1
|
Zheng K, Layton AT. Predicting sex differences in the effects of diuretics in renal epithelial transport during angiotensin II-induced hypertension. Am J Physiol Renal Physiol 2024; 326:F737-F750. [PMID: 38482554 DOI: 10.1152/ajprenal.00398.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
Chronic angiotensin II (ANG II) infusion is an experimental model that induces hypertension in rodents. The natriuresis, diuresis, and blood pressure responses differ between males and females. This is perhaps not unexpected, given the rodent kidney, which plays a key role in blood pressure regulation, exhibits marked sex differences. Under normotensive conditions, compared with males, the female rat nephron exhibits lower Na+/H+ exchanger 3 (NHE3) activity along the proximal tubule but higher Na+ transporter activities along the distal segments. ANG II infusion-induced hypertension induces a pressure natriuretic response that reduces NHE3 activity and shifts Na+ transport capacity downstream. The goals of this study were to apply a computational model of epithelial transport along a rat nephron 1) to understand how a 14-day ANG II infusion impacts segmental electrolyte transport in male and female rat nephrons and 2) to identify and explain any sex differences in the effects of loop diuretics, thiazide diuretics, and K+-sparing diuretics. Model simulations suggest that the NHE3 downregulation in the proximal tubule is a major contributor to natriuresis and diuresis in hypertension, with the effects stronger in males. All three diuretics are predicted to induce stronger natriuretic and diuretic effects under hypertension compared with normotension, with relative increases in sodium excretion higher in hypertensive females than in males. The stronger natriuretic responses can be explained by the downstream shift of Na+ transport load in hypertension and by the larger distal transport load in females, both of which limit the ability of the distal segments to further elevate their Na+ transport.NEW & NOTEWORTHY Sex differences in the prevalence of hypertension are found in human and animal models. The kidney, which regulates blood pressure, exhibits sex differences in morphology, hemodynamics, and membrane transporter distributions. This computational modeling study provides insights into how the sexually dimorphic responses to a 14-day angiotensin II infusion differentially impact segmental electrolyte transport in rats. Simulations of diuretic administration explain how the natriuretic and diuretic effects differ between normotension and hypertension and between the sexes.
Collapse
Affiliation(s)
- Kaixin Zheng
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Stadt MM, Layton AT. A modeling analysis of whole body potassium regulation on a high-potassium diet: proximal tubule and tubuloglomerular feedback effects. Am J Physiol Regul Integr Comp Physiol 2024; 326:R401-R415. [PMID: 38465401 DOI: 10.1152/ajpregu.00283.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Potassium (K+) is an essential electrolyte that plays a key role in many physiological processes, including mineralcorticoid action, systemic blood-pressure regulation, and hormone secretion and action. Indeed, maintaining K+ balance is critical for normal cell function, as too high or too low K+ levels can have serious and potentially deadly health consequences. K+ homeostasis is achieved by an intricate balance between the intracellular and extracellular fluid as well as balance between K+ intake and excretion. This is achieved via the coordinated actions of regulatory mechanisms such as the gastrointestinal feedforward effect, insulin and aldosterone upregulation of Na+-K+-ATPase uptake, and hormone and electrolyte impacts on renal K+ handling. We recently developed a mathematical model of whole body K+ regulation to unravel the individual impacts of these regulatory mechanisms. In this study, we extend our mathematical model to incorporate recent experimental findings that showed decreased fractional proximal tubule reabsorption under a high-K+ diet. We conducted model simulations and sensitivity analyses to investigate how these renal alterations impact whole body K+ regulation. Model predictions quantify the sensitivity of K+ regulation to various levels of proximal tubule K+ reabsorption adaptation and tubuloglomerular feedback. Our results suggest that the reduced proximal tubule K+ reabsorption under a high-K+ diet could achieve K+ balance in isolation, but the resulting tubuloglomerular feedback reduces filtration rate and thus K+ excretion.NEW & NOTEWORTHY Potassium homeostasis is maintained in the body by a complex system of regulatory mechanisms. This system, when healthy, maintains a small extracellular potassium concentration, despite large fluctuations of dietary potassium. The complexities of the system make this problem well suited for investigation with mathematical modeling. In this study, we extend our mathematical model to consider recent experimental results on renal potassium handling on a high potassium diet and investigate the impacts from a whole body perspective.
Collapse
Affiliation(s)
- Melissa M Stadt
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
McDonough AA, Harris AN, Xiong LI, Layton AT. Sex differences in renal transporters: assessment and functional consequences. Nat Rev Nephrol 2024; 20:21-36. [PMID: 37684523 PMCID: PMC11090267 DOI: 10.1038/s41581-023-00757-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Mammalian kidneys are specialized to maintain fluid and electrolyte homeostasis. The epithelial transport processes along the renal tubule that match output to input have long been the subject of experimental and theoretical study. However, emerging data have identified a new dimension of investigation: sex. Like most tissues, the structure and function of the kidney is regulated by sex hormones and chromosomes. Available data demonstrate sex differences in the abundance of kidney solute and electrolyte transporters, establishing that renal tubular organization and operation are distinctly different in females and males. Newer studies have provided insights into the physiological consequences of these sex differences. Computational simulations predict that sex differences in transporter abundance are likely driven to optimize reproduction, enabling adaptive responses to the nutritional requirements of serial pregnancies and lactation - normal life-cycle changes that challenge the ability of renal transporters to maintain fluid and electrolyte homeostasis. Later in life, females may also undergo menopause, which is associated with changes in disease risk. Although numerous knowledge gaps remain, ongoing studies will provide further insights into the sex-specific mechanisms of sodium, potassium, acid-base and volume physiology throughout the life cycle, which may lead to therapeutic opportunities.
Collapse
Affiliation(s)
- Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Autumn N Harris
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL, USA
| | - Lingyun Ivy Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Anita T Layton
- Departments of Applied Mathematics and Biology, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Women experience unique life events, for example, pregnancy and lactation, that challenge renal regulation of electrolyte homeostasis. Recent analyses of nephron organization in female vs. male rodent kidneys, revealed distinct sexual dimorphisms in electrolyte transporter expression, abundance, and activity. This review aims to provide an overview of electrolyte transporters' organization and operation in female compared with the commonly studied male kidney, and the (patho)physiologic consequences of the differences. RECENT FINDINGS When electrolyte transporters are assessed in kidney protein homogenates from both sexes, relative transporter abundance ratios in females/males are less than one along proximal tubule and greater than one post macula densa, which is indicative of a 'downstream shift' in fractional reabsorption of electrolytes in females. This arrangement improves the excretion of a sodium load, challenges potassium homeostasis, and is consistent with the lower blood pressure and greater pressure natriuresis observed in premenopausal women. SUMMARY We summarize recently reported new knowledge about sex differences in renal transporters: abundance and expression along nephron, implications for regulation by Na + , K + and angiotensin II, and mathematical models of female nephron function.
Collapse
Affiliation(s)
- Alicia A. McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Anita T. Layton
- Departments of Applied Mathematics and Biology, University of Waterloo, Waterloo, Ontario, Canada; Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada; School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Lasaad S, Crambert G. Renal K + retention in physiological circumstances: focus on adaptation of the distal nephron and cross-talk with Na + transport systems. Front Physiol 2023; 14:1264296. [PMID: 37719462 PMCID: PMC10500064 DOI: 10.3389/fphys.2023.1264296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Consumption of salt (NaCl) and potassium (K+) has been completely modified, switching from a rich-K+/low-NaCl diet in the hunter-gatherer population to the opposite in the modern, westernized population. The ability to conserve K+ is crucial to maintain the plasma K+ concentration in a physiological range when dietary K+ intake is decreased. Moreover, a chronic reduction in the K+ intake is correlated with an increased blood pressure, an effect worsened by a high-Na+ diet. The renal adaptation to a low-K+ diet in order to maintain the plasma K+ level in the normal range is complex and interconnected with the mechanisms of the Na+ balance. In this short review, we will recapitulate the general mechanisms allowing the plasma K+ value to remain in the normal range, when there is a necessity to retain K+ (response to low-K+ diet and adaptation to gestation), by focusing on the processes occurring in the most distal part of the nephron. We will particularly outline the mechanisms of K+ reabsorption and discuss the consequences of its absence on the Na+ transport systems and the regulation of the extracellular compartment volume and blood pressure.
Collapse
Affiliation(s)
- Samia Lasaad
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- CNRS EMR 8228—Unité Métabolisme et Physiologie Rénale, Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- CNRS EMR 8228—Unité Métabolisme et Physiologie Rénale, Paris, France
| |
Collapse
|
6
|
Moronge D, Sullivan JC, Faulkner JL. Physiology of Pregnancy-Related Acute Kidney Injury. Compr Physiol 2023; 13:4869-4878. [PMID: 37358509 PMCID: PMC11694322 DOI: 10.1002/cphy.c220026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Renal function increases in pregnancy due to the significant hemodynamic demands of plasma volume expansion and the growing feto-placental unit. Therefore, compromised renal function increases the risk for adverse outcomes for pregnant women and their offspring. Acute kidney injury (AKI), or sudden loss of kidney function, is a significant event that requires aggressive clinical management. An AKI event in pregnancy, or in the postpartum period, significantly increases the risk of adverse pregnancy events and fetal and maternal mortality. At present, there are significant clinical challenges to the identification, diagnosis, and management of pregnancy-associated AKI due to changing hemodynamics in pregnancy that alter baseline values and to treatment limitations in pregnancy. Emerging data indicate that patients that are considered clinically recovered following AKI, which is currently assessed primarily by return of plasma creatinine levels to normal, maintain risk of long-term complications indicating that current recovery criteria mask the detection of subclinical renal damage. In association, recent large-scale clinical cohorts indicate that a history of AKI predisposes women to adverse pregnancy events even years after the patient is considered recovered from AKI. Mechanisms via which women develop AKI in pregnancy, or develop adverse pregnancy events post-AKI, are poorly understood and require significant study to better prevent and treat AKI in women. © 2023 American Physiological Society. Compr Physiol 13:4869-4878, 2023.
Collapse
Affiliation(s)
| | | | - Jessica L. Faulkner
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
7
|
Stadt MM, Leete J, Devinyak S, Layton AT. A mathematical model of potassium homeostasis: Effect of feedforward and feedback controls. PLoS Comput Biol 2022; 18:e1010607. [PMID: 36538563 PMCID: PMC9812337 DOI: 10.1371/journal.pcbi.1010607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Maintaining normal potassium (K+) concentrations in the extra- and intracellular fluid is critical for cell function. K+ homeostasis is achieved by ensuring proper distribution between extra- and intracellular fluid compartments and by matching K+ excretion with intake. The Na+-K+-ATPase pump facilitates K+ uptake into the skeletal muscle, where most K+ is stored. Na+-K+-ATPase activity is stimulated by insulin and aldosterone. The kidneys regulate long term K+ homeostasis by controlling the amount of K+ excreted through urine. Renal handling of K+ is mediated by a number of regulatory mechanisms, including an aldosterone-mediated feedback control, in which high extracellular K+ concentration stimulates aldosterone secretion, which enhances urine K+ excretion, and a gastrointestinal feedforward control mechanism, in which dietary K+ intake increases K+ excretion. Recently, a muscle-kidney cross talk signal has been hypothesized, where the K+ concentration in skeletal muscle cells directly affects urine K+ excretion without changes in extracellular K+ concentration. To understand how these mechanisms coordinate under different K+ challenges, we have developed a compartmental model of whole-body K+ regulation. The model represents the intra- and extracellular fluid compartments in a human (male) as well as a detailed kidney compartment. We included (i) the gastrointestinal feedforward control mechanism, (ii) the effect of insulin and (iii) aldosterone on Na+-K+-ATPase K+ uptake, and (iv) aldosterone stimulation of renal K+ secretion. We used this model to investigate the impact of regulatory mechanisms on K+ homeostasis. Model predictions showed how the regulatory mechanisms synthesize to ensure that the extra- and intracelluller fluid K+ concentrations remain in normal range in times of K+ loading and fasting. Additionally, we predict that without the hypothesized muscle-kidney cross talk signal, the model was unable to predict a return to normal extracellular K+ concentration after a period of high K+ loading or depletion.
Collapse
Affiliation(s)
- Melissa M. Stadt
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| | - Jessica Leete
- Computational Biology and Bioinformatics Program, Duke University, Durham, North Carolina, United States of America
| | - Sophia Devinyak
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
8
|
McDonough AA, Fenton RA. Potassium homeostasis: sensors, mediators, and targets. Pflugers Arch 2022; 474:853-867. [PMID: 35727363 PMCID: PMC10163916 DOI: 10.1007/s00424-022-02718-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 12/16/2022]
Abstract
Transmembrane potassium (K) gradients are key determinants of membrane potential that can modulate action potentials, control muscle contractility, and influence ion channel and transporter activity. Daily K intake is normally equal to the amount of K in the entire extracellular fluid (ECF) creating a critical challenge - how to maintain ECF [K] and membrane potential in a narrow range during feast and famine. Adaptations to maintain ECF [K] include sensing the K intake, sensing ECF [K] vs. desired set-point and activating mediators that regulate K distribution between ECF and ICF, and regulate renal K excretion. In this focused review, we discuss the basis of these adaptions, including (1) potential mechanisms for rapid feedforward signaling to kidney and muscle after a meal (before a rise in ECF [K]), (2) how skeletal muscles sense and respond to changes in ECF [K], (3) effects of K on aldosterone biosynthesis, and (4) how the kidney responds to changes in ECF [K] to modify K excretion. The concepts of sexual dimorphisms in renal K handling adaptation are introduced, and the molecular mechanisms that can account for the benefits of a K-rich diet to maintain cardiovascular health are discussed. Although the big picture of K homeostasis is becoming more clear, we also highlight significant pieces of the puzzle that remain to be solved, including knowledge gaps in our understanding of initiating signals, sensors and their connection to homeostatic adjustments of ECF [K].
Collapse
Affiliation(s)
- Alicia A McDonough
- Department of Physiology and Neuroscience, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Modelling Female Physiology from Head to Toe: Impact of Sex Hormones, Menstrual Cycle, and Pregnancy. J Theor Biol 2022; 540:111074. [PMID: 35227731 DOI: 10.1016/j.jtbi.2022.111074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
|
10
|
Stadt M, Layton AT. Adaptive Changes in single-nephron GFR, Tubular Morphology, and Transport in a Pregnant Rat Nephron: Modeling and Analysis. Am J Physiol Renal Physiol 2021; 322:F121-F137. [PMID: 34894726 DOI: 10.1152/ajprenal.00264.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Normal pregnancy is characterized by massive increases in plasma volume and electrolyte retention. Given that the kidneys regulate homeostasis of electrolytes and volume, the organ undergoes major adaptations in morphology, hemodynamics, and transport to achieve the volume and electrolyte retention required in pregnancy. These adaptations are complex, sometimes counterintuitive, and not fully understood. In addition, the demands of the developing fetus and placenta change throughout the pregnancy. For example, during late pregnancy, K+ retention and thus enhanced renal K+ reabsorption is required despite many kaliuretic factors. The goal of this study is to unravel how known adaptive changes along the nephrons contribute to the ability of the kidney to meet volume and electrolyte requirements in mid- and late pregnancy. We developed computational models of solute and water transport in the superficial nephron of the kidney of a rat in mid- and late pregnancy. The mid-pregnant and late-pregnant rat superficial nephron models predict that morphological adaptations and increased activity of the sodium hydrogen exchanger 3 (NHE3) and epithelial sodium channel (ENaC) are essential for enhanced Na+ reabsorption observed during pregnancy. Model simulations showed that for sufficient K+ reabsorption, increased H +-K +-ATPase activity and decreased K+ secretion along the distal segments is required in both mid- and late-pregnancy. Furthermore, certain known sex differences in renal transporter pattern (e.g., the higher NHE3 protein abundance but lower activity in the proximal tubules of virgin female rats compared to male) may serve to better prepare the female for the increased transport demand in pregnancy.
Collapse
Affiliation(s)
- Melissa Stadt
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
11
|
West CA, Beck SD, Masilamani SM. Time course of renal sodium transport in the pregnant rat. Curr Res Physiol 2021; 4:229-234. [PMID: 34988469 PMCID: PMC8710989 DOI: 10.1016/j.crphys.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Progressive sodium retention and cumulative plasma volume expansion occur to support the developing fetus during pregnancy. Sodium retention is regulated by individual tubular transporters and channels. An increase or decrease in any single transporter could cause a change in sodium balance. Understanding the time-course for changes in each sodium transporter during pregnancy will enable us to understand progressive sodium retention seen in pregnancy. Here, we examined the activity of the major apical sodium transporters found in the nephron using natriuretic response tests in virgin, early pregnant, mid-pregnant, and late pregnant rats. We also measured renal and serum aldosterone levels. We found that furosemide sensitive sodium transport (NKCC2) is only increased during late pregnancy, thiazide sensitive sodium transport (NDCBE/pendrin) is increased in all stages of pregnancy, and that benzamil sensitive sodium transport (ENaC) is increased beginning in mid-pregnancy. We also found that serum aldosterone levels progressively increased throughout gestation and kidney tissue aldosterone levels increased only during late pregnancy. Here we have shown progressive turning on of specific sodium transport mechanisms to help support progressive sodium retention through the course of gestation. These mechanisms contribute to the renal sodium retention and plasma volume expansion required for an optimal pregnancy.
Collapse
Affiliation(s)
- Crystal A. West
- Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Steven D. Beck
- Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Shyama M.E. Masilamani
- Department of Internal Medicine, Division of Nephrology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| |
Collapse
|
12
|
Hu R, McDonough AA, Layton AT. Sex differences in solute and water handling in the human kidney: Modeling and functional implications. iScience 2021; 24:102667. [PMID: 34169242 PMCID: PMC8209279 DOI: 10.1016/j.isci.2021.102667] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
The kidneys maintain homeostasis by controlling the amount of water and electrolytes in the blood. That function is accomplished by the nephrons, which transform glomerular filtrate into urine by a transport process mediated by membrane transporters. We postulate that the distribution of renal transporters along the nephron is markedly different between men and women, as recently shown in rodents. We hypothesize that the larger abundance of a renal Na+ transport in the proximal tubules in females may also better prepare them for the fluid retention adaptations required during pregnancy and lactation. Also, kidneys play a key role in blood pressure regulation, and a popular class of anti-hypertensive medications and angiotensin converting enzymes (ACE) inhibitors have been reported to be less effective in women. Model simulations suggest that the blunted natriuretic and diuretic effects of ACE inhibition in women can be attributed, in part, to their higher distal baseline transport capacity.
Collapse
Affiliation(s)
- Rui Hu
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Alicia A. McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
13
|
West DA, Beck SD, de Souza AMA, West CA. Proteinase-activated receptor-2 (PAR2) on blood pressure and electrolyte handling in the late pregnant rat. Exp Physiol 2021; 106:1373-1379. [PMID: 33866617 DOI: 10.1113/ep088170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/30/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Pregnancy requires marked renal sodium and potassium retention and cumulative plasma volume expansion, in the setting of reduced blood pressure. Research in male rodents has shown that activation of PAR2 can produce peripheral vasodilatation, stimulate renal sodium chloride reabsorption and inhibit renal potassium secretion. Here, we investigate PAR2 activation in virgin and normal pregnant rats. What is the main finding and its importance? PAR2 expression and sensitivity to activation are increased in pregnancy. This implicates a possible role for PAR2 in supporting the renal/vascular adaptations of pregnancy required for normal maternal plasma volume expansion. ABSTRACT A healthy pregnancy involves renal and systemic haemodynamic adaptations, which allow renal sodium and potassium retention and cumulative plasma volume expansion, accompanied by a decline in blood pressure attributable to a reduction in the total peripheral vascular resistance. When these adaptations do not occur, pregnancy is compromised. The mechanisms permitting these opposing adaptations are largely unknown. Research in male rodents has shown that activation of PAR2 can produce peripheral vasodilatation, stimulate renal sodium chloride reabsorption and inhibit renal potassium secretion. Here, we investigate PAR2 activation in female virgin and normal late pregnant (LP) rats. We measured the mRNA expression of PAR2 in the renal cortex, outer medulla and inner medulla of virgin and LP rats using quantitative real-time PCR. We also measured in vivo blood pressure, natriuretic and kaliuretic responses to PAR2-activating peptide (SLIGRL-NH2 ) in anaesthetized virgin and LP rats. We found that PAR2 mRNA was increased in the inner medulla of LP rats. We also found that LP rats had larger decreases in blood pressure and increases in net sodium retention compared with virgin rats. These findings suggest that pregnancy enhances sensitivity to the blood pressure-lowering and sodium-retaining effects of PAR2.
Collapse
Affiliation(s)
- David A West
- Department of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - Steven D Beck
- Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Aline M A de Souza
- Department of Medicine, Georgetown University, Washington, District of Columbia, USA
| | - Crystal A West
- Department of Biology, Appalachian State University, North Carolina Research Campus, Kannapolis, North Carolina, USA
| |
Collapse
|
14
|
Carrisoza-Gaytan R, Ray EC, Flores D, Marciszyn AL, Wu P, Liu L, Subramanya AR, Wang W, Sheng S, Nkashama LJ, Chen J, Jackson EK, Mutchler SM, Heja S, Kohan DE, Satlin LM, Kleyman TR. Intercalated cell BKα subunit is required for flow-induced K+ secretion. JCI Insight 2020; 5:130553. [PMID: 32255763 DOI: 10.1172/jci.insight.130553] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
BK channels are expressed in intercalated cells (ICs) and principal cells (PCs) in the cortical collecting duct (CCD) of the mammalian kidney and have been proposed to be responsible for flow-induced K+ secretion (FIKS) and K+ adaptation. To examine the IC-specific role of BK channels, we generated a mouse with targeted disruption of the pore-forming BK α subunit (BKα) in ICs (IC-BKα-KO). Whole cell charybdotoxin-sensitive (ChTX-sensitive) K+ currents were readily detected in control ICs but largely absent in ICs of IC-BKα-KO mice. When placed on a high K+ (HK) diet for 13 days, blood [K+] was significantly greater in IC-BKα-KO mice versus controls in males only, although urinary K+ excretion rates following isotonic volume expansion were similar in males and females. FIKS was present in microperfused CCDs isolated from controls but was absent in IC-BKα-KO CCDs of both sexes. Also, flow-stimulated epithelial Na+ channel-mediated (ENaC-mediated) Na+ absorption was greater in CCDs from female IC-BKα-KO mice than in CCDs from males. Our results confirm a critical role of IC BK channels in FIKS. Sex contributes to the capacity for adaptation to a HK diet in IC-BKα-KO mice.
Collapse
Affiliation(s)
| | - Evan C Ray
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison L Marciszyn
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Leah Liu
- McGill University, Montreal, Quebec, Canada
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology and
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Shaohu Sheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lubika J Nkashama
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie M Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Szilvia Heja
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald E Kohan
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
15
|
Walter C, Rafael C, Lasaad S, Baron S, Salhi A, Crambert G. H,K-ATPase type 2 regulates gestational extracellular compartment expansion and blood pressure in mice. Am J Physiol Regul Integr Comp Physiol 2020; 318:R320-R328. [PMID: 31913688 DOI: 10.1152/ajpregu.00067.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The modifications of the hemodynamic system and hydromineral metabolism are physiological features characterizing a normal gestation. Thus, the ability to expand plasma volume without increasing the level of blood pressure is necessary for the correct perfusion of the placenta. The kidney is essential in this adaptation by reabsorbing avidly sodium and fluid. In this study, we observed that the H,K-ATPase type 2 (HKA2), an ion pump expressed in kidney and colon and already involved in the control of the K+ balance during gestation, is also required for the correct plasma volume expansion and to maintain normal blood pressure. Indeed, compared with WT pregnant mice that exhibit a 1.6-fold increase of their plasma volume, pregnant HKA2-null mice (HKA2KO) only modestly expand their extracellular volume (×1.2). The renal expression of the epithelial Na channel (ENaC) α- and γ-subunits and that of the pendrin are stimulated in gravid WT mice, whereas the Na/Cl- cotransporter (NCC) expression is downregulated. These modifications are all blunted in HKA2KO mice. This impeded renal adaptation to gestation is accompanied by the development of hypotension in the pregnant HKA2KO mice. Altogether, our results showed that the absence of the HKA2 during gestation leads to an "underfilled" situation and has established this transporter as a key player of the renal control of salt and potassium metabolism during gestation.
Collapse
Affiliation(s)
- Christine Walter
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Sorbonne Paris Cité Université, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Chloé Rafael
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Sorbonne Paris Cité Université, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Samia Lasaad
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Sorbonne Paris Cité Université, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Stéphanie Baron
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Sorbonne Paris Cité Université, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France.,Hôpital Européen Georges Pompidou, Laboratoire de Physiologie, Paris, France
| | - Amel Salhi
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Sorbonne Paris Cité Université, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Sorbonne Paris Cité Université, Université Paris Descartes, Université Paris Diderot, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228, Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| |
Collapse
|
16
|
Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol Rev 2020; 100:321-356. [PMID: 31793845 DOI: 10.1152/physrev.00044.2018] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC’s role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.
Collapse
Affiliation(s)
- Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Catherina A. Cuevas
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Renal ion transport undergoes dramatic changes during the course of gestation. These adaptations are necessary to meet the dynamic requirements of pregnancy and support fetal development. Pregnancy is characterized by a high demand for both sodium and potassium. Recently there has been work in the field profiling the modifications of the renal tubules in pregnancy to meet these demands. The purpose of this review is to summarize these findings. RECENT FINDINGS The work to date suggests an important role for the distal nephron in both the renal sodium and potassium reabsorption during pregnancy. There is strong evidence that renal sodium reabsorption is mediated by the epithelial sodium channel (ENaC). Whereas renal potassium reabsorption is mediated by upregulation of potassium retaining transporters (HKA2) and downregulation of potassium secreting channels (ROMK, BK). SUMMARY Fetal growth restriction and hypertensive disorders of pregnancy including preeclampsia are marked by suboptimal maternal plasma volume expansion, which is determined by renal electrolyte handling. Therefore, understanding the physiologic demand for sodium and potassium in pregnancy and the adaptations required to support these needs is necessary for the effective treatment of diseased states of pregnancy.
Collapse
|