1
|
Organoid culture to study epithelial cell differentiation and barrier formation in the colon: bridging the gap between monolayer cell culture and human subject research. In Vitro Cell Dev Biol Anim 2021; 57:174-190. [PMID: 33403624 DOI: 10.1007/s11626-020-00534-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Organoid culture provides a powerful technology that can bridge the gap between monolayer cell culture on the one hand and whole animal or human subject research on the other. Tissues from many different organs from multiple species, including human, have already been successfully adapted to organoid growth. While optimal culture conditions have not yet been established for all tissue types, it seems that most tissues will, ultimately, be amenable to this type of culture. The colon is one of the tissues in which organoid culture was first established as a technology and which has been most successfully employed. The ready availability of histologically normal tissue as well as both premalignant and malignant tissue (often from the same individual) makes this possible. While individual tumors are highly variable relative to one another in organoid culture, a high degree of genotypic consistency exists between the tumor tissue and the histologically normal counterpart from a given source. Further, source material and tumor tissue in organoid culture demonstrate a high degree of genotypic consistency. Even after 6-9 mo in continuous culture, drift in the mutational profile has been shown to be minimal. Colon tissue maintained in organoid culture, thus, provides a good surrogate for the tissue of origin-a surrogate, however, that is as amenable to intervention with molecular, pharmacological, and immunological approaches as are more-traditionally studied cell lines.
Collapse
|
2
|
Javed E, Thangavel C, Frara N, Singh J, Mohanty I, Hypolite J, Birbe R, Braverman AS, Den RB, Rattan S, Zderic SA, Deshpande DA, Penn RB, Ruggieri MR, Chacko S, Boopathi E. Increased expression of desmin and vimentin reduces bladder smooth muscle contractility via JNK2. FASEB J 2019; 34:2126-2146. [PMID: 31909533 DOI: 10.1096/fj.201901301r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/18/2019] [Accepted: 11/14/2019] [Indexed: 01/12/2023]
Abstract
Bladder dysfunction is associated with the overexpression of the intermediate filament (IF) proteins desmin and vimentin in obstructed bladder smooth muscle (BSM). However, the mechanisms by which these proteins contribute to BSM dysfunction are not known. Previous studies have shown that desmin and vimentin directly participate in signal transduction. In this study, we hypothesized that BSM dysfunction associated with overexpression of desmin or vimentin is mediated via c-Jun N-terminal kinase (JNK). We employed a model of murine BSM tissue in which increased expression of desmin or vimentin was induced by adenoviral transduction to examine the sufficiency of increased IF protein expression to reduce BSM contraction. Murine BSM strips overexpressing desmin or vimentin generated less force in response to KCl and carbachol relative to the levels in control murine BSM strips, an effect associated with increased JNK2 phosphorylation and reduced myosin light chain (MLC20 ) phosphorylation. Furthermore, desmin and vimentin overexpressions did not alter BSM contractility and MLC20 phosphorylation in strips isolated from JNK2 knockout mice. Pharmacological JNK2 inhibition produced results qualitatively similar to those caused by JNK2 knockout. These findings suggest that inhibition of JNK2 may improve diminished BSM contractility associated with obstructive bladder disease.
Collapse
Affiliation(s)
- Elham Javed
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Nagat Frara
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jagmohan Singh
- Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ipsita Mohanty
- Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph Hypolite
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ruth Birbe
- Department of Pathology and Laboratory Medicine, Cooper University Health Care, Camden, NJ, USA
| | - Alan S Braverman
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Robert B Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Satish Rattan
- Department of Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Stephen A Zderic
- Department of Urology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Raymond B Penn
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Ruggieri
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Samuel Chacko
- Division of Urology, University of Pennsylvania, Philadelphia, PA, USA.,Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ettickan Boopathi
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,Division of Urology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Zhao Z, Liu D, Chen Y, Kong Q, Li D, Zhang Q, Liu C, Tian Y, Fan C, Meng L, Zhu H, Yu H. Ureter tissue engineering with vessel extracellular matrix and differentiated urine-derived stem cells. Acta Biomater 2019; 88:266-279. [PMID: 30716556 DOI: 10.1016/j.actbio.2019.01.072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To assess the possibility of ureter tissue engineering using vessel extracellular matrix (VECM) and differentiated urine-derived stem cells (USCs) in a rabbit model. METHODS VECM was prepared by a modified technique. USCs were isolated from human urine samples and cultured with an induction medium for the differentiation of the cells into urothelium and smooth muscle phenotypes. For contractile phenotype conversion, the induced smooth muscle cells were transfected with the miR-199a-5p plasmid. The differentiated cells were seeded onto VECM and cultured under dynamic conditions in vitro for 2 weeks. The graft was tubularized and wrapped by two layers of the omentum of a rabbit for vascularization. Then, the maturated graft was used for ureter reconstruction in vivo. RESULTS VECM has microporous structures that allow cell infiltration and exhibit adequate biocompatibility with seeding cells. USCs were isolated and identified by flow cytometry. After induction, the urothelium phenotype gene was confirmed at mRNA and protein levels. With the combined induction by TGF-β1 and miR-199a-5p, the differentiated cells can express the smooth muscle phenotype gene and convert to the contractile phenotype. After seeding cells onto VECM, the induced urothelium cells formed a single epithelial layer, and the induced smooth muscle cells formed a few cell layers during dynamic culture. After 3 weeks of omental maturation, tubular graft was vascularized. At 2 months post ureter reconstruction, histological evaluation showed a clearly layered structure of ureter with multilayered urothelium over the organized smooth muscle tissue. CONCLUSION By seeding differentiated USCs onto VECM, a tissue-engineered graft could form multilayered urothelium and organized smooth muscle tissue after ureteral reconstruction in vivo. STATEMENT OF SIGNIFICANCE Cell-based tissue engineering offers an alternative technique for urinary tract reconstruction. In this work, we describe a novel strategy for ureter tissue engineering. We modified the techniques of vessel extracellular matrix (VECM) preparation and used a dynamic culture system for seeding cells onto VECM. We found that VECM had the trait of containing VEGF and exhibited blood vessel formation potential. Urine-derived stem cells (USCs) could be differentiated into urothelial cells and functional contractile phenotype smooth muscle cells in vitro. By seeding differentiated USCs onto VECM, a tissue-engineered graft could form multilayered urothelium and organized smooth muscle tissue after ureteral reconstruction in vivo. This strategy might be applied in clinical research for the treatment of long-segment ureteral defect.
Collapse
Affiliation(s)
- Zhankui Zhao
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272100, PR China.
| | - Deqian Liu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272100, PR China
| | - Ye Chen
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272100, PR China
| | - Qingsheng Kong
- Department of Biochemistry, Jining Medical University, Jining, Shandong 272067, PR China; Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, PR China
| | - Dandan Li
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, PR China
| | - Qingxin Zhang
- Department of Radiology, Medical Imaging Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272100, PR China
| | - Chuanxin Liu
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yanjun Tian
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, PR China
| | - Chengjuan Fan
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272100, PR China
| | - Lin Meng
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272100, PR China
| | - Haizhou Zhu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272100, PR China
| | - Honglian Yu
- Department of Biochemistry, Jining Medical University, Jining, Shandong 272067, PR China; Collaborative Innovation Center, Jining Medical University, Jining, Shandong 272067, PR China.
| |
Collapse
|
4
|
Liu B, Lee YC, Alwaal A, Wang G, Banie L, Lin CS, Lin G, Lue TF. Carbachol-induced signaling through Thr696-phosphorylation of myosin phosphatase-targeting subunit 1 (MYPT1) in rat bladder smooth muscle cells. Int Urol Nephrol 2016; 48:1237-1242. [PMID: 27118568 DOI: 10.1007/s11255-016-1303-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 04/19/2016] [Indexed: 12/18/2022]
Abstract
PURPOSE Lines of evidence suggest that Rho-associated protein kinase (ROCK)-mediated myosin phosphatase-targeting subunit 1 (MYPT1) phosphorylation plays a central role in smooth muscle contraction. However, the physiological significance of MYPT1 phosphorylation at Thr696 catalyzed by ROCK in bladder smooth muscle remains controversial. We attempt to directly observe the quantitative protein expression of Rho A/ROCK and phosphorylation of MYPT1 at Thr696 after carbachol administration in rat bladder smooth muscle cells (RBMSCs). MATERIALS AND METHODS Primary cultured smooth muscle cells were obtained from rat bladders. The effects of both concentration and time-course induced by the muscarinic agonist carbachol were investigated by assessing the expression of Rho A/ROCK and MYPT1 phosphorylation at Thr696 using Western blot. RESULTS In the dose-course studies, carbachol showed significant increase in phosphorylation of MYPT1 at Thr696 (p-MYPT1) from concentrations of 15-100 μM based on Western blot results (p < 0.05, ANOVA test). In the time-course studies, treatment of cells with 15 μM of carbachol significantly enhanced the expression of p-MYPT1 from 3 to 15 h (p < 0.05, ANOVA test) and induced the expression of Rho A from 10 to 120 min (p < 0.05, ANOVA test). CONCLUSIONS Carbachol can induce the expression of ROCK pathway, leading to MYPT1 phosphorylation at Thr696 and thereby sustained RBSMCs contraction.
Collapse
Affiliation(s)
- Benchun Liu
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, 400 Parnassus Ave., Ste A-610, San Francisco, CA, 94143-0738, USA
| | - Yung-Chin Lee
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, 400 Parnassus Ave., Ste A-610, San Francisco, CA, 94143-0738, USA
- Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Amjad Alwaal
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, 400 Parnassus Ave., Ste A-610, San Francisco, CA, 94143-0738, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, 400 Parnassus Ave., Ste A-610, San Francisco, CA, 94143-0738, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, 400 Parnassus Ave., Ste A-610, San Francisco, CA, 94143-0738, USA
| | - Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, 400 Parnassus Ave., Ste A-610, San Francisco, CA, 94143-0738, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, 400 Parnassus Ave., Ste A-610, San Francisco, CA, 94143-0738, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, 400 Parnassus Ave., Ste A-610, San Francisco, CA, 94143-0738, USA.
| |
Collapse
|
5
|
Mesenchymal stromal cells for sphincter regeneration. Adv Drug Deliv Rev 2015; 82-83:123-36. [PMID: 25451135 DOI: 10.1016/j.addr.2014.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/29/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023]
Abstract
Stress urinary incontinence (SUI), defined as the involuntary loss of considerable amounts of urine during increased abdominal pressure (exertion, effort, sneezing, coughing, etc.), is a severe problem to the individuals affected and a significant medical, social and economic challenge. SUI is associated with pelvic floor debility, absence of detrusor contraction, or a loss of control over the sphincter muscle apparatus. The pathology includes an increasing loss of muscle cells, replacement of muscular tissue with fibrous tissue, and general aging associated processes of the sphincter complex. When current therapies fail to cure or improve SUI, application of regeneration-competent cells may be an alternative therapeutic option. Here we discuss different aspects of the biology of mesenchymal stromal cells, which are relevant to their clinical applications and for regenerating the sphincter complex. However, there are reports in favor of and against cell-based therapies. We therefore summarize the potential and the risks of cell-based therapies for the treatment of SUI.
Collapse
|
6
|
Chen CP, Chen X, Qiao YN, Wang P, He WQ, Zhang CH, Zhao W, Gao YQ, Chen C, Tao T, Sun J, Wang Y, Gao N, Kamm KE, Stull JT, Zhu MS. In vivo roles for myosin phosphatase targeting subunit-1 phosphorylation sites T694 and T852 in bladder smooth muscle contraction. J Physiol 2014; 593:681-700. [PMID: 25433069 DOI: 10.1113/jphysiol.2014.283853] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/18/2014] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Force production and maintenance in smooth muscle is largely controlled by myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. MYPT1 is the regulatory subunit of MLCP that biochemically inhibits MLCP activity via T694 or T852 phosphorylation in vitro. Here we separately investigated the contribution of these two phosphorylation sites in bladder smooth muscles by establishing two single point mutation mouse lines, T694A and T852A, and found that phosphorylation of MYPT1 T694, but not T852, mediates force maintenance via inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. Our findings reveal the role of MYPT1 T694/T852 phosphorylation in vivo in regulation of smooth muscle contraction. ABSTRACT Force production and maintenance in smooth muscle is largely controlled by different signalling modules that fine tune myosin regulatory light chain (RLC) phosphorylation, which relies on a balance between Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) and myosin light chain phosphatase (MLCP) activities. To investigate the regulation of MLCP activity in vivo, we analysed the role of two phosphorylation sites on MYPT1 (regulatory subunit of MLCP) that biochemically inhibit MLCP activity in vitro. MYPT1 is constitutively phosphorylated at T694 by unidentified kinases in vivo, whereas the T852 site is phosphorylated by RhoA-associated protein kinase (ROCK). We established two mouse lines with alanine substitution of T694 or T852. Isolated bladder smooth muscle from T852A mice displayed no significant changes in RLC phosphorylation or force responses, but force was inhibited with a ROCK inhibitor. In contrast, smooth muscles containing the T694A mutation showed a significant reduction of force along with reduced RLC phosphorylation. The contractile responses of T694A mutant smooth muscle were also independent of ROCK activation. Thus, phosphorylation of MYPT1 T694, but not T852, is a primary mechanism contributing to inhibition of MLCP activity and enhancement of RLC phosphorylation in vivo. The constitutive phosphorylation of MYPT1 T694 may provide a mechanism for regulating force maintenance of smooth muscle.
Collapse
Affiliation(s)
- Cai-Ping Chen
- Model Animal Research Center and MOE Key Laboratory of Animal Models of Disease, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|