1
|
Abel B, Mares J, Hutzler J, Parajuli B, Kurada L, White JM, Propper BW, Stewart IJ, Burmeister DM. The degree of aortic occlusion in the setting of trauma alters the extent of acute kidney injury associated with mitochondrial preservation. Am J Physiol Renal Physiol 2024; 326:F669-F679. [PMID: 38450433 DOI: 10.1152/ajprenal.00323.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/09/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
Resuscitative endovascular balloon occlusion of the aorta (REBOA) is used to control noncompressible hemorrhage not addressed with traditional tourniquets. However, REBOA is associated with acute kidney injury (AKI) and subsequent mortality in severely injured trauma patients. Here, we investigated how the degree of aortic occlusion altered the extent of AKI in a porcine model. Female Yorkshire-cross swine (n = 16, 68.1 ± 0.7 kg) were anesthetized and had carotid and bilateral femoral arteries accessed for REBOA insertion and distal and proximal blood pressure monitoring. Through a laparotomy, a 6-cm liver laceration was performed and balloon inflation was performed in zone 1 of the aorta for 90 min, during which animals were randomized to target distal mean arterial pressures of 25 or 45 mmHg via balloon volume adjustment. Blood draws were taken at baseline, end of occlusion, and time of death, at which point renal tissues were harvested 6 h after balloon deflation for histological and molecular analyses. Renal blood flow was lower in the 25-mmHg group (48.5 ± 18.3 mL/min) than in the 45-mmHg group (177.9 ± 27.2 mL/min) during the occlusion phase, which recovered and was not different after balloon deflation. AKI was more severe in the 25-mmHg group, as evidenced by circulating creatinine, blood urea nitrogen, and urinary neutrophil gelatinase-associated lipocalin. The 25-mmHg group had increased tubular necrosis, lower renal citrate synthase activity, increased tissue and circulating syndecan-1, and elevated systemic inflammatory cytokines. The extent of renal ischemia-induced AKI is associated with the magnitude of mitochondrial biomass and systemic inflammation, highlighting potential mechanistic targets to combine with partial REBOA strategies to prevent AKI.NEW & NOTEWORTHY Large animal models of ischemia-reperfusion acute kidney injury (IR-AKI) are lacking. This report establishes a titratable IR-AKI model in swine in which a balloon catheter can be used to alter distal pressures experienced by the kidney, thus controlling renal blood flow. Lower blood flow results in greater renal dysfunction and structural damage, as well as lower mitochondrial biomass, elevated systemic inflammation, and vascular dysfunction.
Collapse
Affiliation(s)
- Biebele Abel
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Incorporated, Bethesda, Maryland, United States
- Department of Surgery, Uniformed Services University of the Health Science, Bethesda, Maryland, United States
| | - John Mares
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Incorporated, Bethesda, Maryland, United States
- Department of Surgery, Uniformed Services University of the Health Science, Bethesda, Maryland, United States
| | - Justin Hutzler
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Incorporated, Bethesda, Maryland, United States
- Department of Surgery, Uniformed Services University of the Health Science, Bethesda, Maryland, United States
| | - Babita Parajuli
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - Lalitha Kurada
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Incorporated, Bethesda, Maryland, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - Joseph M White
- Division of Vascular Surgery and Endovascular Therapy, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Brandon W Propper
- Department of Surgery, Uniformed Services University of the Health Science, Bethesda, Maryland, United States
- Department of Surgery, Walter Reed National Military Medical Center, Bethesda, Maryland, United States
| | - Ian J Stewart
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - David M Burmeister
- Department of Surgery, Uniformed Services University of the Health Science, Bethesda, Maryland, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| |
Collapse
|
2
|
Reiländer S, Schmehl W, Popp K, Nuss K, Kronen P, Verdino D, Wiezorek C, Gutmann M, Hahn L, Däubler C, Meining A, Raschig M, Kaiser F, von Rechenberg B, Scherf-Clavel O, Meinel L. Oral Use of Therapeutic Carbon Monoxide for Anyone, Anywhere, and Anytime. ACS Biomater Sci Eng 2022. [DOI: 10.1021/acsbiomaterials.2c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simon Reiländer
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Wolfgang Schmehl
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Kevin Popp
- German Plastics Center (SKZ), Friedrich-Bergius-Ring 22, Wuerzburg97076, Germany
| | - Katja Nuss
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Peter Kronen
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Dagmar Verdino
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Christina Wiezorek
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Marcus Gutmann
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Lukas Hahn
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Christof Däubler
- Department of Internal Medicine II, Gastroenterology, University Hospital Wuerzburg, Oberdürrbacherstr. 6, Wuerzburg97080, Germany
| | - Alexander Meining
- Department of Internal Medicine II, Gastroenterology, University Hospital Wuerzburg, Oberdürrbacherstr. 6, Wuerzburg97080, Germany
| | - Martina Raschig
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, Würzburg97070, Germany
| | - Brigitte von Rechenberg
- Musculoskeletal Research Unit (MSRU), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zuerich, Winterthurerstrasse 260, Zuerich8057, Switzerland
| | - Oliver Scherf-Clavel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074Wuerzburg, Germany
- Helmholtz Institute for RNA-based Infection Biology (HIRI), Würzburg97070, Germany
| |
Collapse
|
3
|
Tsivilika M, Kavvadas D, Karachrysafi S, Kotzampassi K, Grosomanidis V, Doumaki E, Meditskou S, Sioga A, Papamitsou T. Renal Injuries after Cardiac Arrest: A Morphological Ultrastructural Study. Int J Mol Sci 2022; 23:ijms23116147. [PMID: 35682826 PMCID: PMC9180998 DOI: 10.3390/ijms23116147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND This study aims to investigate the probable lesions and injuries induced in the renal tissue after a cardiac arrest. The renal ischemia-reperfusion model in cardiac arrest describes the effects of ischemia in the kidneys, alongside a whole-body ischemia-reperfusion injury. This protocol excludes ischemic conditions caused by surgical vascular manipulation, venous injury or venous congestion. METHODS For the experimental study, 24 swine were subjected to cardiac arrest. Seven minutes later, the cardiopulmonary resuscitation technique was performed for 5 min. Afterwards, advanced life support was provided. The resuscitated swine consisted one group and the non-resuscitated the other. Tissue samples were obtained from both groups for light and electron microscopy evaluation. RESULTS Tissue lesions were observed in the tubules, parallel to destruction of the microvilli, reduction in the basal membrane invaginations, enlarged mitochondria, cellular vacuolization, cellular apoptosis and disorganization. In addition, fusion of the podocytes, destruction of the Bowman's capsule parietal epithelium and abnormal peripheral urinary space was observed. The damage appeared more extensive in the non-resuscitated swine group. CONCLUSIONS Acute kidney injury is not the leading cause of death after cardiac arrest. However, evidence suggests that the kidney damage after a cardiac arrest should be highly considered in the prognosis of the patients' health outcome.
Collapse
Affiliation(s)
- Maria Tsivilika
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.T.); (D.K.); (S.K.); (S.M.); (A.S.)
| | - Dimitrios Kavvadas
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.T.); (D.K.); (S.K.); (S.M.); (A.S.)
| | - Sofia Karachrysafi
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.T.); (D.K.); (S.K.); (S.M.); (A.S.)
| | - Katerina Kotzampassi
- Department of Surgery, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
| | - Vasilis Grosomanidis
- Department of Anesthesiology and ICU, Aristotle University Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Doumaki
- 1st Department of Internal Medicine, Faculty of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Soultana Meditskou
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.T.); (D.K.); (S.K.); (S.M.); (A.S.)
| | - Antonia Sioga
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.T.); (D.K.); (S.K.); (S.M.); (A.S.)
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.T.); (D.K.); (S.K.); (S.M.); (A.S.)
- Correspondence:
| |
Collapse
|
4
|
Chu LM, Shaefi S, Byrne JD, Alves de Souza RW, Otterbein LE. Carbon monoxide and a change of heart. Redox Biol 2021; 48:102183. [PMID: 34764047 PMCID: PMC8710986 DOI: 10.1016/j.redox.2021.102183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/25/2022] Open
Abstract
The relationship between carbon monoxide and the heart has been extensively studied in both clinical and preclinical settings. The Food and Drug Administration (FDA) is keenly focused on the ill effects of carbon monoxide on the heart when presented with proposals for clinical trials to evaluate efficacy of this gasotransmitter in a various disease settings. This review provides an overview of the rationale that examines the actions of the FDA when considering clinical testing of CO, and contrast that with the continued accumulation of data that clearly show not only that CO can be used safely, but is potently cardioprotective in clinically relevant small and large animal models. Data emerging from Phase I and Phase II clinical trials argues against CO being dangerous to the heart and thus it needs to be redefined and evaluated as any other substance being proposed for use in humans. More than twenty years ago, the belief that CO could be used as a salutary molecule was ridiculed by experts in physiology and medicine. Like all agents designed for use in humans, careful pharmacology and safety are paramount, but continuing to hinder progress based on long-standing dogma in the absence of data is improper. Now, CO is being tested in multiple clinical trials using innovative delivery methods and has proven to be safe. The hope, based on compelling preclinical data, is that it will continue to be evaluated and ultimately approved as an effective therapeutic.
Collapse
Affiliation(s)
- Louis M Chu
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Shazhad Shaefi
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | | | - Rodrigo W Alves de Souza
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Leo E Otterbein
- Harvard Medical School, Departments of Surgery, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Wiklund L, Sharma A, Patnaik R, Muresanu DF, Sahib S, Tian ZR, Castellani RJ, Nozari A, Lafuente JV, Sharma HS. Upregulation of hemeoxygenase enzymes HO-1 and HO-2 following ischemia-reperfusion injury in connection with experimental cardiac arrest and cardiopulmonary resuscitation: Neuroprotective effects of methylene blue. PROGRESS IN BRAIN RESEARCH 2021; 265:317-375. [PMID: 34560924 DOI: 10.1016/bs.pbr.2021.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oxidative stress plays an important role in neuronal injuries after cardiac arrest. Increased production of carbon monoxide (CO) by the enzyme hemeoxygenase (HO) in the brain is induced by the oxidative stress. HO is present in the CNS in two isoforms, namely the inducible HO-1 and the constitutive HO-2. Elevated levels of serum HO-1 occurs in cardiac arrest patients and upregulation of HO-1 in cardiac arrest is seen in the neurons. However, the role of HO-2 in cardiac arrest is not well known. In this review involvement of HO-1 and HO-2 enzymes in the porcine brain following cardiac arrest and resuscitation is discussed based on our own observations. In addition, neuroprotective role of methylene blue- an antioxidant dye on alterations in HO under in cardiac arrest is also presented. The biochemical findings of HO-1 and HO-2 enzymes using ELISA were further confirmed by immunocytochemical approach to localize selective regional alterations in cardiac arrest. Our observations are the first to show that cardiac arrest followed by successful cardiopulmonary resuscitation results in significant alteration in cerebral concentrations of HO-1 and HO-2 levels indicating a prominent role of CO in brain pathology and methylene blue during CPR followed by induced hypothermia leading to superior neuroprotection after return of spontaneous circulation (ROSC), not reported earlier.
Collapse
Affiliation(s)
- Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
Goebel U, Wollborn J. Carbon monoxide in intensive care medicine-time to start the therapeutic application?! Intensive Care Med Exp 2020; 8:2. [PMID: 31919605 PMCID: PMC6952485 DOI: 10.1186/s40635-020-0292-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/05/2020] [Indexed: 12/18/2022] Open
Abstract
Carbon monoxide (CO) is not only known as a toxic gas due to its characteristics as an odorless molecule and its rapid binding to haem-containing molecules, thus inhibiting the respiratory chain in cells resulting in hypoxia. For decades, scientists established evidence about its endogenously production in the breakdown of haem via haem-oxygenase (HO-1) and its physiological effects. Among these, the modulation of various systems inside the body are well described (e.g., anti-inflammatory, anti-oxidative, anti-apoptotic, and anti-proliferative). Carbon monoxide is able to modulate several extra- and intra-cellular signaling molecules leading to differentiated response according to the specific stimulus. With our growing understanding in the way CO exerts its effects, especially in the mitochondria and its intracellular pathways, it is tempting to speculate about a clinical application of this substance. Since HO-1 is not easy to induce, research focused on the application of the gaseous molecule CO by itself or the implementation of carbon monoxide releasing molecules (CO-RM) to deliver the molecule at a time- and dose dependently safe way to any target organ. After years of research in cellular systems and animal models, summing up data about safety issues as well as possible target to treat in various diseases, the first feasibility trials in humans were established. Up-to-date, safety issues have been cleared for low-dose carbon monoxide inhalation (up to 500 ppm), while there is no clinical data regarding the injection or intake of any kind of CO-RM so far. Current models of human research include sepsis, acute lung injury, and acute respiratory distress syndrome as well as acute kidney injury. Carbon monoxide is a most promising candidate in terms of a therapeutic agent to improve outbalanced organ conditions. In this paper, we summarized the current understanding of carbon monoxide’s biology and its possible organ targets to treating the critically ill patients in tomorrow’s ICU.
Collapse
Affiliation(s)
- Ulrich Goebel
- Department of Anaesthesiology and Critical Care, St. Franziskus-Hospital, Hohenzollernring 70, 48145, Münster, Germany.
| | - Jakob Wollborn
- Department of Anaesthesiology and Critical Care, Medical Centre - University of Freiburg, Faculty of Medicine, Freiburg im Breisgau, Germany
| |
Collapse
|