1
|
Jufar AH, May CN, Evans RG, Cochrane AD, Marino B, Hood SG, McCall PR, Bellomo R, Lankadeva YR. Influence of moderate-hypothermia on renal and cerebral haemodynamics and oxygenation during experimental cardiopulmonary bypass in sheep. Acta Physiol (Oxf) 2022; 236:e13860. [PMID: 35862484 DOI: 10.1111/apha.13860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/01/2022]
Abstract
AIM Cardiac surgery requiring cardiopulmonary bypass (CPB) can result in renal and cerebral injury. Intra-operative tissue hypoxia could contribute to such organ injury. Hypothermia, however, may alleviate organ hypoxia. Therefore, we tested whether moderate-hypothermia (30o C) improves cerebral and renal tissue perfusion and oxygenation during ovine CPB. METHODS Ten sheep were studied while conscious, under stable anaesthesia and during 3 hours of CPB. In a randomised within-animal cross-over design, 5 sheep commenced CPB at a target body temperature of 30 o C (moderate-hypothermia). After 90 minutes, body temperature was increased to 36 o C (standard-procedure). The remaining 5 sheep were randomised to the opposite order of target body temperature. RESULTS Compared with the standard-procedure, moderately-hypothermic CPB reduced renal oxygen delivery (-34.8 ± 19.6%, P = 0.003) and renal oxygen consumption (-42.7 ± 35.2%, P = 0.04). Nevertheless, moderately-hypothermic CPB did not significantly alter either renal cortical or medullary tissue PO2 . Moderately-hypothermic CPB also did not significantly alter cerebral perfusion, cerebral tissue PO2 , or cerebral oxygen saturation compared with the standard-procedure. Compared with anaesthetised state, standard-procedure reduced renal medullary PO2 (-21.0 ± 13.8 mmHg, P = 0.014) and cerebral oxygen saturation (65.0 ± 7.0 to 55.4 ± 9.6%, P = 0.022) but did not significantly alter either renal cortical or cerebral PO2 . CONCLUSION Ovine experimental CPB leads to renal medullary tissue hypoxia. Moderately-hypothermic CPB did not improve cerebral or renal tissue oxygenation. In the kidney, this is probably because renal tissue oxygen consumption is matched by reduced renal oxygen delivery.
Collapse
Affiliation(s)
- Alemayehu H Jufar
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Clive N May
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Critical Care, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Roger G Evans
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Andrew D Cochrane
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Melbourne, Victoria, Australia
| | - Bruno Marino
- Cellsaving and Perfusion Resources, Melbourne, Victoria, Australia
| | - Sally G Hood
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Peter R McCall
- Department of Anaesthesia, Austin Health, Heidelberg, Victoria, Australia
| | - Rinaldo Bellomo
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Critical Care, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Yugeesh R Lankadeva
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Critical Care, Melbourne Medical School, University of Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Jufar AH, Lankadeva YR, May CN, Cochrane AD, Marino B, Bellomo R, Evans RG. Renal and Cerebral Hypoxia and Inflammation During Cardiopulmonary Bypass. Compr Physiol 2021; 12:2799-2834. [PMID: 34964119 DOI: 10.1002/cphy.c210019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cardiac surgery-associated acute kidney injury and brain injury remain common despite ongoing efforts to improve both the equipment and procedures deployed during cardiopulmonary bypass (CPB). The pathophysiology of injury of the kidney and brain during CPB is not completely understood. Nevertheless, renal (particularly in the medulla) and cerebral hypoxia and inflammation likely play critical roles. Multiple practical factors, including depth and mode of anesthesia, hemodilution, pump flow, and arterial pressure can influence oxygenation of the brain and kidney during CPB. Critically, these factors may have differential effects on these two vital organs. Systemic inflammatory pathways are activated during CPB through activation of the complement system, coagulation pathways, leukocytes, and the release of inflammatory cytokines. Local inflammation in the brain and kidney may be aggravated by ischemia (and thus hypoxia) and reperfusion (and thus oxidative stress) and activation of resident and infiltrating inflammatory cells. Various strategies, including manipulating perfusion conditions and administration of pharmacotherapies, could potentially be deployed to avoid or attenuate hypoxia and inflammation during CPB. Regarding manipulating perfusion conditions, based on experimental and clinical data, increasing standard pump flow and arterial pressure during CPB appears to offer the best hope to avoid hypoxia and injury, at least in the kidney. Pharmacological approaches, including use of anti-inflammatory agents such as dexmedetomidine and erythropoietin, have shown promise in preclinical models but have not been adequately tested in human trials. However, evidence for beneficial effects of corticosteroids on renal and neurological outcomes is lacking. © 2021 American Physiological Society. Compr Physiol 11:1-36, 2021.
Collapse
Affiliation(s)
- Alemayehu H Jufar
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia.,Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Yugeesh R Lankadeva
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Critical Care, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Clive N May
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Critical Care, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Andrew D Cochrane
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Melbourne, Victoria, Australia
| | - Bruno Marino
- Cellsaving and Perfusion Resources, Melbourne, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Critical Care, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia.,Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia.,Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Noe KM, Ngo JP, Martin A, Zhu MZL, Cochrane AD, Smith JA, Thrift AG, Singh H, Evans RG. Intra-operative and early post-operative prediction of cardiac surgery-associated acute kidney injury: Urinary oxygen tension compared with plasma and urinary biomarkers. Clin Exp Pharmacol Physiol 2021; 49:228-241. [PMID: 34674291 DOI: 10.1111/1440-1681.13603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022]
Abstract
Acute kidney injury (AKI) is a common and serious post-operative complication of cardiac surgery. The value of a predictive biomarker is determined not only by its predictive efficacy, but also by how early this prediction can be made. For a biomarker of cardiac surgery-associated AKI, this is ideally during the intra-operative period. Therefore, in 82 adult patients undergoing cardiac surgery requiring cardiopulmonary bypass (CPB), we prospectively compared the predictive efficacy of various blood and urinary biomarkers with that of continuous measurement of urinary oxygen tension (UPO2 ) at pre-determined intra- and post-operative time-points. None of the blood or urine biomarkers we studied showed predictive efficacy for post-operative AKI when measured intra-operatively. When treated as a binary variable (≤ or > median for the whole cohort), the earliest excess risk of AKI was predicted by an increase in urinary neutrophil gelatinase-associated lipocalin (NGAL) at 3 h after entry into the intensive care unit (odds ratio [95% confidence limits], 2.86 [1.14-7.21], p = 0.03). Corresponding time-points were 6 h for serum creatinine (3.59 [1.40-9.20], p = 0.008), and 24 h for plasma NGAL (4.54 [1.73-11.90], p = 0.002) and serum cystatin C (6.38 [2.35-17.27], p = 0.001). In contrast, indices of intra-operative urinary hypoxia predicted AKI after weaning from CPB, and in the case of a fall in UPO2 to ≤10 mmHg, during the rewarming phase of CPB (3.00 [1.19-7.56], p = 0.02). We conclude that continuous measurement of UPO2 predicts AKI earlier than plasma or urinary NGAL, serum cystatin C, or early post-operative changes in serum creatinine.
Collapse
Affiliation(s)
- Khin M Noe
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia.,Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Jennifer P Ngo
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia.,Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Andrew Martin
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia.,Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Department of Cardiothoracic Surgery, Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Michael Z L Zhu
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia.,Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Department of Cardiothoracic Surgery, Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Andrew D Cochrane
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Department of Cardiothoracic Surgery, Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Julian A Smith
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Department of Cardiothoracic Surgery, Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Amanda G Thrift
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Harshil Singh
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia.,Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia.,Pre-clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Lee CJ, Gardiner BS, Evans RG, Smith DW. Predicting oxygen tension along the ureter. Am J Physiol Renal Physiol 2021; 321:F527-F547. [PMID: 34459223 DOI: 10.1152/ajprenal.00122.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Continuous measurement of bladder urine oxygen tension (Po2) is a method to potentially detect renal medullary hypoxia in patients at risk of acute kidney injury (AKI). To assess its practicality, we developed a computational model of the peristaltic movement of a urine bolus along the ureter and the oxygen exchange between the bolus and ureter wall. This model quantifies the changes in urine Po2 as urine transits from the renal pelvis to the bladder. The model parameters were calibrated using experimental data in rabbits, such that most of the model predictions are within ±1 SE of the reported mean in the experiment, with the average percent difference being 7.0%. Based on parametric experiments performed using a model scaled to the geometric dimensions of a human ureter, we found that bladder urine Po2 is strongly dependent on the bolus volume (i.e., bolus volume-to-surface area ratio), especially at a volume less than its physiological (baseline) volume (<0.2 mL). For the model assumptions, changes in peristaltic frequency resulted in a minimal change in bladder urine Po2 (<1 mmHg). The model also predicted that there exists a family of linear relationships between the bladder-urine Po2 and pelvic urine Po2 for different input conditions. We conclude that it may technically be possible to predict renal medullary Po2 based on the measurement of bladder urine Po2, provided that there are accurate real-time measurements of model input parameters.NEW & NOTEWORTHY Measurement of bladder urine oxygen tension has been proposed as a new method to potentially detect the risk of acute kidney injury in patients. A computational model of oxygen exchange between urine bolus and ureteral tissue shows that it may be technically possible to determine the risk of acute kidney injury based on the measurement of bladder urine oxygen tension, provided that the measurement data are properly interpreted via a computational model.
Collapse
Affiliation(s)
- Chang-Joon Lee
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia.,Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Bruce S Gardiner
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, Australia.,Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - David W Smith
- Faculty of Engineering and Mathematical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Lerman LO. Cell-based regenerative medicine for renovascular disease. Trends Mol Med 2021; 27:882-894. [PMID: 34183258 PMCID: PMC8403163 DOI: 10.1016/j.molmed.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
Renal artery stenosis (RAS) elicits the development of hypertension and post-stenotic kidney damage, which may become irresponsive to restoration of arterial patency. Rather than mere losses of blood flow or oxygen supply, irreversible intrarenal microvascular rarefaction, tubular injury, and interstitial fibrosis are now attributed to intrinsic pathways activated within the kidney, focusing attention on the kidney parenchyma as a therapeutic target. Several regenerative approaches involving the delivery of reparative cells or products have achieved kidney repair in experimental models of RAS and the delivery of mesenchymal stem/stromal cells (MSCs) has already been translated to human subjects with RAS with promising results. The ongoing development of innovative approaches in kidney disease awaits application, validation, and acceptance as routine clinical treatment to avert kidney damage in RAS.
Collapse
Affiliation(s)
- Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Evans RG, Cochrane AD, Hood SG, Iguchi N, Marino B, Bellomo R, McCall PR, Okazaki N, Smith JA, Zhu MZ, Ngo JP, Noe KM, Martin A, Thrift AG, Lankadeva YR, May CN. Dynamic responses of renal oxygenation at the onset of cardiopulmonary bypass in sheep and man. Perfusion 2021; 37:624-632. [PMID: 33977810 DOI: 10.1177/02676591211013640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The renal medulla is susceptible to hypoxia during cardiopulmonary bypass (CPB), which may contribute to the development of acute kidney injury. But the speed of onset of renal medullary hypoxia remains unknown. METHODS We continuously measured renal medullary oxygen tension (MPO2) in 24 sheep, and urinary PO2 (UPO2) as an index of MPO2 in 92 patients, before and after induction of CPB. RESULTS In laterally recumbent sheep with a right thoracotomy (n = 20), even before CPB commenced MPO2 fell from (mean ± SEM) 52 ± 4 to 41 ±5 mmHg simultaneously with reduced arterial pressure (from 108 ± 5 to 88 ± 5 mmHg). In dorsally recumbent sheep with a medial sternotomy (n = 4), MPO2 was even more severely reduced (to 12 ± 12 mmHg) before CPB. In laterally recumbent sheep in which a crystalloid prime was used (n = 7), after commencing CPB, MPO2 fell abruptly to 24 ±6 mmHg within 20-30 minutes. MPO2 during CPB was not improved by adding donor blood to the prime (n = 13). In patients undergoing cardiac surgery, UPO2 fell by 4 ± 1 mmHg and mean arterial pressure fell by 7 ± 1 mmHg during the 30 minutes before CPB. UPO2 then fell by a further 12 ± 2 mmHg during the first 30 minutes of CPB but remained relatively stable for the remaining 24 minutes of observation. CONCLUSIONS Renal medullary hypoxia is an early event during CPB. It starts to develop even before CPB, presumably due to a pressure-dependent decrease in renal blood flow. Medullary hypoxia during CPB appears to be promoted by hypotension and is not ameliorated by increasing blood hemoglobin concentration.
Collapse
Affiliation(s)
- Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Andrew D Cochrane
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Melbourne, Victoria, Australia
| | - Sally G Hood
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Naoya Iguchi
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Bruno Marino
- Cellsaving and Perfusion Resources, Melbourne, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
| | - Peter R McCall
- Department of Anaesthesia, Austin Health, Heidelberg, Victoria, Australia
| | - Nobuki Okazaki
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Anesthesiology and Resuscitology, Okayama University, Okayama, Japan
| | - Julian A Smith
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Melbourne, Victoria, Australia
| | - Michael Zl Zhu
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia.,Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Melbourne, Victoria, Australia
| | - Jennifer P Ngo
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia.,Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Khin M Noe
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Andrew Martin
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia.,Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Melbourne, Victoria, Australia
| | - Amanda G Thrift
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia
| | - Yugeesh R Lankadeva
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Clive N May
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nat Rev Nephrol 2021; 17:335-349. [PMID: 33547418 DOI: 10.1038/s41581-021-00394-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
Kidney damage varies according to the primary insult. Different aetiologies of acute kidney injury (AKI), including kidney ischaemia, exposure to nephrotoxins, dehydration or sepsis, are associated with characteristic patterns of damage and changes in gene expression, which can provide insight into the mechanisms that lead to persistent structural and functional damage. Early morphological alterations are driven by a delicate balance between energy demand and oxygen supply, which varies considerably in different regions of the kidney. The functional heterogeneity of the various nephron segments is reflected in their use of different metabolic pathways. AKI is often linked to defects in kidney oxygen supply, and some nephron segments might not be able to shift to anaerobic metabolism under low oxygen conditions or might have remarkably low basal oxygen levels, which enhances their vulnerability to damage. Here, we discuss why specific kidney regions are at particular risk of injury and how this information might help to delineate novel routes for mitigating injury and avoiding permanent damage. We suggest that the physiological heterogeneity of the kidney should be taken into account when exploring novel renoprotective strategies, such as improvement of kidney tissue oxygenation, stimulation of hypoxia signalling pathways and modulation of cellular energy metabolism.
Collapse
|
8
|
Joles JA. Tailoring cardiopulmonary bypass pump flow and mean arterial pressure to maintain renal oxygenation. Acta Physiol (Oxf) 2021; 231:e13619. [PMID: 33523549 DOI: 10.1111/apha.13619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jaap A. Joles
- Department of Nephrology and Hypertension University Medical Center Utrecht Utrecht The Netherlands
| |
Collapse
|
9
|
Lankadeva YR, Evans RG, Cochrane AD, Marino B, Hood SG, McCall PR, Iguchi N, Bellomo R, May CN. Reversal of renal tissue hypoxia during experimental cardiopulmonary bypass in sheep by increased pump flow and arterial pressure. Acta Physiol (Oxf) 2021; 231:e13596. [PMID: 34347356 DOI: 10.1111/apha.13596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
AIM Renal tissue hypoxia during cardiopulmonary bypass could contribute to the pathophysiology of acute kidney injury. We tested whether renal tissue hypoxia can be alleviated during cardiopulmonary bypass by the combined increase in target pump flow and mean arterial pressure. METHODS Cardiopulmonary bypass was established in eight instrumented sheep under isoflurane anaesthesia, at a target continuous pump flow of 80 mL·kg-1 min-1 and mean arterial pressure of 65 mmHg. We then tested the effects of simultaneously increasing target pump flow to 104 mL·kg-1 min-1 and mean arterial pressure to 80 mmHg with metaraminol (total dose 0.25-3.75 mg). We also tested the effects of transitioning from continuous flow to partially pulsatile flow (pulse pressure ~15 mmHg). RESULTS Compared with conscious sheep, at the lower target pump flow and mean arterial pressure, cardiopulmonary bypass was accompanied by reduced renal blood flow (6.8 ± 1.2 to 1.95 ± 0.76 mL·min-1 kg-1) and renal oxygen delivery (0.91 ± 0.18 to 0.24 ± 0.11 mL·O2 min-1 kg-1). There were profound reductions in cortical oxygen tension (PO2) (33 ± 13 to 6 ± 6 mmHg) and medullary PO2 (31 ± 12 to 8 ± 8 mmHg). Increasing target pump flow and mean arterial pressure increased renal blood flow (to 2.6 ± 1.0 mL·min-1 kg-1) and renal oxygen delivery (to 0.32 ± 0.13 mL·O2 min-1kg-1) and returned cortical PO2 to 58 ± 60 mmHg and medullary PO2 to 28 ± 16 mmHg; levels similar to those of conscious sheep. Partially pulsatile pump flow had no significant effects on renal perfusion or oxygenation. CONCLUSIONS Renal hypoxia during experimental CPB can be corrected by increasing target pump flow and mean arterial pressure within a clinically feasible range.
Collapse
Affiliation(s)
- Yugeesh R. Lankadeva
- Pre‐Clinical Critical Care Unit Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne Melbourne VIC Australia
| | - Roger G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne VIC Australia
| | - Andrew D. Cochrane
- Department of Cardiothoracic Surgery Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health) Monash University Melbourne VIC Australia
| | - Bruno Marino
- Cellsaving and Perfusion Resources Melbourne VIC Australia
| | - Sally G. Hood
- Pre‐Clinical Critical Care Unit Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne Melbourne VIC Australia
| | - Peter R. McCall
- Department of Anaesthesia Austin Health Heidelberg VIC Australia
| | - Naoya Iguchi
- Pre‐Clinical Critical Care Unit Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne Melbourne VIC Australia
| | - Rinaldo Bellomo
- Department of Intensive Care Austin Health Heidelberg VIC Australia
| | - Clive N. May
- Pre‐Clinical Critical Care Unit Florey Institute of Neuroscience and Mental HealthUniversity of Melbourne Melbourne VIC Australia
| |
Collapse
|
10
|
Lankadeva YR, May CN, Cochrane AD, Marino B, Hood SG, McCall PR, Okazaki N, Bellomo R, Evans RG. Influence of blood haemoglobin concentration on renal haemodynamics and oxygenation during experimental cardiopulmonary bypass in sheep. Acta Physiol (Oxf) 2021; 231:e13583. [PMID: 33222404 DOI: 10.1111/apha.13583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/28/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022]
Abstract
AIM Blood transfusion may improve renal oxygenation during cardiopulmonary bypass (CPB). In an ovine model of experimental CPB, we tested whether increasing blood haemoglobin concentration [Hb] from ~7 g dL-1 to ~9 g dL-1 improves renal tissue oxygenation. METHODS Ten sheep were studied while conscious, under stable isoflurane anaesthesia, and during 3 hours of CPB. In a randomized cross-over design, 5 sheep commenced bypass at a high target [Hb], achieved by adding 600 mL donor blood to the priming solution. After 90 minutes of CPB, PlasmaLyte® was added to the blood reservoir to achieve low target [Hb]. For the other 5 sheep, no blood was added to the prime, but after 90 minutes of CPB, 800-900 mL of donor blood was given to achieve a high target [Hb]. RESULTS Overall, CPB was associated with marked reductions in renal oxygen delivery (-50 ± 12%, mean ± 95% confidence interval) and medullary tissue oxygen tension (PO2 , -54 ± 29%). Renal fractional oxygen extraction was 17 ± 10% less during CPB at high [Hb] than low [Hb] (P = .04). Nevertheless, no increase in tissue PO2 in either the renal medulla (0 ± 6 mmHg change, P > .99) or cortex (-19 ± 13 mmHg change, P = .08) was detected with high [Hb]. CONCLUSIONS In experimental CPB blood transfusion to increase Hb concentration from ~7 g dL-1 to ~9 g dL-1 did not improve renal cortical or medullary tissue PO2 even though it decreased whole kidney oxygen extraction.
Collapse
Affiliation(s)
- Yugeesh R Lankadeva
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Clive N May
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Centre for Integrated Critical Care, Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew D Cochrane
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Melbourne, VIC, Australia
| | - Bruno Marino
- Cellsaving and Perfusion Resources, Melbourne, VIC, Australia
| | - Sally G Hood
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Peter R McCall
- Department of Anaesthesia, Austin Health, Heidelberg, VIC, Australia
| | - Nobuki Okazaki
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Anesthesiology and Resuscitology, Okayama University, Okayama, Japan
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, Department of Medicine and Radiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Intensive Care, Austin Health, Heidelberg, VIC, Australia
| | - Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Steele AR, Tymko MM, Meah VL, Simpson LL, Gasho C, Dawkins TG, Villafuerte FC, Ainslie PN, Stembridge M, Moore JP, Steinback CD. Global REACH 2018: renal oxygen delivery is maintained during early acclimatization to 4,330 m. Am J Physiol Renal Physiol 2020; 319:F1081-F1089. [PMID: 32996319 DOI: 10.1152/ajprenal.00372.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Early acclimatization to high altitude is characterized by various respiratory, hematological, and cardiovascular adaptations that serve to restore oxygen delivery to tissue. However, less is understood about renal function and the role of renal oxygen delivery (RDO2) during high altitude acclimatization. We hypothesized that 1) RDO2 would be reduced after 12 h of high altitude exposure (high altitude day 1) but restored to sea level values after 1 wk (high altitude day 7) and 2) RDO2 would be associated with renal reactivity, an index of acid-base compensation at high altitude. Twenty-four healthy lowlander participants were tested at sea level (344 m, Kelowna, BC, Canada) and on day 1 and day 7 at high altitude (4,330 m, Cerro de Pasco, Peru). Cardiac output, renal blood flow, and arterial and venous blood sampling for renin-angiotensin-aldosterone system hormones and NH2-terminal pro-B-type natriuretic peptides were collected at each time point. Renal reactivity was calculated as follows: (Δarterial bicarbonate)/(Δarterial Pco2) between sea level and high altitude day 1 and sea level and high altitude day 7. The main findings were that 1) RDO2 was initially decreased at high altitude compared with sea level (ΔRDO2: -22 ± 17%, P < 0.001) but was restored to sea level values on high altitude day 7 (ΔRDO2: -6 ± 14%, P = 0.36). The observed improvements in RDO2 resulted from both changes in renal blood flow (Δ from high altitude day 1: +12 ± 11%, P = 0.008) and arterial oxygen content (Δ from high altitude day 1: +44.8 ± 17.7%, P = 0.006) and 2) renal reactivity was positively correlated with RDO2 on high altitude day 7 (r = 0.70, P < 0.001) but not high altitude day 1 (r = 0.26, P = 0.29). These findings characterize the temporal responses of renal function during early high altitude acclimatization and the influence of RDO2 in the regulation of acid-base balance.
Collapse
Affiliation(s)
- Andrew R Steele
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Michael M Tymko
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Victoria L Meah
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Lydia L Simpson
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Christopher Gasho
- Division of Pulmonary and Critical Care, School of Medicine, Loma Linda University, Loma Linda, California
| | - Tony G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Francisco C Villafuerte
- Department of Biological and Physiological Sciences, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Michael Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Jonathan P Moore
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Craig D Steinback
- Neurovascular Health Lab, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Gardiner BS, Smith DW, Lee C, Ngo JP, Evans RG. Renal oxygenation: From data to insight. Acta Physiol (Oxf) 2020; 228:e13450. [PMID: 32012449 DOI: 10.1111/apha.13450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/14/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
Computational models have made a major contribution to the field of physiology. As the complexity of our understanding of biological systems expands, the need for computational methods only increases. But collaboration between experimental physiologists and computational modellers (ie theoretical physiologists) is not easy. One of the major challenges is to break down the barriers created by differences in vocabulary and approach between the two disciplines. In this review, we have two major aims. Firstly, we wish to contribute to the effort to break down these barriers and so encourage more interdisciplinary collaboration. So, we begin with a "primer" on the ways in which computational models can help us understand physiology and pathophysiology. Second, we aim to provide an update of recent efforts in one specific area of physiology, renal oxygenation. This work is shedding new light on the causes and consequences of renal hypoxia. But as importantly, computational modelling is providing direction for experimental physiologists working in the field of renal oxygenation by: (a) generating new hypotheses that can be tested in experimental studies, (b) allowing experiments that are technically unfeasible to be simulated in silico, or variables that cannot be measured experimentally to be estimated, and (c) providing a means by which the quality of experimental data can be assessed. Critically, based on our experience, we strongly believe that experimental and theoretical physiology should not be seen as separate exercises. Rather, they should be integrated to permit an iterative process between modelling and experimentation.
Collapse
Affiliation(s)
- Bruce S. Gardiner
- College of Science Health, Engineering and Education Murdoch University Perth Australia
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - David W. Smith
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - Chang‐Joon Lee
- College of Science Health, Engineering and Education Murdoch University Perth Australia
- Faculty of Engineering and Mathematical Sciences The University of Western Australia Perth Australia
| | - Jennifer P. Ngo
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Australia
- Department of Cardiac Physiology National Cerebral and Cardiovascular Research Center Osaka Japan
| | - Roger G. Evans
- Cardiovascular Disease Program Biomedicine Discovery Institute and Department of Physiology Monash University Melbourne Australia
| |
Collapse
|
13
|
Evans RG, Iguchi N, Cochrane AD, Marino B, Hood SG, Bellomo R, McCall PR, May CN, Lankadeva YR. Renal hemodynamics and oxygenation during experimental cardiopulmonary bypass in sheep under total intravenous anesthesia. Am J Physiol Regul Integr Comp Physiol 2019; 318:R206-R213. [PMID: 31823674 DOI: 10.1152/ajpregu.00290.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Renal medullary hypoxia may contribute to the pathophysiology of acute kidney injury, including that associated with cardiac surgery requiring cardiopulmonary bypass (CPB). When performed under volatile (isoflurane) anesthesia in sheep, CPB causes renal medullary hypoxia. There is evidence that total intravenous anesthesia (TIVA) may preserve renal perfusion and renal oxygen delivery better than volatile anesthesia. Therefore, we assessed the effects of CPB on renal perfusion and oxygenation in sheep under propofol/fentanyl-based TIVA. Sheep (n = 5) were chronically instrumented for measurement of whole renal blood flow and cortical and medullary perfusion and oxygenation. Five days later, these variables were monitored under TIVA using propofol and fentanyl and then on CPB at a pump flow of 80 mL·kg-1·min-1 and target mean arterial pressure of 70 mmHg. Under anesthesia, before CPB, renal blood flow was preserved under TIVA (mean difference ± SD from conscious state: -16 ± 14%). However, during CPB renal blood flow was reduced (-55 ± 13%) and renal medullary tissue became hypoxic (-20 ± 13 mmHg versus conscious sheep). We conclude that renal perfusion and medullary oxygenation are well preserved during TIVA before CPB. However, CPB under TIVA leads to renal medullary hypoxia, of a similar magnitude to that we observed previously under volatile (isoflurane) anesthesia. Thus use of propofol/fentanyl-based TIVA may not be a useful strategy to avoid renal medullary hypoxia during CPB.
Collapse
Affiliation(s)
- Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Naoya Iguchi
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew D Cochrane
- Department of Cardiothoracic Surgery, Monash Health and Department of Surgery (School of Clinical Sciences at Monash Health), Monash University, Melbourne, Victoria, Australia
| | - Bruno Marino
- Cellsaving and Perfusion Resources, Melbourne, Victoria, Australia
| | - Sally G Hood
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rinaldo Bellomo
- Department of Intensive Care, Austin Health, Heidelberg, Victoria, Australia
| | - Peter R McCall
- Department of Anesthesia, Austin Health, Heidelberg, Victoria, Australia
| | - Clive N May
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Yugeesh R Lankadeva
- Pre-Clinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|