1
|
Andrini O, Eladari D, Picard N. ClC-K Kidney Chloride Channels: From Structure to Pathology. Handb Exp Pharmacol 2024; 283:35-58. [PMID: 36811727 DOI: 10.1007/164_2023_635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The molecular basis of chloride transport varies all along the nephron depending on the tubular segments especially in the apical entry of the cell. The major chloride exit pathway during reabsorption is provided by two kidney-specific ClC chloride channels ClC-Ka and ClC-Kb (encoded by CLCNKA and CLCNKB gene, respectively) corresponding to rodent ClC-K1 and ClC-K2 (encoded by Clcnk1 and Clcnk2). These channels function as dimers and their trafficking to the plasma membrane requires the ancillary protein Barttin (encoded by BSND gene). Genetic inactivating variants of the aforementioned genes lead to renal salt-losing nephropathies with or without deafness highlighting the crucial role of ClC-Ka, ClC-Kb, and Barttin in the renal and inner ear chloride handling. The purpose of this chapter is to summarize the latest knowledge on renal chloride structure peculiarity and to provide some insight on the functional expression on the segments of the nephrons and on the related pathological effects.
Collapse
Affiliation(s)
- Olga Andrini
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, Lyon, France.
| | - Dominique Eladari
- CHU Amiens Picardie, Service de Médecine de Précision des maladies Métaboliques et Rénales, Université de Picardie Jules Verne, Amiens, France
| | - Nicolas Picard
- CNRS, LBTI UMR5305, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
2
|
Klomjit N, Ungprasert P. Acute kidney injury associated with non-steroidal anti-inflammatory drugs. Eur J Intern Med 2022; 101:21-28. [PMID: 35534373 DOI: 10.1016/j.ejim.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 12/27/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are ones of the commonly prescribed drugs worldwide. They primarily inhibit cyclooxygenase (COX) enzyme which is responsible for conversion of phospholipids to various prostaglandins (PGs). Disruption in PGs production affects the kidneys in several ways, including vasoconstriction that may result in ischemic acute kidney injury (AKI) in at-risk patients. They also impair salt and water excretion, leading to edema and hypertension. Other complications include hyperkalemia, hyponatremia, nephrotic syndrome, acute interstitial nephritis and chronic kidney disease progression. AKI from NSAIDs is usually reversible with favorable prognosis after discontinuation of NSAIDs. Avoidance of NSAIDs exposure is extremely important, especially among high-risk patients.
Collapse
Affiliation(s)
- Nattawat Klomjit
- Division of Nephrology and Hypertension, University of Minnesota, Minneapolis, USA.
| | - Patompong Ungprasert
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Wang L, Wu Y, Jia Z, Yu J, Huang S. Roles of EP Receptors in the Regulation of Fluid Balance and Blood Pressure. Front Endocrinol (Lausanne) 2022; 13:875425. [PMID: 35813612 PMCID: PMC9262144 DOI: 10.3389/fendo.2022.875425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important prostanoid expressing throughout the kidney and cardiovascular system. Despite the diverse effects on fluid metabolism and blood pressure, PGE2 is implicated in sustaining volume and hemodynamics homeostasis. PGE2 works through four distinct E-prostanoid (EP) receptors which are G protein-coupled receptors. To date, pharmacological specific antagonists and agonists of all four subtypes of EP receptors and genetic targeting knockout mice for each subtype have helped in uncoupling the diverse functions of PGE2 and discriminating the respective characteristics of each receptor. In this review, we summarized the functions of individual EP receptor subtypes in the renal and blood vessels and the molecular mechanism of PGE2-induced fluid metabolism and blood pressure homeostasis.
Collapse
Affiliation(s)
- Lu Wang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqian Wu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| | - Songming Huang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| |
Collapse
|
4
|
Poll BG, Chen L, Chou CL, Raghuram V, Knepper MA. Landscape of GPCR expression along the mouse nephron. Am J Physiol Renal Physiol 2021; 321:F50-F68. [PMID: 34029142 PMCID: PMC8321805 DOI: 10.1152/ajprenal.00077.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney transport and other renal functions are regulated by multiple G protein-coupled receptors (GPCRs) expressed along the renal tubule. The rapid, recent appearance of comprehensive unbiased gene expression data in the various renal tubule segments, chiefly RNA sequencing and protein mass spectrometry data, has provided a means of identifying patterns of GPCR expression along the renal tubule. To allow for comprehensive mapping, we first curated a comprehensive list of GPCRs in the genomes of mice, rats, and humans (https://hpcwebapps.cit.nih.gov/ESBL/Database/GPCRs/) using multiple online data sources. We used this list to mine segment-specific and cell type-specific expression data from RNA-sequencing studies in microdissected mouse tubule segments to identify GPCRs that are selectively expressed in discrete tubule segments. Comparisons of these mapped mouse GPCRs with other omics datasets as well as functional data from isolated perfused tubule and micropuncture studies confirmed patterns of expression for well-known receptors and identified poorly studied GPCRs that are likely to play roles in the regulation of renal tubule function. Thus, we provide data resources for GPCR expression across the renal tubule, highlighting both well-known GPCRs and understudied receptors to provide guidance for future studies.
Collapse
Affiliation(s)
- Brian G Poll
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
5
|
Abstract
Chloride channel 3 (ClC-3), a Cl-/H+ antiporter, has been well established as a member of volume-regulated chloride channels (VRCCs). ClC-3 may be a crucial mediator for activating inflammation-associated signaling pathways by regulating protein phosphorylation. A growing number of studies have indicated that ClC-3 overexpression plays a crucial role in mediating increased plasma low-density lipoprotein levels, vascular endothelium dysfunction, pro-inflammatory activation of macrophages, hyper-proliferation and hyper-migration of vascular smooth muscle cells (VSMCs), as well as oxidative stress and foam cell formation, which are the main factors responsible for atherosclerotic plaque formation in the arterial wall. In the present review, we summarize the molecular structures and classical functions of ClC-3. We further discuss its emerging role in the atherosclerotic process. In conclusion, we explore the potential role of ClC-3 as a therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Dun Niu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 34706University of South China, Hengyang, China
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 34706University of South China, Hengyang, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, 34706University of South China, Hengyang, China
| |
Collapse
|