na+-K+ pump in the control of K+ homeostasis and in the development of fatigue during repeated high-intensity exercise. Furthermore, performance during intense exercise can be improved and endurance performance maintained even with a reduction in training volume if the intensity of training is very high.
Collapse
|
21
|
GASTINGER MATTHEWJ, BARBER ALISTAIRJ, VARDI NOGA, MARSHAK DAVIDW. Histamine receptors in mammalian retinas. J Comp Neurol 2006; 495:658-67. [PMID: 16506196 PMCID: PMC3348866 DOI: 10.1002/cne.20902] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mammalian retinas are innervated by histaminergic axons that originate from perikarya in the posterior hypothalamus. To identify the targets of these retinopetal axons, we localized histamine receptors (HR) in monkey and rat retinas by light and electron microscopy. In monkeys, puncta containing HR3 were found at the tips of ON-bipolar cell dendrites in cone pedicles and rod spherules, closer to the photoreceptors than the other neurotransmitter receptors. This is the first ultrastructural localization of any histamine receptor and the first direct evidence that HR3 is present on postsynaptic membranes in the central nervous system. In rat retinas, most HR1 were localized to dopaminergic amacrine cells. The differences in histamine receptor localization may reflect the differences in the activity patterns of the two species.
Collapse
Affiliation(s)
- MATTHEW J. GASTINGER
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77225
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas 77225
| | - ALISTAIR J. BARBER
- Penn State Retina Research Group, Department of Ophthalmology, Penn State College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033
| | - NOGA VARDI
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - DAVID W. MARSHAK
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas 77225
- Correspondence to: David W. Marshak, Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, P.O. Box 20708, Houston, TX 77225.
| |
Collapse
|
22
|
Abstract
Reversible phosphorylation by protein kinases is probably one of the most important examples of post-translational modification of ion transport proteins. Ste20-related proline alanine-rich kinase (SPAK) and oxidative stress response kinase (OSR1) are two serine/threonine kinases belonging to the germinal centre-like kinase subfamily VI. Genetic analysis suggests that OSR1 evolved first, with SPAK arising following a gene duplication in vertebrate evolution. SPAK and OSR1 are two recently discovered kinases which have been linked to several key cellular processes, including cell differentiation, cell transformation and proliferation, cytoskeleton rearrangement, and most recently, regulation of ion transporters. Na-K-2Cl cotransporter activity is regulated by phosphorylation. Pharmacological evidence has identified several kinases and phosphatases which alter cotransporter function, however, no direct linkage between these enzymes and the cotransporter has been demonstrated. This article will review some of the physical and physiological properties of SPAK and OSR1, and present new evidence of a direct interaction between the Na-K-Cl cotransporter and the stress kinases.
Collapse
Affiliation(s)
- E Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
23
|
Kristensen M, Hansen T, Juel C. Membrane proteins involved in potassium shifts during muscle activity and fatigue. Am J Physiol Regul Integr Comp Physiol 2005; 290:R766-72. [PMID: 16223848 DOI: 10.1152/ajpregu.00534.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle activity is associated with potassium displacements, which may cause fatigue. It was reported previously that the density of the large-conductance Ca2+-dependent K+ (BK(Ca)) channel is higher in the T tubule membrane than in the sarcolemmal membrane and that the opposite is the case for the ATP-sensitive K+ (K(ATP)) channel. In the present experiments, we investigated the subcellular localizations of the strong inward rectifier 2.1 K+ (Kir2.1) channel and the Na+-K+-2Cl- (NKCC)1 cotransporter with Western blot analysis of different muscle fractions. Furthermore, muscle function was studied while trying to manipulate the opening probability or transport capacity of these proteins during electrical stimulation of isolated soleus muscles. All experiments were made with excised muscle from male Wistar rats. Kir2.1 channels were almost undetectable in the sarcolemmal membrane but present in the T tubule membrane, whereas NKCC1 cotransporters were present in the sarcolemmal membrane. For muscles incubated in a buffer containing pinacidil, NS1619, Ba2+, or bumetanide, there was a faster reduction in peak force (P < 0.05). Furthermore, bumetanide incubation reduced the peak force at the onset of electrical stimulation (P < 0.05). Thus the effects on muscle force indicate that these drugs can affect K+-transporting proteins and thereby influence K+ accumulation, especially in the T tubules, suggesting that K(ATP) and BK(Ca) channels are responsible for K+ release and decrease in force during repeated muscle contractions, whereas Kir2.1 and NKCC1 may have a role in K+ reuptake.
Collapse
Affiliation(s)
- Michael Kristensen
- Copenhagen Muscle Research Centre, Institute of Molecular Biology and Physiology, August Krogh Bldg., DK-2100 Copenhagen Ø, Denmark
| | | | | |
Collapse
|
24
|
Jean-Baptiste G, Yang Z, Khoury C, Gaudio S, Greenwood MT. Peptide and non-peptide G-protein coupled receptors (GPCRs) in skeletal muscle. Peptides 2005; 26:1528-36. [PMID: 16042993 DOI: 10.1016/j.peptides.2005.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
G-protein coupled receptors (GPCRs) represent a large class of cell surface receptors that mediate a multitude of functions. Over the years, a number of GPCRs and ancillary proteins have been shown to be expressed in skeletal muscle. Unlike the case with other muscle tissues like cardiac and vascular smooth muscle cells, there has been little attempt at systematically analyzing GPCRs in skeletal muscle. Here we have compiled all the GPCRs that are expressed in skeletal muscle. In addition, we review the known function of these receptors in both skeletal muscle tissue and in cultured skeletal muscle cells.
Collapse
Affiliation(s)
- Gaël Jean-Baptiste
- Department of Anatomy and Cell Biology, McGill University, 3640 University, Montreal, Que., Canada H3A 2B2
| | | | | | | | | |
Collapse
|
25
|
van Emst MG, Klarenbeek S, Schot A, Plomp JJ, Doornenbal A, Everts ME. Reducing chloride conductance prevents hyperkalaemia-induced loss of twitch force in rat slow-twitch muscle. J Physiol 2004; 561:169-81. [PMID: 15345748 PMCID: PMC1665340 DOI: 10.1113/jphysiol.2004.071498] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 08/26/2004] [Indexed: 12/31/2022] Open
Abstract
Exercise-induced loss of skeletal muscle K(+) can seriously impede muscle performance through membrane depolarization. Thus far, it has been assumed that the negative equilibrium potential and large membrane conductance of Cl(-) attenuate the loss of force during hyperkalaemia. We questioned this idea because there is some evidence that Cl(-) itself can exert a depolarizing influence on membrane potential (V(m)). With this study we tried to identify the possible roles played by Cl(-) during hyperkalaemia. Isolated rat soleus muscles were kept at 25 degrees C and twitch contractions were evoked by current pulses. Reducing [Cl(-)](o) to 5 mM, prior to introducing 12.5 mM K(o), prevented the otherwise occurring loss of force. Reversing the order of introducing these two solutions revealed an additional effect, i.e. the ongoing hyperkalaemia-related loss of force was sped up tenfold after reducing [Cl(-)](o). However, hereafter twitch force recovered completely. The recovery of force was absent at [K(+)](o) exceeding 14 mM. In addition, reducing [Cl(-)](o) increased membrane excitability by 24%, as shown by a shift in the relationship between force and current level. Measurements of V(m) indicated that the antagonistic effect of reducing [Cl(-)](o) on hyperkalaemia-induced loss of force was due to low-Cl(-)-induced membrane hyperpolarization. The involvement of specific Cl(-) conductance was established with 9-anthracene carboxylic acid (9-AC). At 100 microm, 9-AC reduced the loss of force due to hyperkalaemia, while at 200 microm, 9-AC completely prevented loss of force. To study the role of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) in this matter, we added 400 microm of the NKCC inhibitor bumetanide to the incubation medium. This did not affect the hyperkalaemia-induced loss of force. We conclude that Cl(-) exerts a permanent depolarizing influence on V(m). This influence of Cl(-) on V(m), in combination with a large membrane conductance, can apparently have two different effects on hyperkalaemia-induced loss of force. It might exert a stabilizing influence on force production during short periods of hyperkalaemia, but it can add to the loss of force during prolonged periods of hyperkalaemia.
Collapse
Affiliation(s)
- Maarten Geert van Emst
- Department of Pathobiology, Division of Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.158, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
26
|
Zhao H, Hyde R, Hundal HS. Signalling mechanisms underlying the rapid and additive stimulation of NKCC activity by insulin and hypertonicity in rat L6 skeletal muscle cells. J Physiol 2004; 560:123-36. [PMID: 15284343 PMCID: PMC1665208 DOI: 10.1113/jphysiol.2004.066423] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have investigated the expression and regulation of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC) by insulin and hyperosmotic stress in L6 rat skeletal muscle cells. NKCC was identified by immunoblotting as a 170 kDa protein in L6 myotubes and mediated 54% of K(+) ((86)Rb(+)) influx based on the sensitivity of ion transport to bumetanide, a NKCC inhibitor. The residual (86)Rb(+) influx occurred via the Na(+),K(+)-ATPase and other transporters not sensitive to bumetanide or ouabain. NKCC-mediated (86)Rb(+) influx was enhanced significantly ( approximately 1.6-fold) by acute cell exposure to insulin, but was inhibited significantly by tyrosine kinase inhibitors, wortmannin and rapamycin, consistent with a role for the insulin receptor tyrosine kinase, phosphoinositide 3 (PI3)-kinase and mTOR, respectively, in cotransporter activation. In contrast, the hormonal activation of NKCC was unaffected by inhibition of the classical Erk-signalling pathway. Subjecting L6 myotubes to an acute hyperosmotic challenge (420 mosmol l(-1)) led to a 40% reduction in cell volume and was accompanied by a rapid stimulation of NKCC activity ( approximately 2-fold). Intracellular volume recovered to normal levels within 60 min, but this regulatory volume increase (RVI) was prevented if bumetanide was present. Unlike insulin, activation of NKCC by hyperosmolarity did not involve PI3-kinase but was suppressed by inhibition of tyrosine kinases and the Erk pathway. While inhibition of tyrosine kinases, using genistein, led to a complete loss in NKCC activation in response to hyperosmotic stress, immunoprecipitation of NKCC revealed that the cotransporter was not regulated directly by tyrosine phosphorylation. Simultaneous exposure of L6 myotubes to insulin and hyperosmotic stress led to an additive increase in NKCC-mediated (86)Rb(+) influx, of which, only the insulin-stimulated component was wortmannin-sensitive. Our findings indicate that L6 myotubes express a functional NKCC that is rapidly activated in response to insulin and hyperosmotic shock by distinct intracellular signalling pathways. Furthermore, activation of NKCC in response to hyperosmotic-induced cell shrinkage represents a critical component of the RVI mechanism that allows L6 muscle cells to volume regulate.
Collapse
Affiliation(s)
- Haiyan Zhao
- Division of Molecular Physiology, Medical Sciences Institute/Wellcome Trust Biocentre Complex, The University of Dundee, Dundee, DD1 4HN, UK
| | | | | |
Collapse
|
27
|
Andersen GØ, Skomedal T, Enger M, Fidjeland A, Brattelid T, Levy FO, Osnes JB. α1-AR-mediated activation of NKCC in rat cardiomyocytes involves ERK-dependent phosphorylation of the cotransporter. Am J Physiol Heart Circ Physiol 2004; 286:H1354-60. [PMID: 14630635 DOI: 10.1152/ajpheart.00549.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied molecular and functional characteristics as well as hormonal regulation of the Na-K-2Cl cotransporter (NKCC) in the isolated rat heart and cardiomyocytes. NKCC activity was measured as bumetanide-sensitive86Rb+influx in isolated perfused rat hearts and isolated cardiomyocytes. Stimulation of α1-adrenoceptors (AR) by phenylephrine (30 μM) increased86Rb+influx. The NKCC inhibitor bumetanide (50 μM) reduced the response to phenylephrine by 45 ± 13% ( n = 12, P < 0.01). PD-98059 (10 μM), an inhibitor of the activation of the mitogen-activated protein kinases extracellular signal-regulated protein kinase 1 and 2 (ERK1/2), reduced the total response to phenylephrine by 51 ± 13% ( n = 10, P < 0.01) and eliminated the bumetanide-sensitive component, indicating that α1-AR mediated stimulation of NKCC is dependent on activation of ERK1/2. Inhibitors of protein kinase C or phosphatidylinositol 3-kinase had no effect. The presence of NKCC mRNA and protein was demonstrated in isolated rat cardiomyocytes. Phosphorylation of NKCC after α1-AR stimulation was shown by immunoprecipitation of the phosphoprotein from32Piprelabeled cardiomyocytes. Increased phosphorylation of the NKCC protein was also abolished by PD-98059. We conclude that the NKCC is present in rat cardiomyocytes and that ion transport by the cotransporter is regulated by α1-AR stimulation through phosphorylation of this protein involving the ERK pathway.
Collapse
|
28
|
Gosmanov AR, Fan Z, Mi X, Schneider EG, Thomason DB. ATP-sensitive potassium channels mediate hyperosmotic stimulation of NKCC in slow-twitch muscle. Am J Physiol Cell Physiol 2003; 286:C586-95. [PMID: 14592811 DOI: 10.1152/ajpcell.00247.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mildly hyperosmotic medium, activation of the Na+ -K+ -2Cl- cotransporter (NKCC) counteracts skeletal muscle cell water loss, and compounds that stimulate protein kinase A (PKA) activity inhibit the activation of the NKCC. The aim of this study was to determine the mechanism for PKA inhibition of NKCC activity in resting skeletal muscle. Incubation of rat slow-twitch soleus and fast-twitch plantaris muscles in isosmotic medium with the PKA inhibitors H-89 and KT-5720 caused activation of the NKCC only in the soleus muscle. NKCC activation caused by PKA inhibition was insensitive to MEK MAPK inhibitors and to insulin but was abolished by the PKA stimulators isoproterenol and forskolin. Furthermore, pinacidil [an ATP-sensitive potassium (KATP) channel opener] or inhibition of glycolysis increased NKCC activity in the soleus muscle but not in the plantaris muscle. Preincubation of the soleus muscle with glibenclamide (a KATP channel inhibitor) prevented the NKCC activation by hyperosmolarity, PKA inhibition, pinacidil, and glycolysis inhibitors. In contrast, glibenclamide stimulated NKCC activity in the plantaris muscle. In cells stably transfected with the Kir6.2 subunit of the of KATP channel, inhibition of glycolysis activated potassium current and NKCC activity. We conclude that activation of KATP channels in slow-twitch muscle is necessary for activation of the NKCC and cell volume restoration in hyperosmotic conditions.
Collapse
Affiliation(s)
- Aidar R Gosmanov
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
29
|
Gosmanov AR, Schneider EG, Thomason DB. NKCC activity restores muscle water during hyperosmotic challenge independent of insulin, ERK, and p38 MAPK. Am J Physiol Regul Integr Comp Physiol 2003; 284:R655-65. [PMID: 12433675 DOI: 10.1152/ajpregu.00576.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In isosmotic conditions, insulin stimulation of PI 3-K/Akt and p38 MAPK pathways in skeletal muscle inhibits Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity induced by the ERK1,2 MAPK pathway. Whether these signaling cascades contribute to NKCC regulation during osmotic challenge is unknown. Increasing osmolarity by 20 mosM with either glucose or mannitol induced NKCC-mediated (86)Rb uptake and water transport into rat soleus and plantaris skeletal muscle in vitro. This NKCC activity restored intracellular water. In contrast to mannitol, hyperosmolar glucose increased ERK1,2 and p38 MAPK phosphorylation. Glucose, but not mannitol, impaired insulin-stimulated phosphorylation of Akt and p38 MAPK in the plantaris and soleus muscles, respectively. Hyperosmolarity-induced NKCC activation was insensitive to insulin action and pharmacological inhibition of ERK1,2 and p38 MAPK pathways. Paradoxically, cAMP-producing agents, which stimulate NKCC activity in isosmotic conditions, suppressed hyperosmolar glucose- and mannitol-induced NKCC activity and prevented restoration of muscle cell volume in hyperosmotic media. These results indicate that NKCC activity helps restore muscle cell volume during hyperglycemia. Moreover, hyperosmolarity activates NKCC regulatory pathways that are insensitive to insulin inhibition.
Collapse
Affiliation(s)
- Aidar R Gosmanov
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
30
|
Gosmanov AR, Wong JA, Thomason DB. Duality of G protein-coupled mechanisms for beta-adrenergic activation of NKCC activity in skeletal muscle. Am J Physiol Cell Physiol 2002; 283:C1025-32. [PMID: 12225966 DOI: 10.1152/ajpcell.00096.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity provides a potential mechanism for regulated K(+) uptake. beta-Adrenergic receptor (beta-AR) activation stimulates skeletal muscle NKCC activity in a MAPK pathway-dependent manner. We examined potential G protein-coupled pathways for beta-AR-stimulated NKCC activity. Inhibition of G(s)-coupled PKA blocked isoproterenol-stimulated NKCC activity in both the slow-twitch soleus muscle and the fast-twitch plantaris muscle. However, the PKA-activating agents cholera toxin, forskolin, and 8-bromo-cAMP (8-BrcAMP) were not sufficient to activate NKCC in the plantaris and partially stimulated NKCC activity in the soleus. Isoproterenol-stimulated NKCC activity in the soleus was abolished by pretreatment with pertussis toxin (PTX), indicating a G(i)-coupled mechanism. PTX did not affect the 8-BrcAMP-stimulated NKCC activity. PTX treatment also precluded the isoproterenol-mediated ERK1/2 MAPK phosphorylation in the soleus, consistent with NKCC's MAPK dependency. Inhibition of isoproterenol-stimulated ERK activity by PTX treatment was associated with an increase in Akt activation and phosphorylation of Raf-1 on the inhibitory residue Ser(259). These results demonstrate a novel, muscle phenotype-dependent mechanism for beta-AR-mediated NKCC activation that involves both G(s) and G(i) protein-coupled mechanisms.
Collapse
Affiliation(s)
- Aidar R Gosmanov
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, 894 Uniuon Avenue, Memphis, TN 38163, USA
| | | | | |
Collapse
|
31
|
Gosmanov AR, Nordtvedt NC, Brown R, Thomason DB. Exercise effects on muscle beta-adrenergic signaling for MAPK-dependent NKCC activity are rapid and persistent. J Appl Physiol (1985) 2002; 93:1457-65. [PMID: 12235047 DOI: 10.1152/japplphysiol.00440.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated exercise adaptation of signaling mechanisms that control Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity in rat skeletal muscle. An acute bout of exercise increased total and NKCC-mediated (86)Rb influx. Inhibition of extracellular signal-regulated kinase (ERK) activation abolished the exercise-induced NKCC upregulation. Treadmill training (20 m/min, 20% grade, 30 min/day, 5 days/wk) stimulated total (86)Rb influx and increased NKCC activity in the soleus muscle after 2 wk and in the plantaris muscle after 4 wk. Exercise-induced NKCC activity was associated with a 1.4- to 2-fold increase in ERK phosphorylation. Isoproterenol, which activates ERK and NKCC in sedentary muscle, caused a remarkable inhibition of the exercise-induced NKCC activity. Furthermore, isoproterenol inhibition of exercise-induced NKCC activity was accompanied with decreased ERK phosphorylation in the plantaris muscle. Akt (protein kinase B) phosphorylation on both Thr(308) and Ser(473), which activates Akt and inhibits NKCC activity in sedentary muscle, was stimulated by acute and chronic exercise. This Akt activation was unaffected by isoproterenol. These results indicate an immediate and persistent exercise adaptation of the signal pathways that participate in the control of potassium transport.
Collapse
Affiliation(s)
- Aidar R Gosmanov
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
32
|
Gosmanov AR, Thomason DB. Insulin and isoproterenol differentially regulate mitogen-activated protein kinase-dependent Na(+)-K(+)-2Cl(-) cotransporter activity in skeletal muscle. Diabetes 2002; 51:615-23. [PMID: 11872658 DOI: 10.2337/diabetes.51.3.615] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent studies have demonstrated that p44/42(MAPK) extracellular signal-regulated kinase (ERK)1 and -2-dependent Na(+)-K(+)-2Cl(-) co-transporter (NKCC) activity may contribute to total potassium uptake by skeletal muscle. To study the precise mechanisms regulating NKCC activity, rat soleus and plantaris muscles were stimulated ex vivo by insulin or isoproterenol (ISO). Both hormones stimulated total uptake of the potassium congener (86)Rb by 25--70%. However, only ISO stimulated the NKCC-mediated (86)Rb uptake. Insulin inhibited the ISO-stimulated NKCC activity, and this counteraction was sensitive to the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 in the predominantly slow-twitch soleus muscle. Pretreatment of the soleus muscle with the phosphatidylinositol (PI) 3-kinase inhibitors wortmannin and LY294002 or with SB203580 uncovered an insulin-stimulated NKCC activity and also increased the insulin-stimulated phosphorylation of ERK. In the predominantly fast-twitch plantaris muscle, insulin-stimulated NKCC activity became apparent only after inhibition of PI 3-kinase activity, accompanied by an increase in ERK phosphorylation. PI 3-kinase inhibitors also abolished insulin-stimulated p38 MAPK phosphorylation in the plantaris muscle and Akt phosphorylation in both muscles. These data demonstrated that insulin inhibits NKCC-mediated transport in skeletal muscle through PI 3-kinase-sensitive and SB203580-sensitive mechanisms. Furthermore, differential activation of signaling cascade elements after hormonal stimulation may contribute to fiber-type specificity in the control of potassium transport by skeletal muscle.
Collapse
Affiliation(s)
- Aidar R Gosmanov
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|