1
|
Takenaka T, Hasan A, Marumo T, Inoue T, Miyazaki T, Suzuki H, Kurosaki Y, Ishii N, Nishiyama A, Hayashi M. Klotho Supplementation Reverses Renal Dysfunction and Interstitial Fibrosis in Remnant Kidney. Kidney Blood Press Res 2023; 48:326-337. [PMID: 37019097 DOI: 10.1159/000530469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
INTRODUCTION While recent investigations show that klotho exerts renoprotective actions, it has not been fully addressed whether klotho protein supplementation reverses renal damage. METHODS The impacts of subcutaneous klotho supplementation on rats with subtotal nephrectomy were examined. Animals were divided into 3 groups: group 1 (short remnant [SR]): remnant kidney for 4 weeks, group 2 (long remnant [LR]): remnant kidney for 12 weeks, and group 3 (klotho supplementation [KL]): klotho protein (20 μg/kg/day) supplementation on the remnant kidney. Blood pressure, blood and urine compositions with conventional methods such as enzyme-linked immunosorbent assay and radioimmunoassay, kidney histology, and renal expressions of various genes were analyzed. In vitro studies were also performed to support in vivo findings. RESULTS Klotho protein supplementation decreased albuminuria (-43%), systolic blood pressure (-16%), fibroblast growth factor (FGF) 23 (-51%) and serum phosphate levels (-19%), renal angiotensin II concentration (-43%), fibrosis index (-70%), renal expressions of collagen I (-55%), and transforming growth factor β (-59%) (p < 0.05 for all). Klotho supplementation enhanced fractional excretion of phosphate (+45%), glomerular filtration rate (+76%), renal expressions of klotho (+148%), superoxide dismutase (+124%), and bone morphogenetic protein (BMP) 7 (+174%) (p < 0.05 for all). CONCLUSION Our data indicated that klotho protein supplementation inactivated renal renin-angiotensin system, reducing blood pressure and albuminuria in remnant kidney. Furthermore, exogenous klotho protein supplementation elevated endogenous klotho expression to increase phosphate excretion with resultant reductions in FGF23 and serum phosphate. Finally, klotho supplementation reversed renal dysfunction and fibrosis in association with improved BMP7 in remnant kidney.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- Department of Nephrology, International University of Health and Welfare, Tokyo, Japan
| | - Arif Hasan
- Department of Nephrology, International University of Health and Welfare, Tokyo, Japan
| | - Takeshi Marumo
- Department of Nephrology, International University of Health and Welfare, Tokyo, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Saitama Medical University, Iruma, Japan
| | - Takashi Miyazaki
- Department of Nephrology, Saitama Medical University, Iruma, Japan
| | - Hiromichi Suzuki
- Department of Nephrology, Saitama Medical University, Iruma, Japan
| | | | - Naohito Ishii
- Department of Biochemistry, Kitasato University, Sagamihara, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University, Takamatsu, Japan
| | | |
Collapse
|
2
|
Yamakoshi S, Ito O, Rong R, Ohsaki Y, Nakamura T, Hirose T, Takahashi K, Mori T, Totsune K, Kohzuki M. High Salt Intake-Increased (Pro)renin Receptor Expression Is Exaggerated in the Kidney of Dahl Salt-Sensitive Rats. Hypertension 2020; 75:1447-1454. [PMID: 32336231 DOI: 10.1161/hypertensionaha.119.13905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The (P)RR ([pro]renin receptor) was identified as a new component of the renin-angiotensin system. We previously reported that high salt (HS) intake increased the (P)RR expression in several nephron segments of Sprague-Dawley rats. Other studies reported HS intake increased the XO (xanthine oxidase) activity and an MR (mineralocorticoid receptor) antagonist inhibited HS intake-increased (P)RR expression in the kidneys of Dahl salt-sensitive (DS) rats. The present study examined the effects of HS intake on (P)RR expression in the kidney of DS rats. Male DS rats were fed a normal salt diet or an HS diet for 4 weeks. Some of the rats fed on the HS diet were treated with the XO inhibitor, febuxostat, and the MR antagonist, spironolactone. Immunoblot and immunohistochemical analyses showed that HS intake increased (P)RR expression in the renal cortex by 22.6-fold, the proximal tubules by 4.9-fold and the distal tubules, respectively. Both febuxostat and spironolactone inhibited HS intake-increased (P)RR expression in the renal cortex. Febuxostat inhibited HS intake-increased (P)RR expression in the proximal tubules, whereas spironolactone inhibited HS intake-increased (P)RR expression in the distal tubules. Additionally, deoxycorticosterone acetate increased (P)RR expression in the renal cortex and distal tubules but not in the proximal tubules of DS rats fed the normal salt diet. These results indicate that HS intake greatly increases (P)RR expression in the renal cortex of DS rats. The mechanisms of HS intake-increased (P)RR expression may work in an XO-dependent manner in the proximal tubules and an MR-dependent manner in the distal tubules.
Collapse
Affiliation(s)
- Seiko Yamakoshi
- From the Department of Internal Medicine and Rehabilitation Science (S.Y., O.I., R.R., T.N., M.K.), Tohoku University Graduate School of Medicine, Japan
| | - Osamu Ito
- From the Department of Internal Medicine and Rehabilitation Science (S.Y., O.I., R.R., T.N., M.K.), Tohoku University Graduate School of Medicine, Japan.,Division of General Medicine and Rehabilitation (O.I.), Tohoku Medical and Pharmaceutical University Faculty of Medicine, Japan
| | - Rong Rong
- From the Department of Internal Medicine and Rehabilitation Science (S.Y., O.I., R.R., T.N., M.K.), Tohoku University Graduate School of Medicine, Japan
| | - Yusuke Ohsaki
- Division of Nephrology, Endocrinology, and Vascular Medicine (Y.O.), Tohoku University Graduate School of Medicine, Japan
| | - Takahiro Nakamura
- From the Department of Internal Medicine and Rehabilitation Science (S.Y., O.I., R.R., T.N., M.K.), Tohoku University Graduate School of Medicine, Japan
| | - Takuo Hirose
- Division of Nephrology and Endocrinology (T.H., T.M.), Tohoku Medical and Pharmaceutical University Faculty of Medicine, Japan
| | - Kazuhiro Takahashi
- Division of Endocrinology and Applied Medical Science (K. Takahashi), Tohoku University Graduate School of Medicine, Japan
| | - Takefumi Mori
- Division of Nephrology and Endocrinology (T.H., T.M.), Tohoku Medical and Pharmaceutical University Faculty of Medicine, Japan
| | - Kazuhito Totsune
- Department of Planning for Drug Development and Clinical Evaluation, Tohoku University Graduate School of Pharmaceutical Sciences, Japan (K. Totsune)
| | - Masahiro Kohzuki
- From the Department of Internal Medicine and Rehabilitation Science (S.Y., O.I., R.R., T.N., M.K.), Tohoku University Graduate School of Medicine, Japan
| |
Collapse
|
3
|
Liu F, Zhuang S. Role of Receptor Tyrosine Kinase Signaling in Renal Fibrosis. Int J Mol Sci 2016; 17:ijms17060972. [PMID: 27331812 PMCID: PMC4926504 DOI: 10.3390/ijms17060972] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/23/2016] [Accepted: 06/01/2016] [Indexed: 12/31/2022] Open
Abstract
Renal fibrosis can be induced in different renal diseases, but ultimately progresses to end stage renal disease. Although the pathophysiologic process of renal fibrosis have not been fully elucidated, it is characterized by glomerulosclerosis and/or tubular interstitial fibrosis, and is believed to be caused by the proliferation of renal inherent cells, including glomerular epithelial cells, mesangial cells, and endothelial cells, along with defective kidney repair, renal interstitial fibroblasts activation, and extracellular matrix deposition. Receptor tyrosine kinases (RTKs) regulate a variety of cell physiological processes, including metabolism, growth, differentiation, and survival. Many studies from in vitro and animal models have provided evidence that RTKs play important roles in the pathogenic process of renal fibrosis. It is also showed that tyrosine kinases inhibitors (TKIs) have anti-fibrotic effects in basic research and clinical trials. In this review, we summarize the evidence for involvement of specific RTKs in renal fibrosis process and the employment of TKIs as a therapeutic approach for renal fibrosis.
Collapse
Affiliation(s)
- Feng Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
- Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA.
| |
Collapse
|
4
|
Nutter FH, Haylor JL, Khwaja A. Inhibiting ERK Activation with CI-1040 Leads to Compensatory Upregulation of Alternate MAPKs and Plasminogen Activator Inhibitor-1 following Subtotal Nephrectomy with No Impact on Kidney Fibrosis. PLoS One 2015; 10:e0137321. [PMID: 26415098 PMCID: PMC4586140 DOI: 10.1371/journal.pone.0137321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/15/2015] [Indexed: 11/27/2022] Open
Abstract
Extracellular-signal regulated kinase (ERK) activation by MEK plays a key role in many of the cellular processes that underlie progressive kidney fibrosis including cell proliferation, apoptosis and transforming growth factor β1-mediated epithelial to mesenchymal transition. We therefore assessed the therapeutic impact of ERK1/2 inhibition using a MEK inhibitor in the rat 5/6 subtotal nephrectomy (SNx) model of kidney fibrosis. There was a twentyfold upregulation in phospho-ERK1/2 expression in the kidney after SNx in Male Wistar rats. Rats undergoing SNx became hypertensive, proteinuric and developed progressive kidney failure with reduced creatinine clearance. Treatment with the MEK inhibitor, CI-1040 abolished phospho- ERK1/2 expression in kidney tissue and prevented phospho-ERK1/2 expression in peripheral lymphocytes during the entire course of therapy. CI-1040 had no impact on creatinine clearance, proteinuria, glomerular and tubular fibrosis, and α-smooth muscle actin expression. However, inhibition of ERK1/2 activation led to significant compensatory upregulation of the MAP kinases, p38 and JNK in kidney tissue. CI-1040 also increased the expression of plasminogen activator inhibitor-1 (PAI-1), a key inhibitor of plasmin-dependent matrix metalloproteinases. Thus inhibition of ERK1/2 activation has no therapeutic effect on kidney fibrosis in SNx possibly due to increased compensatory activation of the p38 and JNK signalling pathways with subsequent upregulation of PAI-1.
Collapse
Affiliation(s)
- Faith Hannah Nutter
- Academic Unit of Nephrology, Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, England
- * E-mail:
| | - John L. Haylor
- Academic Unit of Nephrology, Department of Infection and Immunity, Medical School, University of Sheffield, Sheffield, England
| | - Arif Khwaja
- Sheffield Kidney Institute, Northern General Hospital, Sheffield, England
| |
Collapse
|
5
|
Upregulation of transglutaminase and ε (γ-glutamyl)-lysine in the Fisher-Lewis rat model of chronic allograft nephropathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:651608. [PMID: 25143942 PMCID: PMC4131109 DOI: 10.1155/2014/651608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/11/2014] [Indexed: 02/05/2023]
Abstract
Background. Tissue transglutaminase (TG2), a cross-linking enzyme, modulates deposition of extracellular matrix protein in renal fibrosis. This study aimed to examine TG2 and its cross-link product ε(γ-glutamyl)-lysine in the Fisher-Lewis rat renal transplantation (RTx) model of chronic allograft nephropathy (CAN). Materials and Methods. Left renal grafts from male Fisher and Lewis were transplanted into Lewis rats, generating allografts and isografts, respectively. Blood pressure, renal function, and proteinuria were monitored for up to 52 weeks. At termination, CAN was assessed in the renal tissue by light and electron microscopy, TG2 and ε(γ-glutamyl)-lysine by immunofluorescence, and the urinary ε(γ-glutamyl)-lysine by high performance liquid chromatography. Results. Compared to the isograft, the allografts were hypertensive, proteinuric, and uraemic and developed CAN. Extracellular TG2 (glomerulus: 64.55 ± 17.61 versus 2.11 ± 0.17, P < 0.001; interstitium: 13.72 ± 1.62 versus 3.19 ± 0.44, P < 0.001), ε(γ-glutamyl)-lysine (glomerulus: 21.74 ± 2.71 versus 1.98 ± 0.37, P < 0.01; interstitium: 37.96 ± 17.06 versus 0.42 ± 0.11, P < 0.05), TG2 enzyme activity (1.09 ± 0.13 versus 0.41 ± 0.03 nmol/h/mg protein, P < 0.05), TG2 mRNA (20-fold rise), and urinary ε(γ-glutamyl)-lysine (534.2 ± 198.4 nmol/24 h versus 57.2 ± 4.1 nmol/24 h, P < 0.05) levels were significantly elevated in the allografts and showed a positive linear correlation with tubulointerstitial fibrosis. Conclusion. CAN was associated with upregulation of renal TG2 pathway, which has a potential for pharmacological intervention. The elevated urinary ε(γ-glutamyl)-lysine, measured for the first time in RTx, is a potential biomarker of CAN.
Collapse
|
6
|
Nutter F, Khwaja A, Haylor J. Seliciclib inhibits renal hypertrophy but not fibrosis in the rat following subtotal nephrectomy. Nephron Clin Pract 2013; 122:114-22. [PMID: 23689642 DOI: 10.1159/000350248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 02/26/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND 5/6 subtotal nephrectomy (SNx) is a non-immune stimulus used to induce renal fibrosis. The ability of seliciclib, a cyclin-dependent kinase inhibitor, to reduce kidney hypertrophy and extracellular matrix (ECM) deposition has been examined in the SNx rat. METHODS Wistar rats were subjected to SNx under isoflurane anaesthesia. The acute effect of seliciclib 28 mg/kg (5 days) on compensatory renal growth (CRG), kidney protein and DNA was determined. In chronic studies albuminuria, hypertension and GFR were monitored. Ki67, apoptag and α-smooth muscle actin were determined by immunohistochemistry together with Masson's trichrome staining. The effect of a maximum non-hypotensive dose of seliciclib 28 mg/kg (8 weeks) was determined. RESULTS Acutely, the remnant kidney developed CRG. Seliciclib 28 mg/kg inhibited both CRG by 45% and increased kidney protein by 48% without affecting increased kidney DNA. Chronically, SNx rats developed albuminuria, hypertension, low GFR with increased tubulointerstitial cell proliferation, apoptosis, myofibroblast accumulation and enhanced ECM deposition. Seliciclib 28 mg/kg (8 weeks) had no effect on either renal function or renal pathology. Plasma concentrations of seliciclib exceeded 5 µM throughout the study. CONCLUSIONS Despite inhibition of early renal hypertrophy, a maximum non-hypotensive dose of seliciclib 28 mg/kg had no impact on the progression of kidney fibrosis in the SNx rat.
Collapse
Affiliation(s)
- F Nutter
- Academic Unit of Nephrology, Department of Infection and Immunity, Medical School Sheffield, Sheffield, UK
| | | | | |
Collapse
|
7
|
Vass DG, Shrestha B, Haylor J, Hughes J, Marson L. Inflammatory lymphangiogenesis in a rat transplant model of interstitial fibrosis and tubular atrophy. Transpl Int 2012; 25:792-800. [PMID: 22533613 DOI: 10.1111/j.1432-2277.2012.01482.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously reported de novo lymphangiogenesis in human renal allograft nephrectomy specimens that exhibited interstitial fibrosis and tubular atrophy (IFTA). This study examined whether a similar pathology developed in an experimental model of renal transplantation in the rat. Renal transplants were carried out in rats comprising both isografts (Lewis kidneys → Lewis rats) and allografts (Fisher kidneys → Lewis rats). Animals were immunosuppressed in the immediate postoperative period and sacrificed at 12 months. Experimental readouts included lymphatic vessel number and location, inflammatory cell infiltration, interstitial fibrosis, renal function, blood pressure and proteinuria. Rat allografts demonstrated the characteristic features of IFTA with increased macrophage and T cell infiltration and scattered B cells aggregates. Rat allografts exhibited impaired renal function and proteinuria. Although there was no difference in the number of perivascular lymphatic vessels, there was a striking 18-fold increase in the number of interstitial lymphatic vessels in renal allografts. Furthermore, the lymphatic vessel number correlated with the extent of interstitial fibrosis. This rat allograft model of IFTA demonstrates a marked increase in the number of interstitial lymphatic vessels and mirrors previous work in failing human renal allografts.
Collapse
Affiliation(s)
- David George Vass
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | | | | | | | | |
Collapse
|
8
|
Troib A, Landau D, Youngren JF, Kachko L, Rabkin R, Segev Y. The effects of type 1 IGF receptor inhibition in a mouse model of diabetic kidney disease. Growth Horm IGF Res 2011; 21:285-291. [PMID: 21865067 PMCID: PMC4238882 DOI: 10.1016/j.ghir.2011.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/26/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVE We have recently shown increased sensitivity to IGF-I induced signal transduction in kidneys of diabetic mice. Accordingly we investigated the effects of PQ401, a novel diarylurea compound that inhibits IGF1R autophosphorylation in type I diabetes. METHODS Control (C) and Diabetic (D) mice were administered PQ401 (CP, DP) or vehicle (C, D) for 3weeks. RESULTS CP animals showed a decrease in renal phosphorylated (p-)AKT and p-IGF1R. However, PQ401 had no effect on diabetic state (hyperglycemia, weight loss) or renal disease parameters (hypertrophy, hyperfiltration and albuminuria). Type IV collagen as well as TGF-β mRNA increased in DP and D compared to C. In the CP group renal hypertrophy with fat accumulation in proximal tubuli and increased renal IGF-I, collagen IV and TGF-β mRNA were seen. CONCLUSIONS IGF1R inhibition by PQ401 exerted no significant effects on diabetic kidney disease parameters, arguing against a role for IGF-I in the pathogenesis of diabetic kidney disease. However, PQ401 affects normal kidneys, inducing renal hypertrophy as well as collagen and fat accumulation, with increased renal IGF-I mRNA, suggestive of a damage-regeneration process. Therefore, this diarylurea compound is not beneficial in early diabetic kidney disease. Its potential deleterious effects on kidney tissue need to be further investigated.
Collapse
Affiliation(s)
- Ariel Troib
- Shraga Segal Department of Microbiology and Immunology, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | | | | | |
Collapse
|
9
|
Mimura I, Nangaku M, Nishi H, Inagi R, Tanaka T, Fujita T. Cytoglobin, a novel globin, plays an antifibrotic role in the kidney. Am J Physiol Renal Physiol 2010; 299:F1120-33. [PMID: 20719976 DOI: 10.1152/ajprenal.00145.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytoglobin (Cygb), a novel member of the globin superfamily, is expressed by fibroblasts in various organs. However, its function remains unknown. Because of its localization, we speculated that a biological role of Cygb may be related to fibrogenesis. To clarify the role of Cygb in kidney fibrosis, we employed the remnant kidney model in rats. Immunohistochemical analysis showed an increase in Cygb expression in parallel with disease progression. To investigate the functional consequence of Cygb upregulation, we established transgenic rats overexpressing rat Cygb. Overexpression of Cygb improved histological injury, preserved renal function, and ameliorated fibrosis, as estimated by the accumulation of collagen I and IV as well as Masson trichrome staining. These protective effects of Cygb were associated with a decrease in nitrotyrosine deposition in the kidney and urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) excretion as a marker of oxidative stress. We also performed in vitro studies utilizing a rat kidney fibroblast cell line transiently overexpressing Cygb, an inducible kidney cell transfected with Cygb, and primary cultured fibroblasts isolated from the kidneys of the transgenic rats. These different experimental systems consistently showed that Cygb inhibited collagen synthesis. Furthermore, mutant disruption of heme in Cygb that impaired its antioxidant properties led to the loss of antifibrotic effects, suggesting that Cygb reduces fibrosis via a radical scavenging function. In conclusion, we showed that Cygb plays an important role in protection of the kidney against fibrosis via the amelioration of oxidative stress both in vitro and in vivo. Cygb might represent a good therapeutic target in chronic kidney disease.
Collapse
Affiliation(s)
- Imari Mimura
- Div. of Nephrology and Endocrinology, Univ. of Tokyo School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Park JW, Bae EH, Kim IJ, Ma SK, Choi C, Lee J, Kim SW. Paricalcitol attenuates cyclosporine-induced kidney injury in rats. Kidney Int 2010; 77:1076-85. [DOI: 10.1038/ki.2010.69] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Landau D, Eshet R, Troib A, Gurman Y, Chen Y, Rabkin R, Segev Y. Increased renal Akt/mTOR and MAPK signaling in type I diabetes in the absence of IGF type 1 receptor activation. Endocrine 2009; 36:126-34. [PMID: 19387875 DOI: 10.1007/s12020-009-9190-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 10/20/2022]
Abstract
Growth hormone (GH) and IGF-I have been implicated in the pathogenesis of type I diabetic (DM) nephropathy. We investigated renal GH receptor (GHR) and IGF-type 1 receptor (IGF1R) signaling in an animal model of type I DM. Kidney tissue was examined for GHR and IGF1R key signaling molecules. GHR levels were unchanged and IGF-I mRNA levels were decreased in the diabetic group (D). Basal and GH stimulated phosphorylated (p-) JAK2 and STAT5 levels were similar in controls (C) and D. The levels of p-IGF1R were similar in the two groups at baseline, while pAkt, pGSK3, p-mTOR, p-rpS6, p-erk1/2 (Mapk), and pSTAT-3 were increased in D. Following IGF-I administration p-Akt, p-rpS6, p-Mapk, and p-GSK levels increased more pronouncedly in D versus C. In conclusion, the lack of JAK2-STAT5 activation and the decrease in kidney IGF-I mRNA levels in D argue against a role for the GH activated JAK2-STAT5 pathway in the pathogenesis of diabetic nephropathy. On the other hand while IGF1R phosphorylation was unchanged, Akt/mTOR and MAPK signaling were hyperactivate in DM, suggesting their involvement. The increase in baseline activated Akt, mTOR, rpS6, and MAPK cannot be explained by activation of the IGF1R, but may be triggered by other growth factors and nutrients.
Collapse
Affiliation(s)
- Daniel Landau
- Department of Pediatrics, Soroka Medical Center, Ben Gurion University of the Negev, Beer Sheva, 84101, Israel.
| | | | | | | | | | | | | |
Collapse
|
12
|
Choi JE, Lee SS, Sunde DA, Huizar I, Haugk KL, Thannickal VJ, Vittal R, Plymate SR, Schnapp LM. Insulin-like growth factor-I receptor blockade improves outcome in mouse model of lung injury. Am J Respir Crit Care Med 2008; 179:212-9. [PMID: 19011156 DOI: 10.1164/rccm.200802-228oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The insulin-like growth factor-I (IGF-I) pathway is an important determinant of survival and proliferation in many cells. However, little is known about the role of the IGF-I pathway in lung injury. We previously showed elevated levels of IGF-I in bronchoalveolar lavage fluid from patients with acute respiratory distress syndrome. Furthermore, immunodepletion of IGF from acute respiratory distress syndrome bronchoalveolar lavage increased fibroblast apoptosis. OBJECTIVES We examined the effect of blockade of type 1 IGF tyrosine kinase receptor (IGF-IR) in a murine model of bleomycin-induced lung injury and fibrosis. METHODS Mice were treated with a monoclonal antibody against the IGF-I receptor (A12) or vehicle after intratracheal bleomycin instillation. MEASUREMENTS AND MAIN RESULTS Mice treated with A12 antibody had significantly improved survival after bleomycin injury compared with control mice. Both groups of mice had a similar degree of fibrosis on days 7 and 14, but by Day 28 the A12-treated group had significantly less fibrosis. Delayed treatment with A12 also resulted in decreased fibrosis. A12-treated mice had significantly decreased apoptotic cells on Day 28 compared with control mice. We confirmed that A12 treatment induced mouse lung fibroblast apoptosis in vitro. In addition, IGF-I increased lung fibroblast migration. The primary pathway activated by IGF-I in lung fibroblasts was the insulin receptor substrate-2/phosphatidylinositol 3-kinase/Akt axis. CONCLUSIONS IGF-I regulated survival and migration of fibrogenic cells in the lung. Blockade of the IGF pathway increased fibroblast apoptosis and subsequent resolution of pulmonary fibrosis. Thus, IGF-IR may be a potential target for treatment of lung injury and fibrosis.
Collapse
Affiliation(s)
- Jung-Eun Choi
- Divison of Pulmonary and Critical Care Medicine, Department of Medicine, Harborview Medical Center, University of Washington, Seattle,Washington, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Haylor JL, Parker E, Risbridger GP, Beale D, Brown BL, Dobson PRM, Clarke IJ, Hart JE. Inhibition of compensatory renal growth by the N-terminus of a sheep-derived peptide. ACTA ACUST UNITED AC 2008; 152:48-53. [PMID: 19028530 DOI: 10.1016/j.regpep.2008.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 10/25/2008] [Accepted: 10/27/2008] [Indexed: 11/24/2022]
Abstract
The N-terminal sequence of a novel sheep-derived peptide with growth inhibitory activity has been obtained. The N-terminal fragment was chemically synthesised and designated EPL001. The kidney was chosen as the first mammalian system in which to study EPL001 since kidney growth can be accurately quantified following a surgical reduction in renal mass. Cell proliferation was measured in mouse collecting duct kidney (MCDK) cells stimulated with insulin-like growth factor I (IGF-I). Compensatory renal growth (CRG) was induced in Wistar rats and either EPL001 or an EPL001 antibody delivered by continuous renal tissue infusion. Mouse monoclonal antibodies to EPL001 were generated for immunoneutralisation, rabbit polyclonal antibodies were generated for immunohistochemistry. EPL001 had no apparent effect on IGF-I stimulated cell proliferation in MCDK cells in vitro, yet provoked a dose-dependent inhibition of CRG in vivo. An EPL001 antibody potentiated CRG, in the absence of exogenous EPL001, consistent with an inhibitory role in kidney growth for an endogenous peptide containing the EPL001 sequence. Tubular staining for epitopes to the EPL001 sequence was detected in normal human kidney sections and enhanced in renal cell carcinoma. Results support the presence of growth inhibitory activity in the N-terminus of a sheep-derived peptide with evidence for both its presence and endogenous activity in the kidney. Attempts to further characterise its structure and activity are ongoing.
Collapse
Affiliation(s)
- J L Haylor
- Academic Nephrology Unit, University of Sheffield, Sheffield, UK.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yildiz B, Kural N, Aydin B, Colak O. Increased serum levels of insulin-like growth factor (IGF)-1 and IGF-binding protein-3 in Henoch-Schonlein purpura. TOHOKU J EXP MED 2008; 214:333-40. [PMID: 18441509 DOI: 10.1620/tjem.214.333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Henoch-Schönlein purpura (HSP) is a common systemic vasculitis of childhood, and may affect the kidney. Endothelial cell dysfunction and fibrosis is an important part of HSP vasculitis and may account for renal involvement in HSP. Insulin-like growth factor (IGF)-1 enhances the cytokine-induced expression of adhesion molecules in endothelial cells (EC). Besides, IGF-1 may stimulate angiogenesis, fibrosis and tubular formation in EC and IGF-1 increases glomerular filtration rate. We, therefore, investigated the role of IGF-1 and IGF-binding protein-3 (IGFBP-3) in HSP. The study included 44 patients with HSP (30 boys and 14 girls), including 13 patients with proteinuria, 15 patients with hematuria and 16 patients with positive stool occult blood (SOB), and 26 healthy children. Serum levels of IGF-1 and IGFBP-3 levels were significantly higher in HSP than in the controls (147.9 +/- 121.6 vs 95.7 +/- 67.8 ng/ml, p = 0.024 and 4.4 +/- 2.2 vs 2.3 +/- 0.9 microg/ml, p = 0.001, respectively). Serum IGF-1 levels were significantly higher in HSP with proteinuria than those without proteinuria and controls (p = 0.001 and p = 0.001, respectively). Also, IGFBP-3 levels were greater in HSP with proteinuria compared to those without proteinuria and controls (p = 0.005 and p = 0.0001). Serum immunoglobulin-A/complement-C3 ratio was higher in HSP than in the controls (p = 0.0001) but this ratio did not change according to proteinuria, hematuria or positive SOB. In conclusion, IGF-1 and IGFBP-3 levels could be new markers for determination of renal involvement in HSP.
Collapse
Affiliation(s)
- Bilal Yildiz
- Department of Pediatric Nephrology and Rheumatology, Eskisehir Osmangazi University, Faculty of Medicine, Eskisehir, Turkey.
| | | | | | | |
Collapse
|
15
|
Ivanova L, Butt MJ, Matsell DG. Mesenchymal transition in kidney collecting duct epithelial cells. Am J Physiol Renal Physiol 2008; 294:F1238-48. [PMID: 18322023 DOI: 10.1152/ajprenal.00326.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Progressive organ damage due to tissue scarring and fibrosis is a paradigm shared by numerous human diseases including chronic kidney disease. The purpose of this study was to confirm the hypothesis that collecting duct (CD) epithelial cells can undergo mesenchymal transition (EMT) in vitro. The mechanism by which CDs undergo EMT is complex and involves both early and late cellular events. Early events include rapid insulin-like growth factor (IGF)-induced Akt and GSK-3beta phosphorylation, associated with early disruption of E-cadherin-beta-catenin membrane colocalization, with translocation of E-cadherin to endosomes, with translocation of beta-catenin to the nucleus, and with an increase in Snail expression. Transforming growth factor-beta1, on the other hand, induced early activation of Smad3 and its translocation to the nucleus, Erk1/2 phosphorylation, and early disruption of membrane E-cadherin localization. The late consequences of these events included a phenotypic transformation of the cells to a mesenchymal morphology with associated increase in vimentin and alpha-smooth muscle actin protein expression and a decrease in total cellular E-cadherin expression, detectable as early as 24 h after stimulation.
Collapse
Affiliation(s)
- Larissa Ivanova
- Department of Pediatrics and Child and Family Research Institute, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
16
|
Yang SY, Sales KM, Fuller BJ, Seifalian AM, Winslet MC. Inducing apoptosis of human colon cancer cells by an IGF-I D domain analogue peptide. Mol Cancer 2008; 7:17. [PMID: 18261206 PMCID: PMC2276513 DOI: 10.1186/1476-4598-7-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 02/08/2008] [Indexed: 11/23/2022] Open
Abstract
Background The resistance of tumour cells to apoptosis is a major contributor to the limited effectiveness of chemotherapies. Insulin-like growth factor I (IGF-I) has potential to protect cancer cells from variety of apoptotic challenges. This study was carried out to investigate the effect of a novel IGF-I receptor antagonist on apoptosis in colon cancer cells. Results We have designed and synthesised a novel antagonist of IGF-I receptor. The effect of this antagonist on human colon cancer cell proliferation was examined by a non-radioactive assay; the apoptosis was revealed by determining the activities of cellular caspases3/7, 8 and 9. The apoptosis pathways were investigated by examining the levels of pro-apoptosis proteins with Western blotting. Following 40 hours treatment with the novel antagonist peptide, colon cancer cell Caspase 3/7 activities increased 2–7 times; Caspase 8 activities increased 2–5 times and Caspase 9 increased 1.2–1.6 times. The proliferation of cancer cell was inhibited by 14–15%. The data showed that the antagonist induced colon cancer cell apoptosis and inhibited cancer cell proliferation. The different changes of Caspase 3/7, 8 and 9 activities suggested that the extrinsic pathways may play a major role in the antagonist peptide-induced apoptosis. Conclusion This is the first report on this novel antagonist to induce human colon cancer cell apoptosis and inhibit cancer cell proliferation. These results suggest that IGF-I receptor antagonists may have the potential to be developed as a novel therapy for colon cancers in the future.
Collapse
Affiliation(s)
- Shi Yu Yang
- University Department of Surgery, Royal Free & University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, UK.
| | | | | | | | | |
Collapse
|
17
|
Yildiz B, Kural N, Colak O, Ak I, Akcar N. IGF-1, IGFBP-3, VEGF and MMP-9 levels and their potential relationship with renal functions in patients with compensatory renal growth. Clin Physiol Funct Imaging 2007; 28:107-12. [PMID: 18093232 DOI: 10.1111/j.1475-097x.2007.00783.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Mechanisms of compensatory renal growth (CRG) still remain a mystery. Various growth factors, including growth hormone, insulin-like growth factor-1 (IGF-1) have been implicated in different forms of CRG. AIMS To investigate the serum levels of IGF-1, vascular endothelial growth factor (VEGF - role in vascular remodelling), matrix metalloproteinase-9 (MMP-9 - essential for normal nephrogenesis) and correlation of renal function in patients with unilateral nephrectomized, agenesis and hypoplasic kidney. METHODS Thirty patients were included in this study. In group I, there were 10 patients with unilateral nephrectomy, while in group II, there were 10 patients with unilateral agenesis. As for group III, there were 10 patients with unilateral hypoplastic kidney. The serum levels of IGF-1, IGF-binding protein-3 (IGFBP-3), VEGF and MMP-9 were studied in all the cases. Clearance of creatinin (Ccr) and protein excretion were examined in the 24 h urine. CRG was determined with ultrasonography and scintigraphy. Twenty-six control subjects were also studied. RESULTS The levels of IGF-1, IGFBP-3, VEGF and MMP-9 were significantly higher in patients than in the control subjects (P < 0.001). Ccr and protein excretion levels were different in study groups than in those of the control group (P < 0.01). There were positive correlations between the serum levels of IGF-1 with IGFBP-3; IGF-1 with MMP-9; IGFBP-3 with MMP-9 (r = 0.825, P = 0.0001; P < 0.001 r = 0.611; P < 0.001 r = 0.585, respectively). There were negative correlations between GFR and the serum levels of IGF-1, IGFBP-3 and MMP-9 (P < 0.01 r = -0.708; P = 0.002 r = -0.803; P < 0.05 r = -0.442, respectively). Furthermore, there were positive correlations between proteinuria and the serum levels of IGF-1, IGFBP-3 and MMP-9 (P = 0.039 r = 0.600; P < 0.05 r = 0.456; P < 0.05 r = 0.424). CONCLUSIONS Increased IGF-1, IGFBP-3, VEGF and MMP-9 were observed in CRG in the follow-up period. IGF-1 and MMP-9 seemed to have increased in patients with CRG in defiance of the development of fibrosis. Moreover, IGF-1 and MMP-9 seem to be associated with reduced renal function and proteinuria.
Collapse
Affiliation(s)
- Bilal Yildiz
- Department of Pediatrics Faculty of Medicine, University of Osmangazi, Eskisehir, Turkey
| | | | | | | | | |
Collapse
|
18
|
Rudnicki M, Eder S, Perco P, Enrich J, Scheiber K, Koppelstätter C, Schratzberger G, Mayer B, Oberbauer R, Meyer TW, Mayer G. Gene expression profiles of human proximal tubular epithelial cells in proteinuric nephropathies. Kidney Int 2006; 71:325-35. [PMID: 17183245 DOI: 10.1038/sj.ki.5002043] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In kidney disease renal proximal tubular epithelial cells (RPTEC) actively contribute to the progression of tubulointerstitial fibrosis by mediating both an inflammatory response and via epithelial-to-mesenchymal transition. Using laser capture microdissection we specifically isolated RPTEC from cryosections of the healthy parts of kidneys removed owing to renal cell carcinoma and from kidney biopsies from patients with proteinuric nephropathies. RNA was extracted and hybridized to complementary DNA microarrays after linear RNA amplification. Statistical analysis identified 168 unique genes with known gene ontology association, which separated patients from controls. Besides distinct alterations in signal-transduction pathways (e.g. Wnt signalling), functional annotation revealed a significant upregulation of genes involved in cell proliferation and cell cycle control (like insulin-like growth factor 1 or cell division cycle 34), cell differentiation (e.g. bone morphogenetic protein 7), immune response, intracellular transport and metabolism in RPTEC from patients. On the contrary we found differential expression of a number of genes responsible for cell adhesion (like BH-protocadherin) with a marked downregulation of most of these transcripts. In summary, our results obtained from RPTEC revealed a differential regulation of genes, which are likely to be involved in either pro-fibrotic or tubulo-protective mechanisms in proteinuric patients at an early stage of kidney disease.
Collapse
Affiliation(s)
- M Rudnicki
- Division of Nephrology, Medical University Innsbruck, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|