1
|
Qin C, Wang Y, Li S, Tang Y, Gao Y. The Involvement of Endothelin Pathway in Chronic Psychological Stress-Induced Bladder Hyperalgesia Through Capsaicin-Sensitive C-Fiber Afferents. J Inflamm Res 2022; 15:1209-1226. [PMID: 35228812 PMCID: PMC8882030 DOI: 10.2147/jir.s346855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
Introductions Interstitial cystitis/bladder pain syndrome (IC/BPS) is a poorly understood chronic disorder characterized by bladder-related pain. Chronic psychological stress plays a key role in the exacerbation and development of IC/BPS via unclear mechanisms. This study aimed to investigate the role of endothelin 1 (ET-1) and its receptors in the development of chronic stress-induced bladder dysfunction. Methods Wistar‐Kyoto rats were exposed to chronic (10 days) water avoidance stress (WAS) or sham stress, with subgroups receiving capsaicin pretreatment to desensitize C-fiber afferents. Thereafter, cystometrograms (CMG) were obtained with visceromotor response (VMR) simultaneously during intravesical saline or ET-1 infusion. CMG recordings were analyzed for the first and the continuous voiding cycles, respectively. Endothelin receptor type A (ETAR) expression was examined in the bladder tissues and L6-S1 dorsal root ganglions (DRGs). Toluidine blue staining was to check the bladder inflammation and double-labeling immunofluorescence (IF) staining was to identify the locations of ETAR, respectively. Results During saline infusion, WAS rats elicited significant decreases in pressure threshold (PT) and in the ratio of VMR threshold/maximum intravesical pressure (IVPmax), and a significant increase in VMR duration and area under the curve (AUC). ET-1 infusion induced similar alternations in WAS rats, but further significantly diminished the pressure to trigger PT and VMR, together with a more forceful and longer VMR. The sole effect of WAS exposure or ET-1 administration on the micturition reflex could be suppressed by capsaicin pretreatment. WAS exposure significantly induced an increased number of total mast cells in the bladder, while capsaicin pretreatment possibly antagonized them. No significant difference in ETAR expression was found between all groups. IF staining indicated the co-localization of ETAR and calcitonin gene-related peptides in both bladder and DRGs. Conclusion The activation of ET-1 receptors could enhance chronic stress-induced bladder hypersensitization and hyperalgesia through capsaicin-sensitive C-fiber afferents. Targeting the endothelin pathway may have therapeutic value for IC/BPS.
Collapse
Affiliation(s)
- Chuying Qin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Sai Li
- Acupuncture and Tuina School, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yuanyuan Tang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
| | - Yunliang Gao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, 410011, People’s Republic of China
- Correspondence: Yunliang Gao, Department of Urology, The Second Xiangya Hospital, Central South University, No. 139. Renmin Road, Changsha, 410011, People’s Republic of China, Email
| |
Collapse
|
2
|
Srivastava P, Lai HH, Mickle AD. Characterization of a method to study urodynamics and bladder nociception in male and female mice. Low Urin Tract Symptoms 2020; 13:319-324. [PMID: 33202486 DOI: 10.1111/luts.12365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Abdominal electromyogram or visceromotor response (VMR) elicited by bladder distension is a validated as a measure of bladder nociception in mice, however it is not without its limitations. The aim of this study is to address some of these limitations and validate voiding evoked VMR as a measure of bladder nociception mice. METHODS Using both male and female C57BL/6 mice we assessed the VMR response to cytometry- induced voiding before and after instillation of 0.5% acetic acid into the bladder. We then delivered intravesical lidocaine to confirm the VMR response as nociceptive. VMR and correlative cystometric bladder pressures were analyzed. RESULTS We found that the VMR can be evoked by continuous fluid infusion into the bladder of both male and female mice. This response is potentiated after bladder injury and can be attenuated by administration of a local anesthetic, providing strong evidence that this method can be used to evaluate bladder nociception. Further, evaluation of cystometric pressure traces obtained during VMR recording revealed that intercontraction intervals were not altered after bladder injury in either male or female mice. However, we did observe a decrease in peak threshold pressures after bladder injury in female mice, which could be rescued by lidocaine administration. CONCLUSIONS In conclusion, this technique can measure the VMR and bladder nociception associated with voiding in both female and male mice. Although confounds still exist with the use of anesthesia, further exploration of non-anesthetized voiding-evoked VMR is warranted.
Collapse
Affiliation(s)
- Paulome Srivastava
- Washington University Pain Center and Department of Anesthesiology, and Washington University School of Medicine, St. Louis, Missouri, USA
| | - Henry H Lai
- Washington University Pain Center and Department of Anesthesiology, and Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Surgery, Division of Urologic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Aaron D Mickle
- Washington University Pain Center and Department of Anesthesiology, and Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Yeh JC, Do R, Choi H, Lin CT, Chen JJ, Zi X, Chang HH, Ghoniem G. Investigations of urethral sphincter activity in mice with bladder hyperalgesia before and after drug administration of gabapentin. Int Urol Nephrol 2018; 51:53-59. [PMID: 30387068 DOI: 10.1007/s11255-018-2021-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE This study investigated the effect of gabapentin on lower urinary tract dysfunction focusing on urethral activities and cystitis-induced hyperalgesia in a mouse model of painful bladder syndrome/interstitial cystitis (PBS/IC). The electromyography (EMG) of external urethral sphincter (EUS) was difficult to obtain, but contained useful information to examine the drug effect in mice. METHODS Female C57BL/6J mice were intraperitoneally (ip) administration with either saline or 200 mg/kg of cyclophosphamide (CYP) 48 h before experimental evaluation. Cystitis mice were treated with administration of gabapentin (25 or 50 mg/kg, ip). Cystometry and EUS EMG were obtained and analyzed during continuous bladder infusion. The visceral pain-related visceromotor reflex (VMR) was recorded in response to isotonic bladder distension. RESULTS Cystitis mice showed shorter inter-contraction intervals and increased occurrence of non-voiding contractions during bladder infusion, with increased VMR during isotonic bladder distension, indicating cystitis-induced bladder hyperalgesia. Gabapentin (50 mg/kg) suppressed effects of CYP on cystometry, but not on EUS EMG activity, during bladder infusion. The effect on urodynamic recordings lasted 4 h. VMR was significantly reduced by gabapentin. CONCLUSIONS The present study showed that CYP-induced cystitis in mice is a model of visceral hyperalgesia affecting detrusor contractions, not urethral activations. The technique of using EUS EMG to evaluate the drug effects on urethral activities is novel and useful for future investigations. Gabapentin can be as a potential treatment for detrusor overactivity and PBS/IC.
Collapse
Affiliation(s)
- Jih-Chao Yeh
- Urology at University of Southern California, Los Angeles, CA, USA
| | - Rebecca Do
- Urology at University of California Irvine, Irvine, CA, USA
| | - Hanul Choi
- Urology at University of California Irvine, Irvine, CA, USA
| | - Ching-Ting Lin
- Biomedical Engineering at National Cheng Kung University, Tainan, Taiwan
| | - Jia-Jin Chen
- Biomedical Engineering at National Cheng Kung University, Tainan, Taiwan
| | - Xiaolin Zi
- Urology at University of California Irvine, Irvine, CA, USA
| | - Huiyi H Chang
- Urology at University of California Irvine, Irvine, CA, USA. .,Urology and Reeve-Irvine Research Center, University of California at Irvine, 837 Health Science Rd, GNRF 2111, Zotcode 4265, Irvine, CA, USA.
| | - Gamal Ghoniem
- Urology at University of California Irvine, Irvine, CA, USA. .,Urology, University of California, Irvine, 333 City Blvd. West, Ste 2100, Orange, CA, USA.
| |
Collapse
|
4
|
Chang HH, Yeh JC, Ichiyama RM, Rodriguez LV, Havton LA. Mapping and neuromodulation of lower urinary tract function using spinal cord stimulation in female rats. Exp Neurol 2018. [PMID: 29530711 DOI: 10.1016/j.expneurol.2018.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Spinal cord epidural stimulation (SCS) represents a form of neuromodulation for the management of spasticity and pain. This technology has recently emerged as a new approach for potentially augmenting locomotion and voiding function in humans and rodents after spinal cord injury. However, the effect of SCS on micturition has not been studied extensively. Here, SCS was first applied as a direct stimulus onto individual segmental levels of the lumbar spinal cord in rats to map evoked external urethral sphincter (EUS) electromyography activity and SCS-induced voiding contractions. SCS of L2-3 inhibited EUS tonic activity, and SCS on L3 (L3/SCS) inhibited EUS tonic activity and elicited EUS bursting. In contrast, SCS of L1 and L4-6 evoked EUS tonic contractions, which resembled the urethral guarding reflex during bladder storage. Next, the effects of a bilateral pelvic nerve crush (PNC) injury on urodynamic function were examined at 14 days post-operatively. The PNC injury resulted in decreased voiding efficiency and maximum intravesical pressure, whereas the post-voiding residual volume was increased, suggestive of an underactive bladder. Finally, L3/SCS was performed to induce a voiding contraction and enable voiding in rats with a PNC injury. Voiding efficiency was significantly increased, and the residual volume was decreased by L3/SCS in rats after the PNC injury. We conclude that L3/SCS may be used to induce micturition reflexes in a partially filled bladder, reduce urethral resistance, and augment bladder emptying after PNC injury.
Collapse
Affiliation(s)
- Huiyi H Chang
- Urology, University of California Irvine, CA, USA; Reeve-Irvine Research Center, University of California Irvine, CA, USA.
| | - Jih-Chao Yeh
- Urology, University of Southern California, CA, USA
| | | | | | - Leif A Havton
- Neurology and Neurobiology, University of California Los Angeles, CA, USA
| |
Collapse
|
5
|
Kullmann FA, Chang HH, Gauthier C, McDonnell BM, Yeh JC, Clayton DR, Kanai AJ, de Groat WC, Apodaca GL, Birder LA. Serotonergic paraneurones in the female mouse urethral epithelium and their potential role in peripheral sensory information processing. Acta Physiol (Oxf) 2018; 222:10.1111/apha.12919. [PMID: 28719042 PMCID: PMC5963688 DOI: 10.1111/apha.12919] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/19/2017] [Accepted: 07/13/2017] [Indexed: 01/01/2023]
Abstract
AIM The mechanisms underlying detection and transmission of sensory signals arising from visceral organs, such as the urethra, are poorly understood. Recently, specialized ACh-expressing cells embedded in the urethral epithelium have been proposed as chemosensory sentinels for detection of bacterial infection. Here, we examined the morphology and potential role in sensory signalling of a different class of specialized cells that express serotonin (5-HT), termed paraneurones. METHODS Urethrae, dorsal root ganglia neurones and spinal cords were isolated from adult female mice and used for immunohistochemistry and calcium imaging. Visceromotor reflexes (VMRs) were recorded in vivo. RESULTS We identified two morphologically distinct groups of 5-HT+ cells with distinct regional locations: bipolar-like cells predominant in the mid-urethra and multipolar-like cells predominant in the proximal and distal urethra. Sensory nerve fibres positive for calcitonin gene-related peptide, substance P, and TRPV1 were found in close proximity to 5-HT+ paraneurones. In vitro 5-HT (1 μm) stimulation of urethral primary afferent neurones, mimicking 5-HT release from paraneurones, elicited changes in the intracellular calcium concentration ([Ca2+ ]i ) mediated by 5-HT2 and 5-HT3 receptors. Approximately 50% of 5-HT responding cells also responded to capsaicin with changes in the [Ca2+ ]i . In vivo intra-urethral 5-HT application increased VMRs induced by urethral distention and activated pERK in lumbosacral spinal cord neurones. CONCLUSION These morphological and functional findings provide insights into a putative paraneurone-neural network within the urethra that utilizes 5-HT signalling, presumably from paraneurones, to modulate primary sensory pathways carrying nociceptive and non-nociceptive (mechano-sensitive) information to the central nervous system.
Collapse
Affiliation(s)
- F. A. Kullmann
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - H. H. Chang
- Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - C. Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - B. M. McDonnell
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J.-C. Yeh
- Department of Urology, University of Southern California, Los Angeles, CA, USA
| | - D. R. Clayton
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - A. J. Kanai
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W. C. de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G. L. Apodaca
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - L. A. Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Gao Y, Zhang R, Chang HH, Rodríguez LV. The role of C-fibers in the development of chronic psychological stress induced enhanced bladder sensations and nociceptive responses: A multidisciplinary approach to the study of urologic chronic pelvic pain syndrome (MAPP) research network study. Neurourol Urodyn 2017; 37:673-680. [PMID: 28792095 DOI: 10.1002/nau.23374] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/05/2017] [Indexed: 01/04/2023]
Abstract
AIMS To evaluate C fiber-mediated changes in bladder sensation and nociception in an animal model of stress induced bladder hyperalgesia and urinary frequency. METHODS Female Wistar-Kyoto (WKY) rats were exposed to a chronic (10 days) water avoidance stress (WAS) and compared to controls. Rats were evaluated by cystometrogram (CMG) and visceromotor reflex (VMR) to bladder infusion with room temperature (RT) or cold saline. Cold saline activates afferent C-fibers via cold bladder receptors. To further evaluate bladder hyperalgesia, CMG and VMR were also obtained during RT isometric bladder distention (RT-iBD) at variable pressures. RESULTS During RT infusion, WAS rats had significant decreases in pressure threshold (PT) and in the ratio of VMR threshold/maximum intravesical pressure (IVPmax), and a significant increase in VMR duration. Cold infusion also induced significant decreases in PT and in the ratio of VMR threshold/IVPmax in WAS rats. During RT-iBD, rats exposed to WAS showed a significant decrease in VMR latency and a significant increase in VMR area under the curve (AUC) compared to controls. CONCLUSION Chronic WAS induced bladder hypersensitivity manifested by earlier voiding with earlier VMR appearance. Chronic stress also enhanced bladder nociceptive responses. WAS leads to increase responses to ice cold water infusion, implying a role of sensitized C-fibers and mechanoreceptors in WAS-induced bladder dysfunction and hypersensitivity.
Collapse
Affiliation(s)
- Yunliang Gao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Rong Zhang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Huiyi H Chang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Larissa V Rodríguez
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
7
|
Addressing challenges in underactive bladder: recommendations and insights from the Congress on Underactive Bladder (CURE-UAB). Int Urol Nephrol 2017; 49:777-785. [PMID: 28233085 DOI: 10.1007/s11255-017-1549-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/16/2017] [Indexed: 12/15/2022]
Abstract
Underactive bladder (UAB) is an expanding troublesome health issue, exerting a major influence on the health and independence of older people with a disproportionally low level of attention received. The 2nd International Congress on Underactive Bladder (CURE-UAB 2) convened in Denver, CO on December 3 and 4, 2015, and comprised of top clinicians, scientists, and other stakeholders to address the challenges in UAB. A series of workshops aimed to define UAB and its phenotype, define detrusor underactivity (DU) and create a subtyping of DU, evaluate existing animal models for DU, and lastly to establish research priorities for UAB.
Collapse
|
8
|
Chang HH, Havton LA. A ventral root avulsion injury model for neurogenic underactive bladder studies. Exp Neurol 2016; 285:190-196. [PMID: 27222131 DOI: 10.1016/j.expneurol.2016.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
Abstract
Detrusor underactivity (DU) is defined as a contraction of reduced strength and/or duration during bladder emptying and results in incomplete and prolonged bladder emptying. The clinical diagnosis of DU is challenging when present alone or in association with other bladder conditions such as detrusor overactivity, urinary retention, detrusor hyperactivity with impaired contractility, aging, and neurological injuries. Several etiologies may be responsible for DU or the development of an underactive bladder (UAB), but the pathobiology of DU or UAB is not well understood. Therefore, new clinically relevant and interpretable models for studies of UAB are much needed in order to make progress towards new treatments and preventative strategies. Here, we review a neuropathic cause of DU in the form of traumatic injuries to the cauda equina (CE) and conus medullaris (CM) portions of the spinal cord. Lumbosacral ventral root avulsion (VRA) injury models in rats mimic the clinical phenotype of CM/CE injuries. Bilateral VRA injuries result in bladder areflexia, whereas a unilateral lesion results in partial impairment of lower urinary tract and visceromotor reflexes. Surgical re-implantation of avulsed ventral roots into the spinal cord and pharmacological strategies can augment micturition reflexes. The translational research need for the development of a large animal model for UAB studies is also presented, and early studies of lumbosacral VRA injuries in rhesus macaques are discussed.
Collapse
Affiliation(s)
- Huiyi H Chang
- Institute of Urology, University of Southern California, Los Angeles, CA, United States.
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|