1
|
Gonzalez RJ, Patrick ML, Val AL. Ion uptake in naturally acidic water. J Comp Physiol B 2024; 194:685-696. [PMID: 38652292 PMCID: PMC11486802 DOI: 10.1007/s00360-024-01552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/25/2024]
Abstract
The first studies on ion regulation in fish exposed to low pH, which were inspired by the Acid Rain environmental crisis, seemed to indicate that ion transport at the gills was completely and irreversibly inhibited at pH 4.0-4.5 and below. However, work on characid fish native to the Rio Negro, a naturally acidic, blackwater tributary of the Amazon River, found that they possess ion transport mechanisms that are completely insensitive to pHs as low as 3.25. As more species were examined it appeared that pH-insensitive transport was a trait shared by many, if not most, species in the Order Characiformes. Subsequently, a few other species of fish have been shown to be able to transport ions at low pH, in particular zebrafish (Danio rerio), which show rapid recovery of Na+ uptake at pH 4.0 after initial inhibition. Measurements of rates of Na+ transport during exposure to pharmacological agents that inhibit various transport proteins suggested that characiform fish do not utilize the generally accepted mechanisms for Na+ transport that rely on some form of H+ extrusion. Examination of zebrafish transport at low pH suggest the rapid recovery may be due to a novel Na+/K+ exchanger, but after longer term exposure they may rely on a coupling of Na+/H+ exchangers and NH3 excretion. Further work is needed to clarify these mechanisms of transport and to find other acid-tolerant species to fully gain an appreciation of the diversity of physiological mechansisms involved.
Collapse
Affiliation(s)
- R J Gonzalez
- Department of Biology, University of San Diego, 5998 Alcalá Park, San Diego, CA, 92110, USA.
| | - M L Patrick
- Department of Biology, University of San Diego, 5998 Alcalá Park, San Diego, CA, 92110, USA
| | - A L Val
- Laboratório de Ecofisiologia E Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brasil
| |
Collapse
|
2
|
Jonz MG. Cell proliferation and regeneration in the gill. J Comp Physiol B 2024; 194:583-593. [PMID: 38554225 DOI: 10.1007/s00360-024-01548-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024]
Abstract
Seminal studies from the early 20th century defined the structural changes associated with development and regeneration of the gills in goldfish at the gross morphological and cellular levels using standard techniques of light and electron microscopy. More recently, investigations using cell lineage tracing, molecular biology, immunohistochemistry and single-cell RNA-sequencing have pushed the field forward and have begun to reveal the cellular and molecular processes that orchestrate cell proliferation and regeneration in the gills. The gill is a multifunctional organ that mediates an array of important physiological functions, including respiration, ion regulation and excretion of waste products. It is comprised of unique cell types, such as pavement cells, ionocytes, chemoreceptors and undifferentiated stem or progenitor cells that regulate growth and replenish cell populations. The gills develop from the embryonic endoderm and are rich in cell types derived from the neural crest. The gills have the capacity to remodel themselves in response to environmental change, such as in the case of ionocytes, chemoreceptors and the interlamellar cell mass, and can completely regenerate gill filaments and lamellae. Both processes of remodeling and regeneration invariably involve cell proliferation. Although gill regeneration has been reported in only a limited number of fish species, the process appears to have many similarities to regeneration of other organs in fish and amphibians. The present article reviews the studies that have described gill development and growth, and that demonstrate a suite of genes, transcription factors and other proteins involved in cell proliferation and regeneration in the gills.
Collapse
Affiliation(s)
- Michael G Jonz
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
3
|
Cazorla-Vázquez S, Kösters P, Bertz S, Pfister F, Daniel C, Dedden M, Zundler S, Jobst-Schwan T, Amann K, Engel FB. Adhesion GPCR Gpr126 (Adgrg6) Expression Profiling in Zebrafish, Mouse, and Human Kidney. Cells 2023; 12:1988. [PMID: 37566066 PMCID: PMC10417176 DOI: 10.3390/cells12151988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) comprise the second-largest class of GPCRs, the most common target for approved pharmacological therapies. aGPCRs play an important role in development and disease and have recently been associated with the kidney. Several aGPCRs are expressed in the kidney and some aGPCRs are either required for kidney development or their expression level is altered in diseased kidneys. Yet, general aGPCR function and their physiological role in the kidney are poorly understood. Here, we characterize in detail Gpr126 (Adgrg6) expression based on RNAscope® technology in zebrafish, mice, and humans during kidney development in adults. Gpr126 expression is enriched in the epithelial linage during nephrogenesis and persists in the adult kidney in parietal epithelial cells, collecting ducts, and urothelium. Single-cell RNAseq analysis shows that gpr126 expression is detected in zebrafish in a distinct ionocyte sub-population. It is co-detected selectively with slc9a3.2, slc4a4a, and trpv6, known to be involved in apical acid secretion, buffering blood or intracellular pH, and to maintain high cytoplasmic Ca2+ concentration, respectively. Furthermore, gpr126-expressing cells were enriched in the expression of potassium transporter kcnj1a.1 and gcm2, which regulate the expression of a calcium sensor receptor. Notably, the expression patterns of Trpv6, Kcnj1a.1, and Gpr126 in mouse kidneys are highly similar. Collectively, our approach permits a detailed insight into the spatio-temporal expression of Gpr126 and provides a basis to elucidate a possible role of Gpr126 in kidney physiology.
Collapse
Affiliation(s)
- Salvador Cazorla-Vázquez
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| | - Peter Kösters
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| | - Simone Bertz
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Frederick Pfister
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Mark Dedden
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.D.); (S.Z.)
| | - Sebastian Zundler
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.D.); (S.Z.)
| | - Tilman Jobst-Schwan
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
- Research Center On Rare Kidney Diseases (RECORD), University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (F.P.); (C.D.); (K.A.)
| | - Felix B. Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (S.C.-V.); (P.K.)
| |
Collapse
|
4
|
Shih SW, Yan JJ, Tsou YL, Lu SW, Wang MC, Chou MY, Hwang PP. In Vivo Functional Assay in Fish Gills: Exploring Branchial Acid-Excreting Mechanisms in Zebrafish. Int J Mol Sci 2022; 23:ijms23084419. [PMID: 35457237 PMCID: PMC9031880 DOI: 10.3390/ijms23084419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/06/2023] Open
Abstract
Molecular and physiological analyses in ionoregulatory organs (e.g., adult gills and embryonic skin) are essential for studying fish ion regulation. Recent progress in the molecular physiology of fish ion regulation was mostly obtained in embryonic skin; however, studies of ion regulation in adult gills are still elusive and limited because there are no direct methods for in vivo functional assays in the gills. The present study applied the scanning ion-selective electrode technique (SIET) in adult gills to investigate branchial H+-excreting functions in vivo. We removed the opercula from zebrafish and then performed long-term acid acclimation experiments. The results of Western blot and immunofluorescence showed that the protein expression of H+-ATPase (HA) and the number of H+-ATPase-rich ionocytes were increased under acidic situations. The SIET results proved that the H+ excretion capacity is indeed enhanced in the gills acclimated to acidic water. In addition, both HA and Na+/H+ exchanger (Nhe) inhibitors suppressed the branchial H+ excretion capacity, suggesting that H+ is excreted in association with HA and Nhe in zebrafish gills. These results demonstrate that SIET is effective for in vivo detection in fish gills, representing a breakthrough approach for studying the molecular physiology of fish ion regulation.
Collapse
Affiliation(s)
- Shang-Wu Shih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Jia-Jiun Yan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Yi-Ling Tsou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Shao-Wei Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Min-Chen Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
| | - Ming-Yi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan; (S.-W.S.); (J.-J.Y.); (Y.-L.T.); (S.-W.L.); (M.-C.W.)
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan;
- Correspondence:
| |
Collapse
|
5
|
Knockout of mafba Causes Inner-Ear Developmental Defects in Zebrafish via the Impairment of Proliferation and Differentiation of Ionocyte Progenitor Cells. Biomedicines 2021; 9:biomedicines9111699. [PMID: 34829928 PMCID: PMC8616026 DOI: 10.3390/biomedicines9111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 12/03/2022] Open
Abstract
Zebrafish is an excellent model for exploring the development of the inner ear. Its inner ear has similar functions to that of humans, specifically in the maintenance of hearing and balance. Mafba is a component of the Maf transcription factor family. It participates in multiple biological processes, but its role in inner-ear development remains poorly understood. In this study, we constructed a mafba knockout (mafba−/−) zebrafish model using CRISPR/Cas9 technology. The mafba−/− mutant inner ear displayed severe impairments, such as enlarged otocysts, smaller or absent otoliths, and insensitivity to sound stimulation. The proliferation of p63+ epidermal stem cells and dlc+ ionocyte progenitors was inhibited in mafba−/− mutants. Moreover, the results showed that mafba deletion induces the apoptosis of differentiated K+-ATPase-rich (NR) cells and H+-ATPase-rich (HR) cells. The activation of p53 apoptosis and G0/G1 cell cycle arrest resulted from DNA damage in the inner-ear region, providing a mechanism to account for the inner ear deficiencies. The loss of homeostasis resulting from disorders of ionocyte progenitors resulted in structural defects in the inner ear and, consequently, loss of hearing. In conclusion, the present study elucidated the function of ionic channel homeostasis and inner-ear development using a zebrafish Mafba model and clarified the possible physiological roles.
Collapse
|
6
|
Kowalewski J, Paris T, Gonzalez C, Lelièvre E, Castaño Valencia L, Boutrois M, Augier C, Lutfalla G, Yatime L. Characterization of a member of the CEACAM protein family as a novel marker of proton pump-rich ionocytes on the zebrafish epidermis. PLoS One 2021; 16:e0254533. [PMID: 34252160 PMCID: PMC8274849 DOI: 10.1371/journal.pone.0254533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
In humans, several members of the CEACAM receptor family have been shown to interact with intestinal pathogens in an inflammatory context. While CEACAMs have long been thought to be only present in mammals, recent studies have identified ceacam genes in other vertebrates, including teleosts. The function of these related genes remains however largely unknown. To gain insight into the function of CEACAM proteins in fish, we undertook the study of a putative member of the family, CEACAMz1, identified in Danio rerio. Sequence analysis of the ceacamz1 gene product predicted a GPI-anchored extracellular protein containing eleven immunoglobulin domains but revealed no evident orthology with human CEACAMs. Using a combination of RT-PCR analyses and in situ hybridization experiments, as well as a fluorescent reporter line, we showed that CEACAMz1 is first expressed in discrete cells on the ventral skin of zebrafish larvae and later on in the developing gills. This distribution remains constant until juvenile stage is reached, at which point CEACAMz1 is almost exclusively expressed in gills. We further observed that at late larval stages, CEACAMz1-expressing cells mostly localize on the afferent side of the branchial filaments and possibly in the inter-lamellar space. Using immunolabelling and 3D-reconstructions, we showed that CEACAMz1 is expressed in cells from the uppermost layer of skin epidermis. These cells are embedded within the keratinocytes pavement and we unambiguously identified them as proton-pump rich ionocytes (HR cells). As the expression of ceacamz1 is turned on concomitantly to that of other known markers of HR cells, we propose that ceacamz1 may serve as a novel marker of mature HR cells from the zebrafish epidermis.
Collapse
Affiliation(s)
- Julien Kowalewski
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Théo Paris
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Catherine Gonzalez
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Etienne Lelièvre
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Lina Castaño Valencia
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Morgan Boutrois
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Camille Augier
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Georges Lutfalla
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Laure Yatime
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
7
|
Peloggia J, Münch D, Meneses-Giles P, Romero-Carvajal A, Lush ME, Lawson ND, McClain M, Pan YA, Piotrowski T. Adaptive cell invasion maintains lateral line organ homeostasis in response to environmental changes. Dev Cell 2021; 56:1296-1312.e7. [PMID: 33878346 DOI: 10.1016/j.devcel.2021.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/21/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Mammalian inner ear and fish lateral line sensory hair cells (HCs) detect fluid motion to transduce environmental signals. Actively maintained ionic homeostasis of the mammalian inner ear endolymph is essential for HC function. In contrast, fish lateral line HCs are exposed to the fluctuating ionic composition of the aqueous environment. Using lineage labeling, in vivo time-lapse imaging and scRNA-seq, we discovered highly motile skin-derived cells that invade mature mechanosensory organs of the zebrafish lateral line and differentiate into Neuromast-associated (Nm) ionocytes. This invasion is adaptive as it is triggered by environmental fluctuations. Our discovery of Nm ionocytes challenges the notion of an entirely placodally derived lateral line and identifies Nm ionocytes as likely regulators of HC function possibly by modulating the ionic microenvironment. Nm ionocytes provide an experimentally accessible in vivo system to study cell invasion and migration, as well as the physiological adaptation of vertebrate organs to changing environmental conditions.
Collapse
Affiliation(s)
- Julia Peloggia
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Daniela Münch
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Andrés Romero-Carvajal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Pontificia Universidad Católica del Ecuador, Escuela de Ciencias Biológicas, Quito, Ecuador
| | - Mark E Lush
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester 01605, USA
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Y Albert Pan
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA 24016, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | | |
Collapse
|
8
|
Zimmer AM, Mandic M, Yew HM, Kunert E, Pan YK, Ha J, Kwong RWM, Gilmour KM, Perry SF. Use of a carbonic anhydrase Ca17a knockout to investigate mechanisms of ion uptake in zebrafish ( Danio rerio). Am J Physiol Regul Integr Comp Physiol 2021; 320:R55-R68. [PMID: 33085911 DOI: 10.1152/ajpregu.00215.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In fishes, branchial cytosolic carbonic anhydrase (CA) plays an important role in ion and acid-base regulation. The Ca17a isoform in zebrafish (Danio rerio) is expressed abundantly in Na+-absorbing/H+-secreting H+-ATPase-rich (HR) cells. The present study aimed to identify the role of Ca17a in ion and acid-base regulation across life stages using CRISPR/Cas9 gene editing. However, in preliminary experiments, we established that ca17a knockout is lethal with ca17a-/- mutants exhibiting a significant decrease in survival beginning at ∼12 days postfertilization (dpf) and with no individuals surviving past 19 dpf. Based on these findings, we hypothesized that ca17a-/- mutants would display alterations in ion and acid-base balance and that these physiological disturbances might underlie their early demise. Na+ uptake rates were significantly increased by up to 300% in homozygous mutants compared with wild-type individuals at 4 and 9 dpf; however, whole body Na+ content remained constant. While Cl- uptake was significantly reduced in ca17a-/- mutants, Cl- content was unaffected. Reduction of CA activity by Ca17a morpholino knockdown or ethoxzolamide treatments similarly reduced Cl- uptake, implicating Ca17a in the mechanism of Cl- uptake by larval zebrafish. H+ secretion, O2 consumption, CO2 excretion, and ammonia excretion were generally unaltered in ca17a-/- mutants. In conclusion, while the loss of Ca17a caused marked changes in ion uptake rates, providing strong evidence for a Ca17a-dependent Cl- uptake mechanism, the underlying causes of the lethality of this mutation in zebrafish remain unclear.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Milica Mandic
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Hong Meng Yew
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Emma Kunert
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yihang K Pan
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jimmy Ha
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Shir-Mohammadi K, Perry SF. Expression of ion transport genes in ionocytes isolated from larval zebrafish ( Danio rerio) exposed to acidic or Na +-deficient water. Am J Physiol Regul Integr Comp Physiol 2020; 319:R412-R427. [PMID: 32755465 DOI: 10.1152/ajpregu.00095.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In zebrafish (Danio rerio), a specific ionocyte subtype, the H+-ATPase-rich (HR) cell, is presumed to be a significant site of transepithelial Na+ uptake/acid secretion. During acclimation to environments differing in ionic composition or pH, ionic and acid-base regulations are achieved by adjustments to the activity level of HR cell ion transport proteins. In previous studies, the quantitative assessment of mRNA levels for genes involved in ionic and acid-base regulations relied on measurements using homogenates derived from the whole body (larvae) or the gill (adult). Such studies cannot distinguish whether any differences in gene expression arise from adjustments of ionocyte subtype numbers or transcriptional regulation specifically within individual ionocytes. The goal of the present study was to use fluorescence-activated cell sorting to separate the HR cells from other cellular subpopulations to facilitate the measurement of gene expression of HR cell-specific transporters and enzymes from larvae exposed to low pH (pH 4.0) or low Na+ (5 μM) conditions. The data demonstrate that treatment of larvae with acidic water for 4 days postfertilization caused cell-specific increases in H+-ATPase (atp6v1aa), ca17a, ca15a, nhe3b, and rhcgb mRNA in addition to increases in mRNA linked to cell proliferation. In fish exposed to low Na+, expression of nhe3b and rhcgb was increased owing to HR cell-specific regulation and elevated numbers of HR cells. Thus, the results of this study demonstrate that acclimation to low pH or low Na+ environmental conditions is facilitated by HR cell-specific transcriptional control and by HR cell proliferation.
Collapse
Affiliation(s)
| | - S F Perry
- Department of Biology, University of Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Parker JJ, Zimmer AM, Perry SF. Respirometry and cutaneous oxygen flux measurements reveal a negligible aerobic cost of ion regulation in larval zebrafish ( Danio rerio). J Exp Biol 2020; 223:jeb226753. [PMID: 32709624 DOI: 10.1242/jeb.226753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/19/2020] [Indexed: 08/26/2023]
Abstract
Fishes living in fresh water counter the passive loss of salts by actively absorbing ions through specialized cells termed ionocytes. Ionocytes contain ATP-dependent transporters and are enriched with mitochondria; therefore ionic regulation is an energy-consuming process. The purpose of this study was to assess the aerobic costs of ion transport in larval zebrafish (Danio rerio). We hypothesized that changes in rates of Na+ uptake evoked by acidic or low Na+ rearing conditions would result in corresponding changes in whole-body oxygen consumption (ṀO2 ) and/or cutaneous oxygen flux (JO2 ), measured at the ionocyte-expressing yolk sac epithelium using the scanning micro-optrode technique (SMOT). Larvae at 4 days post-fertilization (dpf) that were reared under low pH (pH 4) conditions exhibited a higher rate of Na+ uptake compared with fish reared under control conditions (pH 7.6), yet they displayed a lower ṀO2 and no difference in cutaneous JO2 Despite a higher Na+ uptake capacity in larvae reared under low Na+ conditions, there were no differences in ṀO2 and JO2 at 4 dpf. Furthermore, although Na+ uptake was nearly abolished in 2 dpf larvae lacking ionocytes after morpholino knockdown of the ionocyte proliferation regulating transcription factor foxi3a, ṀO2 and JO2 were unaffected. Finally, laser ablation of ionocytes did not affect cutaneous JO2 Thus, we conclude that the aerobic costs of ion uptake by ionocytes in larval zebrafish, at least in the case of Na+, are below detection using whole-body respirometry or cutaneous SMOT scans, providing evidence that ion regulation in zebrafish larvae incurs a low aerobic cost.
Collapse
Affiliation(s)
- Julian J Parker
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Alex M Zimmer
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
11
|
Lin LY, Hung GY, Yeh YH, Chen SW, Horng JL. Acidified water impairs the lateral line system of zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105351. [PMID: 31711007 DOI: 10.1016/j.aquatox.2019.105351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Acidification of freshwater ecosystems is recognized as a global environmental problem. However, the influence of acidic water on the early stages of freshwater fish is still unclear. This study focused on the sublethal effects of acidic water on the lateral line system of zebrafish embryos. Zebrafish embryos were exposed to water at different pH values (pH 4, 5, 7, 9, and 10) for 96 (0-96 h post-fertilization (hpf)) and 48 h (48∼96 hpf). The survival rate, body length, and heart rate significantly decreased in pH 4-exposed embryos during the 96-h incubation. The number of lateral-line neuromasts and the size of otic vesicles/otoliths also decreased in pH 4-exposed embryos subjected to 96- and 48-h incubations. The number of neuromasts decreased in pH 5-exposed embryos during the 96-h incubation. Alkaline water (pH 9 and 10) did not influence embryonic development but suppressed the hatching process. The mechanotransducer channel-mediated Ca2+ influx was measured to reveal the function of lateral line hair cells. The Ca2+ influx of hair cells decreased in pH 5-exposed embryos subjected to the 48-h incubation, and both the number and Ca2+ influx of hair cells had decreased in pH 5-exposed embryos after 96 h of incubation. In addition, the number and function of hair cells were suppressed in H+-ATPase- or GCM2-knockdown embryos, which partially lost the ability to secrete acid into the ambient water. In conclusion, this study suggests that lateral line hair cells are sensitive to an acidic environment, and freshwater acidification could be a threat to the early stages of fishes.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Giun-Yi Hung
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ya-Hsin Yeh
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sheng-Wen Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
12
|
Effect of salinity and temperature on the expression of genes involved in branchial ion transport processes in European sea bass. J Therm Biol 2019; 85:102422. [DOI: 10.1016/j.jtherbio.2019.102422] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/24/2022]
|
13
|
Xin Y, Malick A, Hu M, Liu C, Batah H, Xu H, Duan C. Cell-autonomous regulation of epithelial cell quiescence by calcium channel Trpv6. eLife 2019; 8:48003. [PMID: 31526479 PMCID: PMC6764821 DOI: 10.7554/elife.48003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Epithelial homeostasis and regeneration require a pool of quiescent cells. How the quiescent cells are established and maintained is poorly understood. Here, we report that Trpv6, a cation channel responsible for epithelial Ca2+ absorption, functions as a key regulator of cellular quiescence. Genetic deletion and pharmacological blockade of Trpv6 promoted zebrafish epithelial cells to exit from quiescence and re-enter the cell cycle. Reintroducing Trpv6, but not its channel dead mutant, restored the quiescent state. Ca2+ imaging showed that Trpv6 is constitutively open in vivo. Mechanistically, Trpv6-mediated Ca2+ influx maintained the quiescent state by suppressing insulin-like growth factor (IGF)-mediated Akt-Tor and Erk signaling. In zebrafish epithelia and human colon carcinoma cells, Trpv6/TRPV6 elevated intracellular Ca2+ levels and activated PP2A, which down-regulated IGF signaling and promoted the quiescent state. Our findings suggest that Trpv6 mediates constitutive Ca2+ influx into epithelial cells to continuously suppress growth factor signaling and maintain the quiescent state.
Collapse
Affiliation(s)
- Yi Xin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Allison Malick
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Meiqin Hu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Chengdong Liu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Heya Batah
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Haoxing Xu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
14
|
Chen YC, Liao BK, Lu YF, Liu YH, Hsieh FC, Hwang PP, Hwang SPL. Zebrafish Klf4 maintains the ionocyte progenitor population by regulating epidermal stem cell proliferation and lateral inhibition. PLoS Genet 2019; 15:e1008058. [PMID: 30933982 PMCID: PMC6459544 DOI: 10.1371/journal.pgen.1008058] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/11/2019] [Accepted: 02/28/2019] [Indexed: 01/06/2023] Open
Abstract
In the skin and gill epidermis of fish, ionocytes develop alongside keratinocytes and maintain body fluid ionic homeostasis that is essential for adaptation to environmental fluctuations. It is known that ionocyte progenitors in zebrafish embryos are specified from p63+ epidermal stem cells through a patterning process involving DeltaC (Dlc)-Notch-mediated lateral inhibition, which selects scattered dlc+ cells into the ionocyte progenitor fate. However, mechanisms by which the ionocyte progenitor population is modulated remain unclear. Krüppel-like factor 4 (Klf4) transcription factor was previously implicated in the terminal differentiation of mammalian skin epidermis and is known for its bifunctional regulation of cell proliferation in a tissue context-dependent manner. Here, we report novel roles for zebrafish Klf4 in the ventral ectoderm during embryonic skin development. We found that Klf4 was expressed in p63+ epidermal stem cells of the ventral ectoderm from 90% epiboly onward. Knockdown or knockout of klf4 expression reduced the proliferation rate of p63+ stem cells, resulting in decreased numbers of p63+ stem cells, dlc-p63+ keratinocyte progenitors and dlc+ p63+ ionocyte progenitor cells. These reductions subsequently led to diminished keratinocyte and ionocyte densities and resulted from upregulation of the well-known cell cycle regulators, p53 and cdkn1a/p21. Moreover, mutation analyses of the KLF motif in the dlc promoter, combined with VP16-klf4 or engrailed-klf4 mRNA overexpression analyses, showed that Klf4 can bind the dlc promoter and modulate lateral inhibition by directly repressing dlc expression. This idea was further supported by observing the lateral inhibition outcomes in klf4-overexpressing or knockdown embryos. Overall, our experiments delineate novel roles for zebrafish Klf4 in regulating the ionocyte progenitor population throughout early stem cell stage to initiation of terminal differentiation, which is dependent on Dlc-Notch-mediated lateral inhibition.
Collapse
Affiliation(s)
- Yi-Chung Chen
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
| | - Bo-Kai Liao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, Republic of China
| | - Yu-Fen Lu
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
| | - Yu-Hsiu Liu
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Fang-Chi Hsieh
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
| | - Sheng-Ping L. Hwang
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei, Taiwan, Republic of China
- Department of Life Science, National Taiwan University, Taipei, Taiwan, Republic of China
- Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
15
|
Abstract
The skin, gills, and gut are the most extensively studied mucosal organs in fish. These mucosal structures provide the intimate interface between the internal and external milieus and serve as the indispensable first line of defense. They have highly diverse physiological functions. Their role in defense can be highlighted in three shared similarities: their microanatomical structures that serve as the physical barrier and hold the immune cells and the effector molecules; the mucus layer, also a physical barrier, contains an array of potent bioactive molecules; and the resident microbiota. Mucosal surfaces are responsive and plastic to the different changes in the aquatic environment. The direct interaction of the mucosa with the environment offers some important information on both the physiological status of the host and the conditions of the aquatic environment. Increasing attention has been directed to these features in the last year, particularly on how to improve the overall health of the fish through manipulation of mucosal functions and on how the changes in the mucosa, in response to varying environmental factors, can be harnessed to improve husbandry. In this short review, we highlight the current knowledge on how mucosal surfaces respond to various environmental factors relevant to aquaculture and how they may be exploited in fostering sustainable fish farming practices, especially in controlled aquaculture environments.
Collapse
|
16
|
Araújo JDA, Ghelfi A, Val AL. Triportheus albus Cope, 1872 in the Blackwater, Clearwater, and Whitewater of the Amazon: A Case of Phenotypic Plasticity? Front Genet 2017; 8:114. [PMID: 28912799 PMCID: PMC5583242 DOI: 10.3389/fgene.2017.00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
The Amazon basin includes 1000s of bodies of water, that are sorted according to their color in three types: blackwater, clearwater, and whitewater, which significantly differ in terms of their physicochemical parameters. More than 3,000 species of fish live in the rivers of the Amazon, among them, the sardine, Triportheus albus, which is one of the few species that inhabit all three types of water. The purpose of our study was to analyze if the gene expression of T. albus is determined by the different types of water, that is, if the species presents phenotypic plasticity to live in blackwater, clearwater, and whitewater. Gills of T. albus were collected at well-characterized sites for each type of water. Nine cDNA libraries were constructed, three biological replicates of each condition and the RNA was sequenced (RNA-Seq) on the MiSeq® Platform (Illumina®). A total of 51.6 million of paired-end reads, and 285,456 transcripts were assembled. Considering the FDR ≤ 0.05 and fold change ≥ 2, 13,754 differentially expressed genes were detected in the three water types. Two mechanisms related to homeostasis were detected in T. albus that live in blackwater, when compared to the ones in clearwater and whitewater. The acidic blackwater is a challenging environment for many types of aquatic organisms. The first mechanism is related to the decrease in cellular permeability, highlighting the genes coding for claudin proteins, actn4, itgb3b, DSP, Gap junction protein, and Ca2+-ATPase. The second with ionic and acid-base regulation [rhcg1, slc9a6a (NHE), ATP6V0A2, Na+/K+-ATPase, slc26a4 (pedrin) and slc4a4b]. We suggest T. albus is a good species of fish for future studies involving the ionic and acid-base regulation of Amazonian species. We also concluded that, T. albus, shows well defined phenotypic plasticity for each water type in the Amazon basin.
Collapse
Affiliation(s)
- José D A Araújo
- Laboratory of Ecophysiology and Molecular Evolution, National Institute of Amazonian ResearchManaus, Brazil.,Federal University of AmazonasManaus, Brazil
| | | | - Adalberto L Val
- Laboratory of Ecophysiology and Molecular Evolution, National Institute of Amazonian ResearchManaus, Brazil
| |
Collapse
|
17
|
Guh YJ, Hwang PP. Insights into molecular and cellular mechanisms of hormonal actions on fish ion regulation derived from the zebrafish model. Gen Comp Endocrinol 2017; 251:12-20. [PMID: 27554927 DOI: 10.1016/j.ygcen.2016.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023]
Abstract
Fish have sophisticated mechanisms of ionic and acid-base regulation for maintaining body fluid homeostasis. Many hormones have been proposed to control the ionic and acid-base regulation mechanisms in fishes; however, lots of the proposed actions lack convincing cellular/molecular evidence. With the advantages of available genetic databases and molecular manipulation techniques, zebrafish has become an emerging model for research into ion transport physiology and functional regulation. Different types of ionocytes were found to transport ions through various sets of ion transporters, and the molecular mechanisms of ionocyte proliferation and differentiation have also been dissected, providing a competent platform with which to precisely study the ion transport pathways and ionocytes targeted by hormones, including isotocin, prolactin, cortisol, stanniocalcin-1, calcitonin, endothelin-1, vitamin D, parathyroid hormone 1, catecholamines, the renin-angiotensin-system, estrogen-related receptor α, and calcitonin gene-related peptide, which have been demonstrated to positively or negatively regulate ion transport through specific receptors at different molecular levels (transcriptional, translational, or posttranslational) or at different developmental stages of ionocytes (proliferation or differentiation). The knowledge obtained in zebrafish not only enhances our understanding of the hormonal control of fish ion regulation, but also informs studies on other animal species, thereby providing insights into related fields.
Collapse
Affiliation(s)
- Ying-Jey Guh
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
18
|
Kwong RWM, Perry SF. A role for sodium-chloride cotransporters in the rapid regulation of ion uptake following acute environmental acidosis: new insights from the zebrafish model. Am J Physiol Cell Physiol 2016; 311:C931-C941. [PMID: 27784676 DOI: 10.1152/ajpcell.00180.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022]
Abstract
The effects of acute exposure to acidic water on Na+ and Cl- homeostasis, and the mechanisms underlying their compensatory regulation, were investigated in the larval zebrafish Danio rerio Exposure to acidic water (pH 4.0; control pH 7.6) for 2 h significantly reduced Na+ uptake and whole body Na+ content. Nevertheless, the capacity for Na+ uptake was substantially increased in fish preexposed to acidic water but measured in control water. Based on the accumulation of the Na+-selective dye, Sodium Green, two ionocyte subtypes exhibited intracellular Na+ enrichment after preexposure to acidic water: H+-ATPase rich (HR) cells, which coexpress the Na+/H+ exchanger isoform 3b (NHE3b), and a non-HR cell population. In fish experiencing Na+-Cl- cotransporter (NCC) knockdown, we observed no Sodium Green accumulation in the latter cell type, suggesting the non-HR cells were NCC cells. Elimination of NHE3b-expressing HR cells did not prevent the increased Na+ uptake following acid exposure. On the other hand, the increased Na+ uptake was abolished when the acidic water was enriched with Na+ and Cl-, but not with Na+ only, indicating that the elevated Na+ uptake after acid exposure was associated with the compensatory regulation of Cl- Further examinations demonstrated that acute acid exposure also reduced whole body Cl- levels and increased the capacity for Cl- uptake. Moreover, knockdown of NCC prevented the increased uptake of both Na+ and Cl- after exposure to acidic water. Together, the results of the present study revealed a novel role of NCC in the compensatory regulation of Na+ and Cl- uptake following acute acidosis.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; and .,Department of Biology, York University, Toronto, Ontario, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; and
| |
Collapse
|
19
|
Kwong RWM, Kumai Y, Perry SF. Neuroendocrine control of ionic balance in zebrafish. Gen Comp Endocrinol 2016; 234:40-6. [PMID: 27179885 DOI: 10.1016/j.ygcen.2016.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022]
Abstract
Zebrafish (Danio rerio) is an emerging model for integrative physiological research. In this mini-review, we discuss recent advances in the neuroendocrine control of ionic balance in this species, and identify current knowledge gaps and issues that would benefit from further investigation. Zebrafish inhabit a hypo-ionic environment and therefore are challenged by a continual loss of ions to the water. To maintain ionic homeostasis, they must actively take up ions from the water and reduce passive ion loss. The adult gill or the skin of larvae are the primary sites of ionic regulation. Current models for the uptake of major ions in zebrafish incorporate at least three types of ion transporting cells (also called ionocytes); H(+)-ATPase-rich cells for Na(+) uptake, Na(+)/K(+)-ATPase-rich cells for Ca(2+) uptake, and Na(+)/Cl(-)-cotransporter expressing cells for both Na(+) and Cl(-) uptake. The precise molecular mechanisms regulating the paracellular loss of ions remain largely unknown. However, epithelial tight junction proteins, including claudins, are thought to play a critical role in reducing ion losses to the surrounding water. Using the zebrafish model, several key neuroendocrine factors were identified as regulators of epithelial ion movement, including the catecholamines (adrenaline and noradrenaline), cortisol, the renin-angiotensin system, parathyroid hormone and prolactin. Increasing evidence also suggests that gasotransmitters, such as H2S, are involved in regulating ion uptake.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada.
| | - Yusuke Kumai
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
20
|
Lin CH, Hu HJ, Hwang PP. Cortisol regulates sodium homeostasis by stimulating the transcription of sodium-chloride transporter (NCC) in zebrafish (Danio rerio). Mol Cell Endocrinol 2016; 422:93-102. [PMID: 26678829 DOI: 10.1016/j.mce.2015.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/16/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022]
Abstract
In mammals, sodium/hydrogen exchanger (NHE) and sodium-chloride cotransporter (NCC) are expressed in renal tubules, and exhibit functional redundancy and mutual compensation in Na(+) uptake. In teleosts, the gills of the adult and skin of the embryonic stage function as external kidneys, and ionocytes are responsible for ionoregulation in these tissues. NHE- and NCC-expressing ionocytes mutually cooperate to adjust Na(+) uptake, which is analogous to the activity of the mammalian kidney. Cortisol is a hormone that controls Na(+) uptake through regulating NCC expression and activity in mammals; however, cortisol-mediated control of NCC expression is little understood in non-mammalian vertebrates, such as teleosts. It is essential for our understanding of the evolution of such regulation to determine whether cortisol has a conserved effect on NCC in vertebrates. In the present study, we treated zebrafish embryos with low Na(+) medium (LNa, 0.04 mM Na(+)) for 3 d to stimulate the mRNA expression of nhe3b, ncc, and cyp11b1 (a cortisol-synthesis enzyme) and whole body cortisol level. Exogenous cortisol treatment (20 mg/l, 3 d) resulted in an elevation of whole-body Na(+) content, ncc expression, and the density of ncc-expressing cells in zebrafish larvae. In loss-of-function experiments, microinjection of glucocorticoid receptor (gr) morpholino (MO) suppressed sodium content, ncc expression, and the density of ncc-expressing cells, but injection of mr MO had no such effects. In addition, exogenous cortisol treatment and gr MO injection also altered ncc expression and the density of ncc-expressing cells in gcm2 morphant larvae. Taken together, cortisol and GR appear to regulate Na(+) absorption through stimulating ncc expression and the differentiation of ncc-expressing ionocytes, providing new insights into the actions of cortisol on Na(+) uptake.
Collapse
Affiliation(s)
- Chia-Hao Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan; National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Huei-Jyun Hu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
21
|
Hu MY, Hwang PP, Tseng YC. Recent advances in understanding trans-epithelial acid-base regulation and excretion mechanisms in cephalopods. Tissue Barriers 2015; 3:e1064196. [PMID: 26716070 DOI: 10.1080/21688370.2015.1064196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Cephalopods have evolved complex sensory systems and an active lifestyle to compete with fish for similar resources in the marine environment. Their highly active lifestyle and their extensive protein metabolism has led to substantial acid-base regulatory abilities enabling these organisms to cope with CO2 induced acid-base disturbances. In convergence to teleost, cephalopods possess an ontogeny-dependent shift in ion-regulatory epithelia with epidermal ionocytes being the major site of embryonic acid-base regulation and ammonia excretion, while gill epithelia take these functions in adults. Although the basic morphology and excretory function of gill epithelia in cephalopods were outlined almost half a century ago, modern immunohistological and molecular techniques are bringing new insights to the mechanistic basis of acid-base regulation and excretion of nitrogenous waste products (e.g. NH3/NH4 (+)) across ion regulatory epithelia of cephalopods. Using cephalopods as an invertebrate model, recent findings reveal partly conserved mechanisms but also novel aspects of acid-base regulation and nitrogen excretion in these exclusively marine animals. Comparative studies using a range of marine invertebrates will create a novel and exciting research direction addressing the evolution of pH regulatory and excretory systems.
Collapse
Affiliation(s)
- Marian Y Hu
- Institute of Physiology; Christian-Albrechts University Kiel ; Kiel, Germany ; Institute of Cellular and Organismic Biology; Academia Sinica ; Taipei City, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology; Academia Sinica ; Taipei City, Taiwan
| | - Yung-Che Tseng
- Department of Life Science; National Taiwan Normal University ; Taipei City, Taiwan
| |
Collapse
|
22
|
Lin CH, Shih TH, Liu ST, Hsu HH, Hwang PP. Cortisol Regulates Acid Secretion of H(+)-ATPase-rich Ionocytes in Zebrafish (Danio rerio) Embryos. Front Physiol 2015; 6:328. [PMID: 26635615 PMCID: PMC4646979 DOI: 10.3389/fphys.2015.00328] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/29/2015] [Indexed: 01/01/2023] Open
Abstract
Systemic acid-base regulation is vital for physiological processes in vertebrates. Freshwater (FW) fish live in an inconstant environment, and thus frequently face ambient acid stress. FW fish have to efficiently modulate their acid secretion processes for body fluid acid-base homeostasis during ambient acid challenge; hormonal control plays an important role in such physiological regulation. The hormone cortisol was previously proposed to be associated with acid base regulation in FW fish; however, the underlying mechanism has not been fully described. In the present study, mRNA expression of acid-secreting related transporters and cyp11b (encoding an enzyme involved in cortisol synthesis) in zebrafish embryos was stimulated by treatment with acidic FW (AFW, pH 4.0) for 3 d. Exogenous cortisol treatment (20 mg/L, 3 d) resulted in upregulated expression of transporters related to acid secretion and increased acid secretion function at the organism level in zebrafish embryos. Moreover, cortisol treatment also significantly increased the acid secretion capacity of H(+)-ATPase-rich cells (HRCs) at the cellular level. In loss-of-function experiments, microinjection of glucocorticoid receptor (GR) morpholino (MO) suppressed the expression of acid-secreting related transporters, and decreased acid secretion function at both the organism and cellular levels; on the other hand, mineralocorticoid receptor (MR) MO did not induce any effects. Such evidence supports the hypothesized role of cortisol in fish acid-base regulation, and provides new insights into the roles of cortisol; cortisol-GR signaling stimulates zebrafish acid secretion function through transcriptional/translational regulation of the transporters and upregulation of acid secretion capacity in each acid-secreting ionocyte.
Collapse
Affiliation(s)
- Chia-Hao Lin
- Institute of Cellular and Organismic Biology, Academia SinicaTaipei, Taiwan
- National Institute for Basic Biology, National Institutes of Natural SciencesOkazaki, Japan
| | - Tin-Han Shih
- Biodiversity Research Center, Academia SinicaTaipei, Taiwan
| | - Sian-Tai Liu
- Department of Life Science, National Taiwan Normal UniversityTaipei, Taiwan
| | - Hao-Hsuan Hsu
- Institute of Cellular and Organismic Biology, Academia SinicaTaipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia SinicaTaipei, Taiwan
| |
Collapse
|
23
|
Kwong RWM, Perry SF. An Essential Role for Parathyroid Hormone in Gill Formation and Differentiation of Ion-Transporting Cells in Developing Zebrafish. Endocrinology 2015; 156:2384-94. [PMID: 25872007 DOI: 10.1210/en.2014-1968] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vertebrates, parathyroid hormone (PTH) is important for skeletogenesis and Ca(2+) homeostasis. However, little is known about the molecular mechanisms by which PTH regulates skeleton formation and Ca(2+) balance during early development. Using larval zebrafish as an in vivo model system, we determined that PTH1 regulates the differentiation of epithelial cells and the development of craniofacial cartilage. We demonstrated that translational gene knockdown of PTH1 decreased Ca(2+) uptake at 4 days after fertilization. We also observed that PTH1-deficient fish exhibited reduced numbers of epithelial Ca(2+) channel (ecac)-expressing cells, Na(+)/K(+)-ATPase-rich cells, and H(+)-ATPase-rich cells. Additionally, the density of epidermal stem cells was decreased substantially in the fish experiencing PTH1 knockdown. Knockdown of PTH1 caused a shortening of the jaw and impeded the development of branchial arches. Results from in situ hybridization suggested that the expression of collagen 2a1a (marker for proliferating chondrocytes) was substantially reduced in the cartilage that forms the jaw and branchial aches. Disorganization of chondrocytes in craniofacial cartilage also was observed in PTH1-deficient fish. The results of real-time PCR demonstrated that PTH1 morphants failed to express the transcription factor glial cell missing 2 (gcm2). Coinjection of PTH1 morpholino with gcm2 capped RNA rescued the phenotypes observed in the PTH1 morphants, suggesting that the defects in PTH1-deficient fish were caused, at least in part, by the suppression of gcm2. Taken together, the results of the present study reveal critical roles for PTH1 in promoting the differentiation of epidermal stem cells into mature ionocytes and cartilage formation during development.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| |
Collapse
|
24
|
Trayer V, Séjourné N, Gay S, Thermes V. Evidence for two distinct waves of epidermal ionocyte differentiation during medaka embryonic development. Dev Dyn 2015; 244:888-902. [PMID: 25963515 DOI: 10.1002/dvdy.24290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/21/2015] [Accepted: 04/30/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The fish epidermis contains specific cells, or ionocytes, that are specialized in ion transport and contribute to the osmoregulatory function. Besides the zebrafish model, the medaka (Oryzias latipes) has recently emerged as an important model for osmoregulation studies because it possesses a particularly high adaptability to salinity changes. However, hindering the progress of research on embryonic ionocytes is the lack of a comprehensive view of their developmental dynamic. RESULTS Using EdU integrations and the foxi3 and NKA markers, we characterized the proliferating progenitors of ionocytes (here called ionoblastes) and we quantified them, along with ionocytes, during embryogenesis. While progenitors of the vitellin zone promptly differentiate in a synchronous manner, progenitors of the lateral zone differentiate progressively and asynchronously. Furthermore, we evidenced that nhe3 is expressed in differentiated ionocytes of both zones, whereas ecac, ncc, and gcm2 are strictly specific of the lateral zone. We also evidenced that the two zones are differentially regulated in distilled water and seawater. CONCLUSIONS Our data led us to propose a model timeline, which provides evidence for the expansion of two successive and distinct populations of ionocytes. This model opens the way for new studies related to epidermal development, plasticity and osmoregulation ontogeny.
Collapse
Affiliation(s)
- Vincent Trayer
- INRA, UR1037 LPGP Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | - Nina Séjourné
- INRA, UR1037 LPGP Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | - Stéphanie Gay
- INRA, UR1037 LPGP Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | - Violette Thermes
- INRA, UR1037 LPGP Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| |
Collapse
|
25
|
Guh YJ, Lin CH, Hwang PP. Osmoregulation in zebrafish: ion transport mechanisms and functional regulation. EXCLI JOURNAL 2015; 14:627-59. [PMID: 26600749 PMCID: PMC4650948 DOI: 10.17179/excli2015-246] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/21/2015] [Indexed: 12/21/2022]
Abstract
Fish, like mammals, have to maintain their body fluid ionic and osmotic homeostasis through sophisticated iono-/osmoregulation mechanisms, which are conducted mainly by ionocytes of the gill (the skin in embryonic stages), instead of the renal tubular cells in mammals. Given the advantages in terms of genetic database availability and manipulation, zebrafish is an emerging model for research into regulatory and integrative physiology. At least five types of ionocytes, HR, NaR, NCC, SLC26, and KS cells, have been identified to carry out Na(+) uptake/H(+) secretion/NH4 (+) excretion, Ca(2+) uptake, Na(+)/Cl(-) uptake, K(+) secretion, and Cl(-) uptake/HCO3 (-) secretion, respectively, through distinct sets of transporters. Several hormones, namely isotocin, prolactin, cortisol, stanniocalcin-1, calcitonin, endothelin-1, vitamin D, parathyorid hormone 1, catecholamines, and the renin-angiotensin-system, have been demonstrated to positively or negatively regulate ion transport through specific receptors at different ionocytes stages, at either the transcriptional/translational or posttranslational level. The knowledge obtained using zebrafish answered many long-term contentious or unknown issues in the field of fish iono-/osmoregulation. The homology of ion transport pathways and hormone systems also means that the zebrafish model informs studies on mammals or other animal species, thereby providing insights into related fields.
Collapse
Affiliation(s)
- Ying-Jey Guh
- Institute of Cellular and Organismic Biology, Academia Sinica, Nakang, Taipei, Taiwan ; Institute of Biological Chemistry, Academia Sinica, Nakang, Taipei, Taiwan
| | - Chia-Hao Lin
- National Institute for Basic Biology, Myodaiji-cho, Okazaki, 444-8787, Japan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nakang, Taipei, Taiwan
| |
Collapse
|
26
|
Kumai Y, Harris J, Al-Rewashdy H, Kwong RWM, Perry SF. Nitrogenous Waste Handling by Larval Zebrafish Danio rerio in Alkaline Water. Physiol Biochem Zool 2015; 88:137-45. [DOI: 10.1086/679628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Dymowska AK, Boyle D, Schultz AG, Goss GG. The role of acid-sensing ion channels in epithelial Na+ uptake in adult zebrafish (Danio rerio). ACTA ACUST UNITED AC 2015; 218:1244-51. [PMID: 25722005 DOI: 10.1242/jeb.113118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/18/2015] [Indexed: 12/20/2022]
Abstract
Acid-sensing ion channels (ASICs) are epithelial Na(+) channels gated by external H(+). Recently, it has been demonstrated that ASICs play a role in Na(+) uptake in freshwater rainbow trout. Here, we investigate the potential involvement of ASICs in Na(+) transport in another freshwater fish species, the zebrafish (Danio rerio). Using molecular and histological techniques we found that asic genes and the ASIC4.2 protein are expressed in the gill of adult zebrafish. Immunohistochemistry revealed that mitochondrion-rich cells positive for ASIC4.2 do not co-localize with Na(+)/K(+)-ATPase-rich cells, but co-localize with cells expressing vacuolar-type H(+)-ATPase. Furthermore, pharmacological inhibitors of ASIC and Na(+)/H(+)-exchanger significantly reduced uptake of Na(+) in adult zebrafish exposed to low-Na(+) media, but did not cause the same response in individuals exposed to ultra-low-Na(+) water. Our results suggest that in adult zebrafish ASICs play a role in branchial Na(+) uptake in media with low Na(+) concentrations and that mechanisms used for Na(+) uptake by zebrafish may depend on the Na(+) concentration in the acclimation medium.
Collapse
Affiliation(s)
- Agnieszka K Dymowska
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - David Boyle
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Aaron G Schultz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| |
Collapse
|
28
|
Stawicki TM, Owens KN, Linbo T, Reinhart KE, Rubel EW, Raible DW. The zebrafish merovingian mutant reveals a role for pH regulation in hair cell toxicity and function. Dis Model Mech 2015; 7:847-56. [PMID: 24973752 PMCID: PMC4073274 DOI: 10.1242/dmm.016576] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Control of the extracellular environment of inner ear hair cells by ionic transporters is crucial for hair cell function. In addition to inner ear hair cells, aquatic vertebrates have hair cells on the surface of their body in the lateral line system. The ionic environment of these cells also appears to be regulated, although the mechanisms of this regulation are less understood than those of the mammalian inner ear. We identified the merovingian mutant through genetic screening in zebrafish for genes involved in drug-induced hair cell death. Mutants show complete resistance to neomycin-induced hair cell death and partial resistance to cisplatin-induced hair cell death. This resistance is probably due to impaired drug uptake as a result of reduced mechanotransduction ability, suggesting that the mutants have defects in hair cell function independent of drug treatment. Through genetic mapping we found that merovingian mutants contain a mutation in the transcription factor gcm2. This gene is important for the production of ionocytes, which are cells crucial for whole body pH regulation in fish. We found that merovingian mutants showed an acidified extracellular environment in the vicinity of both inner ear and lateral line hair cells. We believe that this acidified extracellular environment is responsible for the defects seen in hair cells of merovingian mutants, and that these mutants would serve as a valuable model for further study of the role of pH in hair cell function.
Collapse
Affiliation(s)
- Tamara M Stawicki
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA. Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| | - Kelly N Owens
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA. Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA. Department of Otolaryngology, Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Katherine E Reinhart
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA. Department of Otolaryngology, Head and Neck Surgery, University of Washington, Seattle, WA 98195, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA. Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
29
|
Stawicki TM, Esterberg R, Hailey DW, Raible DW, Rubel EW. Using the zebrafish lateral line to uncover novel mechanisms of action and prevention in drug-induced hair cell death. Front Cell Neurosci 2015; 9:46. [PMID: 25741241 PMCID: PMC4332341 DOI: 10.3389/fncel.2015.00046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/30/2015] [Indexed: 01/01/2023] Open
Abstract
The majority of hearing loss and balance disorders are caused by the permanent loss of mechanosensory hair cells of the inner ear. Identification of genes and compounds that modulate susceptibility to hair cell death is frequently confounded by the difficulties of assaying for such complex phenomena in mammalian models. The zebrafish has emerged as a powerful animal model for genetic and chemical screening in many contexts. Several characteristics of the zebrafish, such as its small size and external location of mechanosensory hair cells within the lateral line sensory organ, uniquely position it as an ideal model organism for the study of hair cell toxicity. We have used this model to screen for genes and compounds that affect hair cell survival during ototoxin exposure and have identified agents that would not be expected to play a role in this process based on a priori knowledge of their function. The identification of such agents yields better understanding of hair cell death and holds promise to stem hearing loss and balance disorders in the human population.
Collapse
Affiliation(s)
- Tamara M Stawicki
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Biological Structure, University of Washington Seattle, WA, USA
| | - Robert Esterberg
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Otolaryngology, Head and Neck Surgery, University of Washington Seattle, WA, USA
| | - Dale W Hailey
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Biological Structure, University of Washington Seattle, WA, USA
| | - David W Raible
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Biological Structure, University of Washington Seattle, WA, USA
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington Seattle, WA, USA ; Department of Otolaryngology, Head and Neck Surgery, University of Washington Seattle, WA, USA
| |
Collapse
|
30
|
Chou MY, Lin CH, Chao PL, Hung JC, Cruz SA, Hwang PP. Stanniocalcin-1 controls ion regulation functions of ion-transporting epithelium other than calcium balance. Int J Biol Sci 2015; 11:122-32. [PMID: 25561895 PMCID: PMC4279088 DOI: 10.7150/ijbs.10773] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023] Open
Abstract
Stanniocalcin-1 (STC-1) was first identified to involve in Ca(2+) homeostasis in teleosts, and was thought to act as a hypocalcemic hormone in vertebrate. Recent studies suggested that STC-1 exhibits broad effects on ion balance, not confines to Ca(2+), but the mechanism of this regulation process remains largely unknown. Here, we used zebrafish embryos as an alternative in vivo model to investigate how STC-1 regulates transepithelial ion transport function in ion-transporting epithelium. Expression of stc-1 mRNA in zebrafish embryos was increased in high-Ca(2+) environments but decreased by acidic and ion-deficient treatments while overexpression of stc-1 impaired the hypotonic acclimation by decreasing whole body Ca(2+), Na(+), and Cl(-) contents and H(+) secretion ability. Injection of STC-1 mRNA also down-regulated mRNA expressions of epithelial Ca(2+) channel, H(+)-ATPase, and Na(+)-Cl(-) cotransporter, suggesting the roles of STC-1 in regulation of ions other than Ca(2+). Knockdown of STC-1 caused an increase in ionocyte progenitors (foxi3a as the marker) and mature ionocytes (ion transporters as the markers), but did not affect epithelium stem cells (p63 as the marker) in the embryonic skin. Overexpression of STC-1 had the corresponding opposite effect on ionocyte progenitors, mature ionocytes in the embryonic skin. Taken together, STC-1 negatively regulates the number of ionocytes to reduce ionocyte functions. This process is important for body fluid ionic homeostasis, which is achieved by the regulation of ion transport functions in ionocytes. The present findings provide new insights into the broader functions of STC-1, a hypocalcemic hormone.
Collapse
Affiliation(s)
- Ming-Yi Chou
- 1. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan. ; 2. RIKEN Brain Science Institute, Laboratory for Developmental Gene Regulation, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Chia-Hao Lin
- 1. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Pei-Lin Chao
- 1. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jo-Chi Hung
- 1. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Shelly A Cruz
- 1. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Pung-Pung Hwang
- 1. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
31
|
Lam SH, Lui EY, Li Z, Cai S, Sung WK, Mathavan S, Lam TJ, Ip YK. Differential transcriptomic analyses revealed genes and signaling pathways involved in iono-osmoregulation and cellular remodeling in the gills of euryhaline Mozambique tilapia, Oreochromis mossambicus. BMC Genomics 2014; 15:921. [PMID: 25342237 PMCID: PMC4213501 DOI: 10.1186/1471-2164-15-921] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/13/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Mozambique tilapia Oreochromis mossambicus has the ability to adapt to a broad range of environmental salinities and has long been used for investigating iono-osmoregulation. However, to date most studies have focused mainly on several key molecules or parameters hence yielding a limited perspective of the versatile iono-osmoregulation in the euryhaline fish. This study aimed to capture transcriptome-wide differences between the freshwater- and seawater-acclimated gills of the Mozambique tilapia. RESULTS We have identified over 5000 annotated gene transcripts with high homology (E-value <1.0E-50) to human genes that were differentially expressed in freshwater- and seawater-acclimated gills of the Mozambique tilapia. These putative human homologs were found to be significantly associated with over 50 canonical signaling pathways that are operating in at least 23 biological processes in relation to branchial iono-osmoregulation and cellular remodeling. The analysis revealed multiple signaling pathways in freshwater-acclimated gills acting in concert to maintain cellular homeostasis under hypo-osmotic environment while seawater-acclimated gills abounded with molecular signals to cope with the higher cellular turn-over rate, energetics and iono-regulatory demands under hyper-osmostic stress. Additionally, over 100 transcripts encoding putative inorganic ion transporters/channels were identified, of which several are well established in gill iono-regulation while the remainder are lesser known. We have also validated the expression profiles of 47 representative genes in freshwater- and seawater-acclimated gills, as well as in hypersaline-acclimated (two-fold salinity of seawater) gills. The findings confirmed that many of these responsive genes retained their expression profiles in hypersaline-acclimated gills as in seawater-acclimated gills, although several genes had changed significantly in their expression level/direction in hypersaline-acclimated gills. CONCLUSIONS This is the first study that has provided an unprecedented transcriptomic-wide perspective of gill iono-osmoregulation since such studies were initiated more than 80 years ago. It has expanded our molecular perspective from a relatively few well-studied molecules to a plethora of gene transcripts and a myriad of canonical signaling pathways driving various biological processes that are operating in gills under hypo-osmotic and hyper-osmotic stresses. These findings would provide insights and resources to fuel future studies on gill iono-osmoregulation and cellular remodeling in response to salinity challenge and acclimation.
Collapse
Affiliation(s)
- Siew Hong Lam
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive, 117411 Singapore, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kumai Y, Porteus CS, Kwong RWM, Perry SF. Hydrogen sulfide inhibits Na+ uptake in larval zebrafish, Danio rerio. Pflugers Arch 2014; 467:651-64. [PMID: 24939700 DOI: 10.1007/s00424-014-1550-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 12/28/2022]
Abstract
The present study investigated the role of hydrogen sulfide (H2S) in regulating Na(+) uptake in larval zebrafish, Danio rerio. Waterborne treatment of larvae at 4 days post-fertilization (dpf) with Na2S or GYY-4137 (chemicals known to generate H2S) significantly reduced Na(+) uptake. Exposure of larvae to water enriched with NaCl (1 mM NaCl) caused a pronounced reduction in Na(+) uptake which was prevented by pharmacological inhibition of cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE), two key enzymes involved in the endogenous synthesis of H2S. Furthermore, translational gene knockdown of CSE and CBSb significantly increased the basal rate of Na(+) uptake. Waterborne treatment with Na2S significantly decreased whole-body acid excretion and reduced Na(+) uptake in larval zebrafish preexposed to acidic (pH 4.0) water (a condition shown to promote Na(+) uptake via Na(+)-H(+)-exchanger 3b, NHE3b). However, Na2S did not affect Na(+) uptake in larvae depleted of NHE3b-containing ionocytes (HR cells) after knockdown of transcription factor glial cell missing 2 (gcm2) in which Na(+) uptake occurs predominantly via Na(+)-Cl(-) co-transporter (NCC)-containing cells. These observations suggest that Na(+) uptake via NHE3b, but not NCC, is regulated by H2S. Whole-mount immunohistochemistry demonstrated that ionocytes expressing NHE3b also express CSE. These data suggests a physiologically relevant role of H2S as a mechanism to lower Na(+) uptake in zebrafish larvae, probably through its inhibitory action on NHE3b.
Collapse
Affiliation(s)
- Yusuke Kumai
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | | | | | | |
Collapse
|
33
|
Kumai Y, Kwong RWM, Perry SF. A role for transcription factor glial cell missing 2 in Ca2+ homeostasis in zebrafish, Danio rerio. Pflugers Arch 2014; 467:753-65. [PMID: 24893788 DOI: 10.1007/s00424-014-1544-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 05/10/2014] [Accepted: 05/26/2014] [Indexed: 01/06/2023]
Abstract
The present study investigated the role of the transcription factor, glial cell missing 2 (gcm2), in Ca(2+) regulation in zebrafish larvae. Translational gene knockdown of gcm2 decreased Ca(2+) uptake and the density of ionocytes expressing the epithelial Ca(2+) channel (ecac), and disrupted the overall Ca(2+) balance. Ca(2+) uptake and the expression of gcm2 messenger RNA (mRNA) were significantly elevated in larvae acclimated to low Ca(2+) water (25 μM); the stimulation of Ca(2+) uptake was not observed in fish experiencing gcm2 knockdown. Acclimation to acidic water (pH 4) significantly reduced whole-body Ca(2+) content owing to reduced Ca(2+) uptake and increased Ca(2+) efflux. However, ecac mRNA levels and the density of ecac-expressing ionocytes were increased in fish acclimated to acidic water, and maximal Ca(2+) uptake capacity (J MAX) was significantly increased when measured in control water (pH ~7.4). Acclimation of larvae to acidic water significantly increased gcm2 mRNA expression, and in gcm2 morphants, no such stimulation in Ca(2+) uptake was observed after their return to control water. Overexpression of gcm2 mRNA resulted in a significant increase in the numbers of ecac-expressing ionocytes and Ca(2+) uptake. These observations reveal a critical role for gcm2 in Ca(2+) homeostasis in zebrafish larvae.
Collapse
Affiliation(s)
- Yusuke Kumai
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6 N5, Canada
| | | | | |
Collapse
|
34
|
Kumai Y, Bernier NJ, Perry SF. Angiotensin-II promotes Na+ uptake in larval zebrafish, Danio rerio, in acidic and ion-poor water. J Endocrinol 2014; 220:195-205. [PMID: 24301614 DOI: 10.1530/joe-13-0374] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The contribution of the renin-angiotensin system (RAS) to Na(+) uptake was investigated in larval zebrafish (Danio rerio). At 4 days post fertilization (dpf), the level of whole-body angiotensin-II (ANG-II) was significantly increased after 1- or 3-h exposure to acidic (pH=4.0) or ion-poor water (20-fold dilution of Ottawa tapwater), suggesting rapid activation of the RAS. Long-term (24 h) treatment of 3 dpf larvae with ANG-I or ANG-II significantly increased Na(+) uptake which was accompanied by an increase in mRNA expression of the Na(+)-Cl(-) cotransporter (zslc12a10.2). Induction of Na(+) uptake by exposure to ANG-I was blocked by simultaneously treating larvae with lisinopril (an angiotensin-converting enzyme inhibitor). Acute (2 h) exposure to acidic water or ion-poor water led to significant increase in Na(+) uptake which was partially blocked by the ANG-II receptor antagonist, telmisartan. Consistent with these data, translational knockdown of renin prevented the stimulation of Na(+) uptake following exposure to acidic or ion-poor water. The lack of any effects of pharmacological inhibition (using RU486), or knockdown of glucocorticoid receptors on the stimulation of Na(+) uptake during acute exposure to acidic or ion-poor environments, indicates that the acute effects of RAS occur independently of cortisol signaling. The results of this study demonstrate that the RAS is involved in Na(+) homeostasis in larval zebrafish.
Collapse
Affiliation(s)
- Yusuke Kumai
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5 Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1
| | | | | |
Collapse
|
35
|
Conte FP. Origin and differentiation of ionocytes in gill epithelium of teleost fish. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 299:1-25. [PMID: 22959300 DOI: 10.1016/b978-0-12-394310-1.00001-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This paper focuses on the environmental cues that transform the gills of euryhaline teleost fish from an oxygen exchange structure into a bifunctional organ that can control both gaseous movement and water/ion transport. The cellular development that allows this structure to accomplish these tasks begins shortly after fertilization of the egg. It involves alterations of structure and function of embryonic cells [ionoblasts (IB)] that are shed from the pharyngeal anlage area of the embryo. These IB contain unique protein-receptor domains in the plasma membrane. These receptors respond specifically to the environmental cues effecting a calcium-binding protein receptor [calcium-sensing receptor (CaSR)]. The CaSR containing IB act as stem cells and are acted upon by isotocin, a heteroprotein regulator which induces them to form progenitor ionocytes (pIC). The pIC form two types of cells. The first type becomes an aquaphilic ionocyte which regulates uptake of ions and through aquaporin molecules transports water out of the cell and controls body fluids of the fish. This mechanism is essential for freshwater living. The second type becomes a halophilic ionocyte and transports ions out of the cell and controls cell shrinkage by uptake of water via aquaporin molecules. This mechanism is essential for seawater living. These differentiating events in the pIC are controlled by the cross talking of genomic mechanisms found in the precursor IB. To unravel the cross talking events it is necessary to uncover how these genetic pathways are regulated by transcriptional and translational events coming from complementary DNA. Various gene families are involved such as those found in apoptosis mechanisms, regulatory volume regulators and ionic transport systems (cystic fibrosis transmembrane conductance regulator).
Collapse
Affiliation(s)
- Frank P Conte
- Department of Zoology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
36
|
Kumai Y, Kwong RWM, Perry SF. The role of cAMP-mediated intracellular signaling in regulating Na+ uptake in zebrafish larvae. Am J Physiol Regul Integr Comp Physiol 2013; 306:R51-60. [PMID: 24259461 DOI: 10.1152/ajpregu.00317.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the current study, the role of cAMP in stimulating Na(+) uptake in larval zebrafish was investigated. Treating larvae at 4 days postfertilization (dpf) with 10 μM forskolin or 1 μM 8-bromo cAMP significantly increased Na(+) uptake by three-fold and twofold, respectively. The cAMP-dependent stimulation of Na(+) uptake was probably unrelated to protein trafficking via microtubules because pretreatment with 200 μM colchicine or 30 μM nocodazole did not attenuate the magnitude of the response. Na(+) uptake was stimulated markedly following acute (2 h) exposure to acidic water. The acid-induced increase in Na(+) uptake was accompanied by a twofold elevation in whole body cAMP levels and attenuated by inhibiting PKA with 10 μM H-89. Knockdown of Na(+)-H(+) exchanger 3b (NHE3b) attenuated, but did not abolish, the stimulation of Na(+) uptake during forskolin treatment. In glial cell missing 2 morphants, in which the role of NHE3b in Na(+) uptake is diminished and the Na(+)-Cl(-) cotransporter (NCC) becomes the predominant route of Na(+) entry, forskolin treatment continued to increase Na(+) uptake. These data suggest that at least NHE3b and NCC are targeted by cAMP in zebrafish larvae. Staining of larvae with fluorescent forskolin and propranolol revealed the presence of transmembrane adenylyl cyclase within multiple subtypes of ionocytes expressing β-adrenergic receptors. Taken together, results of the present study demonstrate that cAMP-mediated intracellular signaling may regulate multiple Na(+) transporters and plays an important role in regulating Na(+) uptake in zebrafish larvae during acute exposure to an acidic environment.
Collapse
Affiliation(s)
- Yusuke Kumai
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
37
|
Chang WJ, Wang YF, Hu HJ, Wang JH, Lee TH, Hwang PP. Compensatory regulation of Na+ absorption by Na+/H+ exchanger and Na+-Cl- cotransporter in zebrafish (Danio rerio). Front Zool 2013; 10:46. [PMID: 23924428 PMCID: PMC3750650 DOI: 10.1186/1742-9994-10-46] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/02/2013] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION In mammals, internal Na+ homeostasis is maintained through Na+ reabsorption via a variety of Na+ transport proteins with mutually compensating functions, which are expressed in different segments of the nephrons. In zebrafish, Na+ homeostasis is achieved mainly through the skin/gill ionocytes, namely Na+/H+ exchanger (NHE3b)-expressing H+-ATPase rich (HR) cells and Na+-Cl- cotransporter (NCC)-expressing NCC cells, which are functionally homologous to mammalian proximal and distal convoluted tubular cells, respectively. The present study aimed to investigate whether or not the functions of HR and NCC ionocytes are differentially regulated to compensate for disruptions of internal Na+ homeostasis and if the cell differentiation of the ionocytes is involved in this regulation pathway. RESULTS Translational knockdown of ncc caused an increase in HR cell number and a resulting augmentation of Na+ uptake in zebrafish larvae, while NHE3b loss-of-function caused an increase in NCC cell number with a concomitant recovery of Na+ absorption. Environmental acid stress suppressed nhe3b expression in HR cells and decreased Na+ content, which was followed by up-regulation of NCC cells accompanied by recovery of Na+ content. Moreover, knockdown of ncc resulted in a significant decrease of Na+ content in acid-acclimated zebrafish. CONCLUSIONS These results provide evidence that HR and NCC cells exhibit functional redundancy in Na+ absorption, similar to the regulatory mechanisms in mammalian kidney, and suggest this functional redundancy is a critical strategy used by zebrafish to survive in a harsh environment that disturbs body fluid Na+ homeostasis.
Collapse
Affiliation(s)
- Wei-Jen Chang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
38
|
Hwang PP, Chou MY. Zebrafish as an animal model to study ion homeostasis. Pflugers Arch 2013; 465:1233-47. [PMID: 23568368 PMCID: PMC3745619 DOI: 10.1007/s00424-013-1269-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 01/27/2023]
Abstract
Zebrafish (Danio rerio) possesses several advantages as an experimental organism, including the applicability of molecular tools, ease of in vivo cellular observation and functional analysis, and rapid embryonic development, making it an emerging model for the study of integrative and regulatory physiology and, in particular, the epithelial transport associated with body fluid ionic homeostasis. Zebrafish inhabits a hypotonic freshwater environment, and as such, the gills (or the skin, during embryonic stages) assume the role of the kidney in body fluid ionic homeostasis. Four types of ionocyte expressing distinct sets of transporters have been identified in these organs: H+-ATPase-rich, Na+-K+-ATPase-rich, Na+-Cl− cotransporter-expressing and K+-secreting cells; these ionocytes perform transepithelial H+ secretion/Na+ uptake/NH4+ excretion, Ca2+ uptake, Na+/Cl− uptake, and K+ secretion, respectively. Zebrafish ionocytes are analogous to various renal tubular cells, in terms of ion transporter expression and function. During embryonic development, ionocyte progenitors develop from epidermal stem cells and then differentiate into different types of ionocyte through a positive regulatory loop of Foxi3a/-3b and other transcription factors. Several hormones, including cortisol, vitamin D, stanniocalcin-1, calcitonin, and isotocin, were found to participate in the control pathways of ionic homeostasis by precisely studying the target ion transport pathways, ion transporters, or ionocytes of the hormonal actions. In conclusion, the zebrafish model not only enhances our understanding of body fluid ion homeostasis and hormonal control in fish but also informs studies on mammals and other animal species, thereby providing new insights into related fields.
Collapse
Affiliation(s)
- Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| | | |
Collapse
|
39
|
Kwong RWM, Perry SF. The tight junction protein claudin-b regulates epithelial permeability and sodium handling in larval zebrafish, Danio rerio. Am J Physiol Regul Integr Comp Physiol 2013; 304:R504-13. [PMID: 23364531 DOI: 10.1152/ajpregu.00385.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functional role of the tight junction protein claudin-b in larval zebrafish (Danio rerio) was investigated. We showed that claudin-b protein is expressed at epithelial cell-cell contacts on the skin. Translational gene knockdown of claudin-b protein expression caused developmental defects, including edema in the pericardial cavity and yolk sac. Claudin-b morphants exhibited an increase in epithelial permeability to the paracellular marker polyethylene glycol (PEG-4000) and fluorescein isothiocyanate-dextran (FD-4). Accumulation of FD-4 was confined mainly to the yolk sac and pericardial cavity in the claudin-b morphants, suggesting these regions became particularly leaky in the absence of claudin-b expression. Additionally, Na(+) efflux was substantially increased in the claudin-b morphants, which contributed to a significant reduction in whole-body Na(+) levels. These results indicate that claudin-b normally acts as a paracellular barrier to Na(+). Nevertheless, the elevated loss of Na(+) in the morphants was compensated by an increase in Na(+) uptake. Notably, we observed that the increased Na(+) uptake in the morphants was attenuated in the presence of the selective Na(+)/Cl(-)-cotransporter (NCC) inhibitor metolazone, or during exposure to Cl(-)-free water. These results suggested that the increased Na(+) uptake in the morphants was, at least in part, mediated by NCC. Furthermore, treatment with an H(+)-ATPase inhibitor bafilomycin A1 was found to reduce Na(+) uptake in the morphants, suggesting that H(+)-ATPase activity was essential to provide a driving force for Na(+) uptake. Overall, the results suggest that claudin-b plays an important role in regulating epithelial permeability and Na(+) handling in zebrafish.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, K1N 10 6N5 Canada.
| | | |
Collapse
|
40
|
Kumai Y, Nesan D, Vijayan MM, Perry SF. Cortisol regulates Na+ uptake in zebrafish, Danio rerio, larvae via the glucocorticoid receptor. Mol Cell Endocrinol 2012; 364:113-25. [PMID: 22963886 DOI: 10.1016/j.mce.2012.08.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 08/26/2012] [Accepted: 08/27/2012] [Indexed: 12/22/2022]
Abstract
Unlike other freshwater fish previously examined, zebrafish are capable of increasing their rate of Na(+) uptake during chronic exposure to acidic water (pH 4). In the present study, the potential role of cortisol in the induction of Na(+) uptake during acid-exposure was investigated. When zebrafish larvae (4 days post-fertilization) were treated with waterborne cortisol, the rate of Na(+) uptake was significantly increased; this effect was blocked by co-incubating larvae with RU-486, an antagonist selective for the glucocorticoid receptor (GR). A similar induction in Na(+) uptake, which was also blocked by RU-486, was observed when larvae were treated with dexamethasone, a selective GR agonist. Conversely, treating larvae with aldosterone, a selective agonist for the mineralocorticoid receptor (MR) had no effect on Na(+) uptake. Acid-exposure increased whole body cortisol levels and translational knockdown of GR using antisense morpholinos prevented the full induction of Na(+) uptake during exposure to acidic water, further confirming the role of cortisol and GR in Na(+) uptake stimulation. Using immunohistochemistry, GR was localized to ionocytes known to be responsible for Na(+) uptake (HR-cells). Knockdown of Rhcg1, an apical membrane ammonia channel or Na(+)/H(+) exchanger 3b (NHE3b), proteins known to play an important role in facilitating Na(+) uptake in acidic water, prevented the stimulatory effects of cortisol treatment on Na(+) uptake, suggesting that cortisol regulates Na(+) uptake by stimulating an Rhcg1-NHE3b "functional metabolon".
Collapse
Affiliation(s)
- Yusuke Kumai
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
41
|
Cruz SA, Chao PL, Hwang PP. Cortisol promotes differentiation of epidermal ionocytes through Foxi3 transcription factors in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2012; 164:249-57. [PMID: 23010242 DOI: 10.1016/j.cbpa.2012.09.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 01/30/2023]
Abstract
Glucocorticoid regulates epidermal cell proliferation, and is used to treat certain skin disorders. Cortisol, a glucocorticoid, is also linked to skin development in teleost fish. Cortisol increases the number of epithelial ionocytes during environmental acclimation in euryhaline fishes, but it is unclear whether this is due to increased differentiation or proliferation. To investigate, we treated zebrafish embryos with exogenous cortisol (20mg/L). The densities of the ionocytes Na(+)-K(+)-ATPase rich cells (NaRCs) and H(+)-ATPase rich cells (HRCs) were significantly increased by cortisol, and this was accompanied by an increase in the respective marker genes. Expression of the glucocorticoid receptor (GR) gene was decreased. Cortisol treatment also increased ionocytes in cultured adult zebrafish gills, and up-regulated expression of genes encoding forkhead box I3 (foxi3a and foxi3b) transcription factors, which regulate ionocyte progenitor development. GR expression was up-regulated by cortisol in vitro; as such, the observed decrease in vivo reflects a regulatory systemic-negative feedback. Notably, in situ hybridization revealed that foxi3a/b mRNA expression was increased by cortisol at 24-48h post-fertilization. Cortisol also decreased keratinocytes, but did not affect epidermal stem cells or mucus cells. We conclude that foxi3a/b transactivation by cortisol-GR favors differentiation of ionocyte progenitors, thereby facilitating proliferation of mature ionocytes.
Collapse
Affiliation(s)
- Shelly Abad Cruz
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
42
|
Lin CC, Lin LY, Hsu HH, Thermes V, Prunet P, Horng JL, Hwang PP. Acid secretion by mitochondrion-rich cells of medaka (Oryzias latipes) acclimated to acidic freshwater. Am J Physiol Regul Integr Comp Physiol 2012; 302:R283-91. [DOI: 10.1152/ajpregu.00483.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, medaka embryos were exposed to acidified freshwater (pH 5) to investigate the mechanism of acid secretion by mitochondrion-rich (MR) cells in embryonic skin. With double or triple in situ hybridization/immunocytochemistry, the Na+/H+ exchanger 3 (NHE3) and H+-ATPase were localized in two distinct subtypes of MR cells. NHE3 was expressed in apical membranes of a major proportion of MR cells, whereas H+-ATPase was expressed in basolateral membranes of a much smaller proportion of MR cells. Gill mRNA levels of NHE3 and H+-ATPase and the two subtypes of MR cells in yolk sac skin were increased by acid acclimation; however, the mRNA level of NHE3 was remarkably higher than that of H+-ATPase. A scanning ion-selective electrode technique was used to measure H+, Na+, and NH4+ transport by individual MR cells in larval skin. Results showed that Na+ uptake and NH4+ excretion by MR cells increased after acid acclimation. These findings suggested that the NHE3/Rh glycoprotein-mediated Na+ uptake/NH4+ excretion mechanism plays a critical role in acidic equivalent (H+/NH4+) excretion by MR cells of the freshwater medaka.
Collapse
Affiliation(s)
- Chia-Cheng Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China; and
| | - Hao-Hsuan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Violette Thermes
- Institut National de la Recherche Agronomique, Station Commune de Recherches en Ichtyophysiologie, Biodiversité et Environnement, Campus de Beaulieu, Rennes, France
| | - Patrick Prunet
- Institut National de la Recherche Agronomique, UR1037, SCRIBE, IFR140, Biogenouest, Rennes, France; and
| | - Jiun-Lin Horng
- Department of Anatomy, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| |
Collapse
|
43
|
|
44
|
Acquisition of glial cells missing 2 enhancers contributes to a diversity of ionocytes in zebrafish. PLoS One 2011; 6:e23746. [PMID: 21858216 PMCID: PMC3157436 DOI: 10.1371/journal.pone.0023746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 07/23/2011] [Indexed: 11/19/2022] Open
Abstract
Glial cells missing 2 (gcm2) encoding a GCM-motif transcription factor is expressed in the parathyroid in amniotes. In contrast, gcm2 is expressed in pharyngeal pouches (a homologous site of the parathyroid), gills, and H(+)-ATPase-rich cells (HRCs), a subset of ionocytes on the skin surface of the teleost fish zebrafish. Ionocytes are specialized cells that are involved in osmotic homeostasis in aquatic vertebrates. Here, we showed that gcm2 is essential for the development of HRCs and Na(+)-Cl(-) co-transporter-rich cells (NCCCs), another subset of ionocytes in zebrafish. We also identified gcm2 enhancer regions that control gcm2 expression in ionocytes of zebrafish. Comparisons of the gcm2 locus with its neighboring regions revealed no conserved elements between zebrafish and tetrapods. Furthermore, We observed gcm2 expression patterns in embryos of the teleost fishes Medaka (Oryzias latipes) and fugu (Fugu niphobles), the extant primitive ray-finned fishes Polypterus (Polypterus senegalus) and sturgeon (a hybrid of Huso huso × Acipenser ruhenus), and the amphibian Xenopus (Xenopus laevis). Although gcm2-expressing cells were observed on the skin surface of Medaka and fugu, they were not found in Polypterus, sturgeon, or Xenopus. Our results suggest that an acquisition of enhancers for the expression of gcm2 contributes to a diversity of ionocytes in zebrafish during evolution.
Collapse
|
45
|
Shh signalling restricts the expression of Gcm2 and controls the position of the developing parathyroids. Dev Biol 2011; 353:194-205. [DOI: 10.1016/j.ydbio.2011.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 02/12/2011] [Accepted: 02/14/2011] [Indexed: 11/24/2022]
|
46
|
Hwang PP, Lee TH, Lin LY. Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. Am J Physiol Regul Integr Comp Physiol 2011; 301:R28-47. [PMID: 21451143 DOI: 10.1152/ajpregu.00047.2011] [Citation(s) in RCA: 312] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fish encounter harsh ionic/osmotic gradients on their aquatic environments, and the mechanisms through which they maintain internal homeostasis are more challenging compared with those of terrestrial vertebrates. Gills are one of the major organs conducting the internal ionic and acid-base regulation, with specialized ionocytes as the major cells carrying out active transport of ions. Exploring the iono/osmoregulatory mechanisms in fish gills, extensive literature proposed several models, with many conflicting or unsolved issues. Recent studies emerged, shedding light on these issues with new opened windows on other aspects, on account of available advanced molecular/cellular physiological approaches and animal models. Respective types of ionocytes and ion transporters, and the relevant regulators for the mechanisms of NaCl secretion, Na(+) uptake/acid secretion/NH(4)(+) excretion, Ca(2+) uptake, and Cl(-) uptake/base secretion, were identified and functionally characterized. These new ideas broadened our understanding of the molecular/cellular mechanisms behind the functional modification/regulation of fish gill ion transport during acute and long-term acclimation to environmental challenges. Moreover, a model for the systematic and local carbohydrate energy supply to gill ionocytes during these acclimation processes was also proposed. These provide powerful platforms to precisely study transport pathways and functional regulation of specific ions, transporters, and ionocytes; however, very few model species were established so far, whereas more efforts are needed in other species.
Collapse
Affiliation(s)
- Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan.
| | | | | |
Collapse
|
47
|
Chou MY, Hung JC, Wu LC, Hwang SPL, Hwang PP. Isotocin controls ion regulation through regulating ionocyte progenitor differentiation and proliferation. Cell Mol Life Sci 2010; 68:2797-809. [PMID: 21104292 PMCID: PMC3142547 DOI: 10.1007/s00018-010-0593-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 10/31/2010] [Accepted: 11/05/2010] [Indexed: 10/25/2022]
Abstract
The present study using zebrafish as a model explores the role of isotocin, a homolog of oxytocin, in controlling ion regulatory mechanisms. Double-deionized water treatment for 24 h significantly stimulated isotocin mRNA expression in zebrafish embryos. Whole-body Cl(-), Ca(2+), and Na(+) contents, mRNA expressions of ion transporters and ionocyte-differentiation related transcription factors, and the number of skin ionocytes decreased in isotocin morphants. In contrast, overexpression of isotocin caused an increase in ionocyte numbers. Isotocin morpholino caused significant suppression of foxi3a mRNA expression, while isotocin cRNA stimulated foxi3a mRNA expressions at the tail-bud stage of zebrafish embryos. The density of P63 (an epidermal stem cell marker)-positive cells was downregulated by isotocin morpholinos and was upregulated by isotocin cRNA. Taken together, isotocin stimulates the proliferation of epidermal stem cells and differentiation of ionocyte progenitors by regulating the P63 and Foxi3a transcription factors, consequently enhancing the functional activities of ionocytes.
Collapse
Affiliation(s)
- Ming-Yi Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
48
|
Thermes V, Lin CC, Hwang PP. Expression of Ol-foxi3 and Na(+)/K(+)-ATPase in ionocytes during the development of euryhaline medaka (Oryzias latipes) embryos. Gene Expr Patterns 2010; 10:185-92. [PMID: 20388555 DOI: 10.1016/j.gep.2010.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 03/30/2010] [Accepted: 04/02/2010] [Indexed: 01/12/2023]
Abstract
Osmoregulation is a vital function that is essential to all vertebrates. Ionocytes are epithelial cells responsible for this function and have been extensively studied in adult teleost fish gills. The euryhaline medaka (Oryzias latipes) has recently emerged as an investigative model because of its ability to acclimatize easily to water presenting various salinities. However, no studies to date have focused on the development of ionocytes in medaka embryos. We first analyzed the distribution of ionocytes in the skin and gills during development, using a specific marker of differentiated ionocytes (the Na(+)/K(+)-ATPase pump, or NKA). Strikingly, we were able to identify two ionocyte domains on the yolk surface ectoderm, that we named the Vitellin Zone (VZ) and the Lateral Zone (LZ). In zebrafish, ionocyte differentiation has been shown to be controlled by two forkhead-box genes, foxi3a and foxi3b. We cloned the medaka foxi3 ortholog which appeared to be highly similar to foxi3b. Whole-mount in situ hybridizations performed on medaka embryos revealed that Ol-foxi3 is expressed in differentiated ionocytes of the pharyngeal endoderm, the branchial arches and the yolk epidermis, as well as in epibranchial placode territories. We further focused on the expression patterns of the yolk epidermis and compared the expression of Ol-foxi3 with that of the non-neural progenitor marker p63. We evidenced that Ol-foxi3 is expressed in progenitor cells which are first of all located uniformly in the VZ and then transitorily clustered in the LZ. Taken together, these data contribute to a clearer understanding of osmoregulatory tissue ontogenesis in euryhaline fish.
Collapse
|
49
|
Bayaa M, Vulesevic B, Esbaugh A, Braun M, Ekker ME, Grosell M, Perry SF. The involvement of SLC26 anion transporters in chloride uptake in zebrafish (Danio rerio) larvae. ACTA ACUST UNITED AC 2009; 212:3283-95. [PMID: 19801433 DOI: 10.1242/jeb.033910] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
After demonstrating phylogenetic relatedness to orthologous mammalian genes, tools were developed to investigate the roles of three members (A3, A4 and A6c) of the SLC26 anion exchange gene family in Cl- uptake and HCO3 excretion in embryos and larvae of zebrafish (Danio rerio). Whole-mount in situ hybridization revealed the presence of SLC26 mRNA in gill primordia, mesonephros and heart (slc26a3 and a4 only) at 5-9 days postfertilization (d.p.f.). SLC26A3 protein was highly expressed in lateral line neuromasts and within the gill, was localized to a sub-population of epithelial cells, which often (but not always) coexpressed Na+/K+-ATPase. SLC26 mRNA levels increased with developmental age, peaking at 5-10 d.p.f.; the largest increases in rates of Cl- uptake (JinCl-) preceded the mRNA spike, occurring at 2-5 d.p.f. Raising zebrafish in water with a low [Cl-] caused marked increases in JinCl- at 3-10 d.p.f. and was associated with increased levels of SLC26 mRNA. Raising fish in water of high [Cl-] was without effect on JinCl- or SLC26 transcript abundance. Selective gene knockdown using morpholino antisense oligonucleotides demonstrated a significant role for SLC26A3 in Cl- uptake in larval fish raised in control water and roles for A3, A4 and A6c in fish raised in water with low [Cl-]. Prolonged (7 days) or acute (24 h) exposure of fish to elevated (2 or 5 mmol l(-1)) ambient [HCO3-] caused marked increases in Cl- uptake when determined in water of normal [HCO3-] that were accompanied by elevated levels of SLC26 mRNA. The increases in JinCl- associated with high ambient [HCO3-] were not observed in the SLC26 morphants (significant only at 5 mmol l(-1) HCO3- for A4 and 2 mmol l(-1) HCO3- for A6c). Net base excretion was markedly inhibited in the slc26a3 and a6c morphants thereby implicating these genes in Cl-/HCO3- exchange. The results suggest that under normal conditions, Cl- uptake in zebrafish larvae is mediated by SLC26A3 Cl-/HCO3- exchangers but under conditions necessitating higher rates of high affinity Cl- uptake, SlC26A4 and SLC26A6c may assume a greater role.
Collapse
Affiliation(s)
- M Bayaa
- Department of Biology and Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Horng JL, Hwang PP, Shih TH, Wen ZH, Lin CS, Lin LY. Chloride transport in mitochondrion-rich cells of euryhaline tilapia (Oreochromis mossambicus) larvae. Am J Physiol Cell Physiol 2009; 297:C845-54. [PMID: 19657057 DOI: 10.1152/ajpcell.00218.2009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A noninvasive scanning ion-selective electrode technique (SIET) was applied to measure Cl- transport at individual mitochondrion-rich cells (MRCs) in the skin of euryhaline tilapia (Oreochromis mossambicus) larvae. In seawater (SW)-acclimated larvae, outward Cl- gradients (20-80 mM higher than the background) were measured at the surface, indicating a secretion of Cl- from the skin. By serial probing over the surface of MRCs and adjacent keratinocytes (KCs), a significant outward flux of Cl- was detected at the apical opening (membrane) of MRCs. Treatment with 100 microM ouabain or bumetanide inhibited the Cl- secretion by approximately 75%. In freshwater (FW)-acclimated larvae, a lower level of outward Cl- gradients (0.2-1 mM) was measured at the skin surface. Low-Cl- water (<0.005 mM) acclimation increased the apical Na+-Cl- cotransporter (NCC) immunoreactivity of MRCs in the larval skin. An inward flux of Cl- was detected when probing the exterior surface of a group of MRCs (convex-MRCs) that express the NCC. An NCC inhibitor (100 microM metolazone) reduced the flux by approximately 90%. This study provides direct and convincing evidence for Cl- transport by MRCs of SW- and FW-acclimated euryhaline tilapia and the involvement of an apical NCC in Cl- uptake of MRCs of FW-acclimated fish.
Collapse
Affiliation(s)
- Jiun-Lin Horng
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei
| | | | | | | | | | | |
Collapse
|