1
|
Inhibition of the chemokine signal regulator FROUNT by disulfiram ameliorates crescentic glomerulonephritis. Kidney Int 2022; 102:1276-1290. [PMID: 36049642 DOI: 10.1016/j.kint.2022.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 01/12/2023]
Abstract
Activated monocytes/macrophages promote glomerular injury, including crescent formation, in anti-glomerular basement membrane (GBM) glomerulonephritis. Disulfiram, an alcohol-aversion drug, inhibits monocyte/macrophage migration by inhibiting FROUNT, a cytosolic protein that enhances chemokine receptor signaling. Our study found that disulfiram at a human equivalent dose successfully blocked albuminuria and crescent formation with podocyte loss, and later stage kidney fibrotic lesions, in a rat model of anti-GBM glomerulonephritis. A disulfiram derivative, DSF-41, with more potent FROUNT inhibition activity, inhibited glomerulonephritis at a lower dose than disulfiram. Disulfiram markedly reduced the number of monocytes or macrophages at the early stage of glomerulonephritis and that of CD3+ and CD8+ lymphocytes at the established stage. Impaired pseudopodia formation was observed in the glomerular monocytes/macrophages of the disulfiram group; consistent with the in vitro observation that disulfiram blocked chemokine-dependent pseudopodia formation and chemotaxis of bone marrow-derived monocytes/macrophages. Furthermore, disulfiram suppressed macrophage activation as revealed by reduced expression of inflammatory cytokines and chemokines (TNF-α, CCL2, and CXCL9) and reduced CD86 and MHC class II expressions in monocytes/macrophages during glomerulonephritis. The dramatic reduction in monocyte/macrophage number might have resulted from disulfiram suppression of both the chemotactic response of monocytes/macrophages and their subsequent activation to produce cytokines and chemokines, which further recruit monocytes. Additionally, FROUNT was expressed in CD68+ monocytes/macrophages infiltrating the crescentic glomeruli in human anti-GBM glomerulonephritis. Thus, disulfiram can be a highly effective and safe drug for the treatment of glomerulonephritis by blocking the chemotactic responses of monocytes/macrophages and their activation status in the glomerulus.
Collapse
|
2
|
A novel podocyte protein, R3h domain containing-like, inhibits TGF-β-induced p38 MAPK and regulates the structure of podocytes and glomerular basement membrane. J Mol Med (Berl) 2021; 99:859-876. [PMID: 33620517 DOI: 10.1007/s00109-021-02050-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Not only in kidney glomerular physiological function but also glomerular pathology especially in diabetic condition, glomerular podocytes play pivotal roles. Therefore, it is important to increase our knowledge about the genes and proteins expressed in podocytes. Recently, we have identified a novel podocyte-expressed gene, R3h domain containing-like (R3hdml) and analyzed its function in vivo as well as in vitro. Transforming growth factor-β (TGF-β) signaling regulated the expression of R3hdml. And R3hdml inhibited p38 mitogen-activated protein kinase phosphorylation, which was induced by TGF-β, leading to the amelioration of podocyte apoptosis. Furthermore, a lack of R3hdml in mice significantly worsened glomerular function in streptozotocin (STZ)-induced diabetes, while overexpression of R3hdml ameliorated albuminuria in STZ-induced diabetes. Our results surmise that the functional analyses of R3hdml may lead to the development of novel therapeutic strategies for diabetic nephropathy in the future. KEY MESSAGES: • A novel podocyte expressed protein R3h domain containing-like was identified. • R3HDML inhibits podocyte apoptosis by inhibiting TGF-β-mediated p38 MAPK signaling. • Overexpression of R3HDML ameliorates albuminuria in STZ-induced diabetes mice. • R3HDML may prove to be a novel therapeutic strategy for diabetic nephropathy.
Collapse
|
3
|
Yes-associated protein regulates podocyte cell cycle re-entry and dedifferentiation in adriamycin-induced nephropathy. Cell Death Dis 2019; 10:915. [PMID: 31801948 PMCID: PMC6892849 DOI: 10.1038/s41419-019-2139-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/02/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023]
Abstract
Podocytes are terminally differentiated cells with little proliferative capacity. The high expression levels of cell cycle inhibitory proteins, including p21, p27, and p57, play an important role in maintaining the low level of proliferation of mature podocytes. In the present study, we aimed to explore the role of yes-associated protein (YAP) signalling in adriamycin-induced podocyte re-entry into the cell cycle and dedifferentiation. Proliferating cell nuclear antigen (PCNA)-, cyclin-dependent kinase 4 (CDK4)-, and Cyclin D1-positive podocytes were found in mice with adriamycin-induced nephropathy. In vitro, adriamycin administration increased the percentage of cells in S phase and the upregulation of mesenchymal-related marker proteins. CDK4 and cyclin D1 were significantly up-regulated after incubation with adriamycin. Overexpression of YAP in podocytes promoted their entry into the cell cycle; up-regulated cyclin D1, desmin, and snail2 expression and down-regulated Wilms’ tumour 1 (WT1) and nephrin production. Recombinant murine FGF-basic induced podocytes to re-enter the cell cycle, inhibited WT1 and nephrin, and increased desmin and snail2 expression. Pretreating podocytes with verteporfin, an inhibitor of YAP/ TEA domain transcription factor (TEAD), decreased the adriamycin-induced overexpression of cyclin D1 and reduced the ratio of S-phase podocytes. This result was further verified by knocking down YAP expression using RNA interference. In conclusion, adriamycin induced podocytes to re-enter the cell cycle via upregulation of CDK4 and cyclin D1 expression, which was at least partly mediated by YAP signalling. Re-entry into the cell cycle induced the over-expression of mesenchymal markers in podocytes.
Collapse
|
4
|
Possible role of complement factor H in podocytes in clearing glomerular subendothelial immune complex deposits. Sci Rep 2019; 9:7857. [PMID: 31133737 PMCID: PMC6536504 DOI: 10.1038/s41598-019-44380-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 05/15/2019] [Indexed: 12/21/2022] Open
Abstract
Podocytes are known to express various complement factors including complement factor H (CFH) and to promote the removal of both subendothelial and subepithelial immune complex (IC) deposits. Using podocyte-selective injury model NEP25 mice and an IgG3-producing hybridoma clone 2B11.3 established by MRL/lpr mice, the present study investigated the role of podocyte complement regulation in only subendothelial IC deposition. In immunotoxin (LMB2) induced fatal podocyte injury (NEP25/LMB2) at day 12, glomerular CFH and C3a receptor (C3aR) expression was decreased as compared with NEP25/vehicle mice. In contrast, in sublytic podocyte injury 5 days after LMB2, glomerular CFH and C3aR expression was increased as compared with NEP25/vehicle mice. Intra-abdominal injection of 2B11.3 hybridoma to NEP25 mice (NEP25/hybridoma) caused IC deposition limited to the subendothelial area associated with unaltered CFH expression. NEP25/hybridoma mice with sublytic podocyte injury (NEP25/hybridoma/LMB2) resulted in increased glomerular CFH expression (1.7-fold) accompanied by decreased subendothelial IC deposition, as compared with NEP25/hybridoma. Immunostaining revealed that CFH was dominantly expressed in podocytes of NEP25/hybridoma/LMB2. In addition, puromycin-induced sublytic podocyte injury promoted CFH expression in immortalized mouse podocytes in vitro. These results suggest that in response to sublytic levels of injury, podocyte induced CFH expression locally and clearance of subendothelial IC deposits.
Collapse
|
5
|
Okabayashi Y, Nagasaka S, Kanzaki G, Tsuboi N, Yokoo T, Shimizu A. Group 1 innate lymphoid cells are involved in the progression of experimental anti-glomerular basement membrane glomerulonephritis and are regulated by peroxisome proliferator-activated receptor α. Kidney Int 2019; 96:942-956. [PMID: 31402171 DOI: 10.1016/j.kint.2019.04.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 02/04/2023]
Abstract
Innate lymphoid cells play an important role in the early effector cytokine-mediated response. In Wistar Kyoto rats, CD8+ non-T lymphocytes (CD8+Lym) infiltrate into glomeruli during the development of anti-glomerular basement membrane (anti-GBM) glomerulonephritis. Here, we examined the profiles and roles of CD8+Lym in anti-GBM glomerulonephritis. The regulation of CD8+Lym by peroxisome proliferator-activated receptor (PPAR)-α in anti-GBM glomerulonephritis was also evaluated. Glomerular infiltrating CD8+Lym were lineage-negative cells that showed markedly high expression of IFN-γ and T-bet mRNAs but not Eomes, indicating these cells are group 1 innate lymphoid cells. In anti-GBM glomerulonephritis, the glomerular mRNAs of innate lymphoid cell-related cytokines (IFN-γ and TNF-α) and chemokines (CXCL9, CXCL10, and CXCL11) are significantly increased. Treatment with a PPARα agonist ameliorated renal injury, with reduced expression of these mRNAs. In vitro, enhanced IFN-γ production from innate lymphoid cells upon IL-12 and IL-18 stimulation was reduced by the PPARα agonist. Moreover, CXCL9 mRNA in glomerular endothelial cells and CXCL9, CXCL10, and CXCL11 mRNAs in podocytes and macrophages were upregulated by IFN-γ, whereas the PPARα agonist downregulated their expression. We also detected the infiltration of innate lymphoid cells into glomeruli in human anti-GBM glomerulonephritis. Thus, innate lymphoid cells are involved in the progression of anti-GBM glomerulonephritis and regulated directly or indirectly by PPARα. Our findings suggest that innate lymphoid cells could serve as novel therapeutic targets for anti-GBM glomerulonephritis.
Collapse
Affiliation(s)
- Yusuke Okabayashi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan; Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Shinya Nagasaka
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Go Kanzaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuo Tsuboi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
6
|
Cechova S, Dong F, Chan F, Kelley MJ, Ruiz P, Le TH. MYH9 E1841K Mutation Augments Proteinuria and Podocyte Injury and Migration. J Am Soc Nephrol 2018; 29:155-167. [PMID: 28993503 PMCID: PMC5748898 DOI: 10.1681/asn.2015060707] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/18/2017] [Indexed: 01/31/2023] Open
Abstract
Intronic variants of the MYH9 gene that encodes the nonmuscle myosin heavy chain IIA are associated with diabetic nephropathy in European Americans and with sickle cell disease-associated nephropathy. However, the causal functional variants of MYH9 have remained elusive. Rare missense mutations in MYH9 cause macrothrombocytopenia and are occasionally associated with development of nephropathy. The E1841K mutation is among the common MYH9 missense mutations and has been associated with nephropathy in some carriers. To determine the contribution of the E1841K mutation in kidney disease, we studied the effects of the E1841K mutation in mice subjected to high salt or angiotensin II (Ang II) as models of hypertension and in mice subjected to renal mass reduction as a model of CKD. Despite similar levels of BP among wild-type (MYH9+/+ ) mice and mice heterozygous (MYH9+/E1841K ) and homozygous (MYH9E1841K/E1841K ) for the mutation in each model, MYH9E1841K/E1841K mice exhibited mildly increased albuminuria in response to high salt; severe albuminuria, nephrinuria, FSGS, and podocyte foot effacement in Ang II-induced hypertension; and early mortality in the renal mass reduction model. Treatment with candesartan during Ang II-induced hypertension attenuated kidney disease development in MYH9E1841K/E1841K mice. In vitro, isolated primary podocytes from MYH9E1841K/E1841K mice exhibited increased lamellipodia formation and reorganization of F-actin stress fibers. Wound healing assays revealed that MYH9+/+ podocytes had the lowest migration rate, followed by MYH9+/E1841K then MYH9E1841K/E1841K podocytes. In conclusion, the MYH9 E1841K variant alters podocyte cytoskeletal structure and renders podocytes more susceptible to injury after a damaging stimulus.
Collapse
Affiliation(s)
- Sylvia Cechova
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Fan Dong
- Department of Medicine, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, North Carolina; and
| | - Fang Chan
- Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Michael J Kelley
- Department of Medicine, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, North Carolina; and
| | - Phillip Ruiz
- Department of Surgery and Pathology, University of Miami, Miami, Florida
| | - Thu H Le
- Department of Medicine, University of Virginia, Charlottesville, Virginia;
| |
Collapse
|
7
|
He P, Kawamura H, Takemoto M, Maezawa Y, Ishikawa T, Ishibashi R, Sakamoto K, Shoji M, Hattori A, Yamaga M, Ide S, Ide K, Hayashi A, Tokuyama H, Kobayashi K, Yokote K. Combination of cilostazol and probucol protected podocytes from lipopolysaccharide-induced injury by both anti-inflammatory and anti-oxidative mechanisms. J Nephrol 2016; 30:531-541. [DOI: 10.1007/s40620-016-0361-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/30/2016] [Indexed: 01/21/2023]
|
8
|
Kobayashi N, Ueno T, Ohashi K, Yamashita H, Takahashi Y, Sakamoto K, Manabe S, Hara S, Takashima Y, Dan T, Pastan I, Miyata T, Kurihara H, Matsusaka T, Reiser J, Nagata M. Podocyte injury-driven intracapillary plasminogen activator inhibitor type 1 accelerates podocyte loss via uPAR-mediated β1-integrin endocytosis. Am J Physiol Renal Physiol 2015; 308:F614-26. [PMID: 25587125 PMCID: PMC4360033 DOI: 10.1152/ajprenal.00616.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/08/2015] [Indexed: 11/22/2022] Open
Abstract
Podocyte-endothelial cell cross-talk is paramount for maintaining the filtration barrier. The present study investigated the endothelial response to podocyte injury and its subsequent role in glomerulosclerosis using the podocyte-specific injury model of NEP25/LMB2 mice. NEP25/LMB2 mice showed proteinuria and local podocyte loss accompanied by thrombotic microangiopathy on day 8. Mice showed an increase of glomerular plasminogen activator inhibitor type 1 (PAI-1) mRNA and aberrant endothelial PAI-1 protein already on day 1, before thrombosis and proteinuria. A PAI-1-specific inhibitor reduced proteinuria and thrombosis and preserved podocyte numbers in NEP25/LMB2 mice by stabilization of β1-integrin translocation. Heparin loading significantly reduced thrombotic formation, whereas proteinuria and podocyte numbers were unchanged. Immortalized podocytes treated with PAI-1 and the urokinase plasminogen activator (uPA) complex caused significant cell detachment, whereas podocytes treated with PAI-1 or uPA alone or with the PAI-1/uPA complex pretreated with an anti-uPA receptor (uPAR) antibody failed to cause detachment. Confocal microscopy and cell surface biotinylation experiments showed that internalized β1-integrin was found together with uPAR in endocytotic vesicles. The administration of PAI-1 inhibitor or uPAR-blocking antibody protected cultured podocytes from cell detachment. In conclusion, PAI-1/uPA complex-mediated uPAR-dependent podocyte β1-integrin endocytosis represents a novel mechanism of glomerular injury leading to progressive podocytopenia. This aberrant cross-talk between podocytes and endothelial cells represents a feedforward injury response driving podocyte loss and progressive glomerulosclerosis.
Collapse
Affiliation(s)
- Namiko Kobayashi
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Toshiharu Ueno
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kumi Ohashi
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Hanako Yamashita
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yukina Takahashi
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kazuo Sakamoto
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Shun Manabe
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Satoshi Hara
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yasutoshi Takashima
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Takashi Dan
- Center for Translational and Advanced Research, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Toshio Miyata
- Center for Translational and Advanced Research, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hidetake Kurihara
- Department of Anatomy, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan
| | - Taiji Matsusaka
- Department of Internal Medicine, Institute of Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan; and
| | - Jochen Reiser
- Department of Medicine, Rush University, Chicago, Illinois
| | - Michio Nagata
- Department of Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan;
| |
Collapse
|
9
|
Sakamoto K, Kuno K, Takemoto M, He P, Ishikawa T, Onishi S, Ishibashi R, Okabe E, Shoji M, Hattori A, Yamaga M, Kobayashi K, Kawamura H, Tokuyama H, Maezawa Y, Yokote K. Pituitary adenylate cyclase-activating polypeptide protects glomerular podocytes from inflammatory injuries. J Diabetes Res 2015; 2015:727152. [PMID: 25821833 PMCID: PMC4363873 DOI: 10.1155/2015/727152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/02/2022] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage kidney disease; however, there are few treatment options. Inflammation plays a crucial role in the initiation and/or progression of DN. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide, which was originally isolated from the ovine hypothalamus and reportedly has diverse biological functions. It has been reported that PACAP has renoprotective effects in different models of kidney pathology. However, the specific cell types within the kidney that are protected by PACAP have not yet been reported. In this study, we localized VPAC1, one of the PACAP receptors, to glomerular podocytes, which also reportedly has crucial roles not only in glomerular physiology but also in pathology. PACAP was effective in the downregulation of proinflammatory cytokines, such as monocyte chemoattractant protein-1 (MCP-1) and interleukin-6, which had been induced by the activation of toll-like receptor (TLR) with lipopolysaccharide. PACAP also had downregulated the expression of MCP-1 through the protein kinase A signaling pathway; this led to the attenuation of the activation of extracellular signal-regulated kinase and nuclear factor-kappa B signaling. Our results suggested that PACAP could be a possible treatment option for DN through the use of anti-inflammation effects on glomerular podocytes.
Collapse
Affiliation(s)
- Kenichi Sakamoto
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Kyoko Kuno
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
| | - Minoru Takemoto
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
- *Minoru Takemoto:
| | - Peng He
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
| | - Takahiro Ishikawa
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Shunichiro Onishi
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Ryoichi Ishibashi
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Emiko Okabe
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Mayumi Shoji
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Akiko Hattori
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Masaya Yamaga
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Kazuki Kobayashi
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Harukiyo Kawamura
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Hirotake Tokuyama
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Yoshiro Maezawa
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| | - Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Japan
- Division of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Japan
| |
Collapse
|
10
|
Ihara KI, Asanuma K, Fukuda T, Ohwada S, Yoshida M, Nishimori K. MAGI-2 is critical for the formation and maintenance of the glomerular filtration barrier in mouse kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2699-708. [PMID: 25108225 DOI: 10.1016/j.ajpath.2014.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/29/2014] [Accepted: 06/26/2014] [Indexed: 11/20/2022]
Abstract
Membrane-associated guanylate kinase inverted 2 (MAGI-2) is a tight junction protein in epithelial tissues. We previously reported the detailed expression patterns of MAGI-2 in mouse tissues, including kidney podocytes, based on results obtained from Venus knock-in mice for Magi2 locus. In the present study, homozygous deletion of the Magi2 gene in mice caused neonatal lethality, which was explained by podocyte morphological abnormalities and anuria. Immunohistological analysis showed that loss of MAGI-2 function induced a significant decrease in nephrin and dendrin at the slit diaphragm of the kidney, although other components of the slit diaphragm were unchanged. Furthermore, nuclear translocation of dendrin was observed in the podocytes of the MAGI-2-null mutants, along with enhanced expression of cathepsin L, which is reported to be critical for rearrangement of the actin cytoskeleton in podocytes. Expression analysis of the null mutants showed that loss of MAGI-2 function induces abnormal expression of various types of adhesion-related molecules. The present study is the first to demonstrate that MAGI-2 has a critical role in maintaining the functional structure of the slit diaphragm and that this molecule has an essential role in the functioning of the kidney filtration barrier.
Collapse
Affiliation(s)
- Kan-Ichiro Ihara
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai
| | - Katsuhiko Asanuma
- Division of Nephrology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo; Laboratory for Kidney Research, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto
| | - Tomokazu Fukuda
- Laboratory of Animal Breeding and Genetics, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, Sendai
| | - Shyuichi Ohwada
- Laboratory of Functional Morphology, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, Sendai
| | - Midori Yoshida
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Sendai.
| |
Collapse
|
11
|
Kajiyama H. [Podocyte research in rheumatic diseases]. ACTA ACUST UNITED AC 2011; 34:40-8. [PMID: 21372512 DOI: 10.2177/jsci.34.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Podocytes are glomerular visceral epithelial cells, which function as molecular sieve with foot process (FT) and slit diaphragm (SD) spanning FT, not to allow high molecular weight protein to be filtrated through glomerular capillary loop. Pathological proteinuria is caused by discoordinated tertiary podocyte structure such as disappearance of FT and/or SD, and irreversible glomeular sclerosis is caused by podocyte loss due to cell death and/or detachment from capillary wall. With recent advance of nephrological research technology such as podocyte cell culture system, genetically engineered transgenic mice with podocyte-specific regulation of gene expression, podocyte-associated biomarkers, the new isolation method of glomeruli, laser capture microdissection, multiphoton imaging and extracellular flux analyzer, new findings of pathogenesis of glomerular lesions will be expected, not only in primary glomerulonephritis, but also in secondary glomerulonephritis or glomerulopathy due to rheumatic diseases.
Collapse
Affiliation(s)
- Hiroshi Kajiyama
- Department of Rheumatology and Applied Immunology, Faculty of Medicine, Saitama Medical University, Japan
| |
Collapse
|
12
|
Sakairi T, Abe Y, Kopp JB. TGF-beta1 reduces Wilms' tumor suppressor gene expression in podocytes. Nephrol Dial Transplant 2011; 26:2746-52. [PMID: 21378152 DOI: 10.1093/ndt/gfr061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Wilms' tumor suppressor gene (WT1) is essential for normal podocyte function, and transforming growth factor (TGF)-beta contributes to focal segmental glomerulosclerosis (FSGS). We aimed to address whether TGF-beta affects WT1 expression in podocytes. METHODS A human podocyte cell line treated with TGF-beta1 and kidneys in Alb/TGF-beta1-transgenic mice were analyzed for WT1 expression. RESULTS In cultured podocytes, TGF-beta1 reduced WT1 protein expression determined by western blotting beginning at 8 h and decreased WT1 messenger RNA (mRNA) expression measured by quantitative reverse transcription-polymerase chain reaction beginning at 3 h. Knockdown of Smad4 by small hairpin (sh) RNA partially rescued the TGF-beta1-induced reduction of both WT1 protein and mRNA expressions in the cultured podocytes. TGF-beta1 did not alter luciferase activity of the reporter construct for a human WT1 promoter but reduced that for a human WT1 5' enhancer construct, suggesting that TGF-beta1 may regulate WT1 expression by altering the 5' enhancer activity. In the transgenic mice, WT1 protein expression in podocytes was decreased at 1 and 3 weeks of age, while glomeruloclerosis developed after 3 weeks. CONCLUSION TGF-beta1 reduces WT1 expression in cultured human podocytes and podocytes in mice before overt glomerulosclerosis begins. The effects are at least partially Smad4 dependent. Our findings identify a novel pathway linking TGF-beta1 to podocyte injury and FSGS. The WT1 reduction may be a useful marker for early podocyte injury.
Collapse
Affiliation(s)
- Toru Sakairi
- Kidney Disease Section, Kidney Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|