1
|
Schnabel D. Biopsychosoziales Betreuungskonzept für Kinder mit X‑chromosomaler Hypophosphatämie (XLH). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:813-820. [DOI: 10.1007/s00103-020-03171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ZusammenfassungPatienten mit einer schweren, seltenen und komplexen Erkrankung benötigen das multiprofessionelle biopsychosoziale Betreuungskonzept eines Sozialpädiatrischen Zentrums für chronisch kranke Kinder und Jugendliche. Am Beispiel der Multiorganerkrankung X‑chromosomale Hypophosphatämie (XLH), der häufigsten angeborenen Rachitisform, wird das Betreuungskonzept dargestellt.Der Erkrankung liegen inaktivierende Mutationen im „Phosphate-regulating gene with Homologies to Endopeptidases on the X‑chromosome“(PHEX)-Gen zugrunde, die zu einer vermehrten Synthese und Sekretion des Fibroblastenwachstumsfaktors 23 (FGF23) führen. FGF23 hat eine wichtige Funktion in der Phosphathomöostase. Durch die hohen FGF23-Konzentrationen kommt es über den renalen Phosphatverlust zur schweren Hypophosphatämie mit der Folge erheblicher Mineralisationsstörungen des Skelettsystems und der Zähne. Stand bis vor Kurzem nur eine konventionelle medikamentöse Therapie aus Phosphat und aktivem Vitamin D zur Verfügung, so ist nun mit dem neutralisierenden FGF23-Antikörper eine gezielte Therapie der Erkrankung möglich. Das multiprofessionelle Betreuungskonzept umfasst zahlreiche ärztliche Spezialisten und ein psychosoziales Team. Ziel der Betreuung ist es, den Patienten mit ihrer schweren chronischen Erkrankung eine altersentsprechende Partizipation ohne größere Teilhabestörung zu ermöglichen. Die Fortsetzung der Betreuung im Erwachsenenalter muss durch eine implementierte Transition sichergestellt werden.
Collapse
|
2
|
Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, de Lucas Collantes C, Schnabel D, Jandhyala R, Mäkitie O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 2019; 14:58. [PMID: 30808384 PMCID: PMC6390548 DOI: 10.1186/s13023-019-1014-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/30/2019] [Indexed: 12/29/2022] Open
Abstract
Background X-linked hypophosphatemia (XLH) is an inherited disease of phosphate metabolism in which inactivating mutations of the Phosphate Regulating Endopeptidase Homolog, X-Linked (PHEX) gene lead to local and systemic effects including impaired growth, rickets, osteomalacia, bone abnormalities, bone pain, spontaneous dental abscesses, hearing difficulties, enthesopathy, osteoarthritis, and muscular dysfunction. Patients with XLH present with elevated levels of fibroblast growth factor 23 (FGF23), which is thought to mediate many of the aforementioned manifestations of the disease. Elevated FGF23 has also been observed in many other diseases of hypophosphatemia, and a range of animal models have been developed to study these diseases, yet the role of FGF23 in the pathophysiology of XLH is incompletely understood. Methods The role of FGF23 in the pathophysiology of XLH is here reviewed by describing what is known about phenotypes associated with various PHEX mutations, animal models of XLH, and non-nutritional diseases of hypophosphatemia, and by presenting molecular pathways that have been proposed to contribute to manifestations of XLH. Results The pathophysiology of XLH is complex, involving a range of molecular pathways that variously contribute to different manifestations of the disease. Hypophosphatemia due to elevated FGF23 is the most obvious contributor, however localised fluctuations in tissue non-specific alkaline phosphatase (TNAP), pyrophosphate, calcitriol and direct effects of FGF23 have been observed to be associated with certain manifestations. Conclusions By describing what is known about these pathways, this review highlights key areas for future research that would contribute to the understanding and clinical treatment of non-nutritional diseases of hypophosphatemia, particularly XLH.
Collapse
Affiliation(s)
| | - Zulf Mughal
- Royal Manchester Children's Hospital, Manchester, UK
| | | | - Ola Nilsson
- Karolinska Institutet, Stockholm, Sweden and Örebro University, Örebro, Sweden
| | | | - Gema Ariceta
- Hospital Universitario Materno-Infantil Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Dirk Schnabel
- University Children's Hospital of Berlin, Berlin, Germany
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
3
|
Lederer E, Wagner CA. Clinical aspects of the phosphate transporters NaPi-IIa and NaPi-IIb: mutations and disease associations. Pflugers Arch 2018; 471:137-148. [DOI: 10.1007/s00424-018-2246-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
|
4
|
Abstract
Inorganic phosphate (Pi) is essential for signal transduction and cell metabolism, and is also an essential structural component of the extracellular matrix of the skeleton. Pi is sensed in bacteria and yeast at the plasma membrane, which activates intracellular signal transduction to control the expression of Pi transporters and other genes that control intracellular Pi levels. In multicellular organisms, Pi homeostasis must be maintained in the organism and at the cellular level, requiring an endocrine and metabolic Pi-sensing mechanism, about which little is currently known. This Review will discuss the metabolic effects of Pi, which are mediated by Pi transporters, inositol pyrophosphates and SYG1-Pho81-XPR1 (SPX)-domain proteins to maintain cellular phosphate homeostasis in the musculoskeletal system. In addition, we will discuss how Pi is sensed by the human body to regulate the production of fibroblast growth factor 23 (FGF23), parathyroid hormone and calcitriol to maintain serum levels of Pi in a narrow range. New findings on the crosstalk between iron and Pi homeostasis in the regulation of FGF23 expression will also be outlined. Mutations in components of these metabolic and endocrine phosphate sensors result in genetic disorders of phosphate homeostasis, cardiomyopathy and familial basal ganglial calcifications, highlighting the importance of this newly emerging area of research.
Collapse
Affiliation(s)
- Sampada Chande
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Hureaux M, Molin A, Jay N, Saliou AH, Spaggiari E, Salomon R, Benachi A, Vargas-Poussou R, Heidet L. Prenatal hyperechogenic kidneys in three cases of infantile hypercalcemia associated with SLC34A1 mutations. Pediatr Nephrol 2018; 33:1723-1729. [PMID: 29959532 DOI: 10.1007/s00467-018-3998-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND Prenatal diagnosis of hyperechogenic kidneys is associated with a wide range of etiologies and prognoses. The recent advances in fetal ultrasound associated with the development of next-generation sequencing for molecular analysis have enlarged the spectrum of etiologies, making antenatal diagnosis a very challenging discipline. Of the various known causes of hyperechogenic fetal kidneys, calcium and phosphate metabolism disorders represent a rare cause. An accurate diagnosis is crucial for providing appropriate genetic counseling and medical follow-up after birth. METHODS We report on three cases of fetal hyperechogenic kidneys corresponding to postnatal diagnosis of nephrocalcinosis. In all cases, antenatal ultrasound showed hyperechogenic kidneys of normal to large size from 22 gestational weeks, with a normal amount of amniotic fluid. Postnatal ultrasound follow-up showed nephrocalcinosis associated with hypercalcemia, hypercalciuria, elevated 1,25(OH)2-vitamin D, and suppressed parathyroid hormone levels. RESULTS Molecular genetic analysis by next-generation sequencing performed after birth in the three newborns revealed biallelic pathogenic variants in the SLC34A1 gene, encoding the sodium/phosphate cotransporter type 2 (Npt2a), confirming the diagnosis of infantile hypercalcemia. CONCLUSIONS Nephrocalcinosis due to infantile hypercalcemia can be a cause of fetal hyperechogenic kidneys, which suggests early antenatal anomaly of calcium and phosphate metabolism. This entity should be considered in differential diagnosis. Postnatal follow-up of infants with hyperechogenic kidneys should include evaluation of calcium and phosphate metabolism.
Collapse
Affiliation(s)
- Marguerite Hureaux
- Département de Génétique, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, 20-40 rue Leblanc, 75015, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Filière ORKiD, Paris, France
| | - Arnaud Molin
- Service de Génétique, Centre Hospitalier Universitaire de Caen, Caen, France.,Centre de Référence des Maladies rares du Métabolisme du calcium et du phosphate (filière OSCAR), FilièreOSCAR, Paris, France.,Université Caen Normandie, UFR de médecine (Medical School), EA7450 BioTarGen, Caen, France
| | - Nadine Jay
- Centre Hospitalier Universitaire de Brest, Service de Pédiatrie et Génétique Médicale, Brest, France
| | | | - Emmanuel Spaggiari
- Département de Gynécologie-Obstétrique, Assistance Publique Hôpitaux de Paris, Hôpital Necker - Enfants Malades, Paris, France
| | - Rémi Salomon
- Paris Descartes-Sorbonne Paris Cité University, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Filière ORKiD, Paris, France.,Département de Néphrologie Pédiatrique, Assistance Publique Hôpitaux de Paris, Hôpital Necker - Enfants Malades, Paris, France
| | - Alexandra Benachi
- Département de Gynécologie-Obstétrique, Assistance Publique Hôpitaux de Paris, Hôpital Antoine-Béclère, Université Paris-Sud, Clamart, France
| | - Rosa Vargas-Poussou
- Département de Génétique, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, 20-40 rue Leblanc, 75015, Paris, France. .,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Filière ORKiD, Paris, France.
| | - Laurence Heidet
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Filière ORKiD, Paris, France.,Département de Néphrologie Pédiatrique, Assistance Publique Hôpitaux de Paris, Hôpital Necker - Enfants Malades, Paris, France
| |
Collapse
|
6
|
Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch 2018; 471:149-163. [PMID: 30109410 DOI: 10.1007/s00424-018-2184-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/24/2022]
Abstract
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH; OMIM: 241530) is a rare autosomal recessive disorder with an estimated prevalence of 1:250,000 that was originally described by Tieder et al. Individuals with HHRH carry compound-heterozygous or homozygous (comp/hom) loss-of-function mutations in the sodium-phosphate co-transporter NPT2c. These mutations result in the development of urinary phosphate (Pi) wasting and hypophosphatemic rickets, bowing, and short stature, as well as appropriately elevated 1,25(OH)2D levels, which sets this fibroblast growth factor 23 (FGF23)-independent disorder apart from the more common X-linked hypophosphatemia. The elevated 1,25(OH)2D levels in turn result in hypercalciuria due to enhanced intestinal calcium absorption and reduced parathyroid hormone (PTH)-dependent calcium-reabsorption in the distal renal tubules, leading to the development of kidney stones and/or nephrocalcinosis in approximately half of the individuals with HHRH. Even heterozygous NPT2c mutations are frequently associated with isolated hypercalciuria (IH), which increases the risk of kidney stones or nephrocalcinosis threefold in affected individuals compared with the general population. Bone disease is generally absent in individuals with IH, in contrast to those with HHRH. Treatment of HHRH and IH consists of monotherapy with oral Pi supplements, while active vitamin D analogs are contraindicated, mainly because the endogenous 1,25(OH)2D levels are already elevated but also to prevent further worsening of the hypercalciuria. Long-term studies to determine whether oral Pi supplementation alone is sufficient to prevent renal calcifications and bone loss, however, are lacking. It is also unknown how therapy should be monitored, whether secondary hyperparathyroidism can develop, and whether Pi requirements decrease with age, as observed in some FGF23-dependent hypophosphatemic disorders, or whether this can lead to osteoporosis.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Section Endocrinology and Metabolism, Yale University School of Medicine, Anlyan Center, Office S117, Lab S110, 1 Gilbert Street, New Haven, CT 06519, USA.
| | - Ken-Ichi Miyamoto
- Department of Molecular Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
7
|
Caballero D, Li Y, Fetene J, Ponsetto J, Chen A, Zhu C, Braddock DT, Bergwitz C. Intraperitoneal pyrophosphate treatment reduces renal calcifications in Npt2a null mice. PLoS One 2017; 12:e0180098. [PMID: 28704395 PMCID: PMC5509111 DOI: 10.1371/journal.pone.0180098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in the proximal tubular sodium-dependent phosphate co-transporters NPT2a and NPT2c have been reported in patients with renal stone disease and nephrocalcinosis, however the relative contribution of genotype, dietary calcium and phosphate, and modifiers of mineralization such as pyrophosphate (PPi) to the formation of renal mineral deposits is unclear. In the present study, we used Npt2a-/- mice to model the renal calcifications observed in these disorders. We observed elevated urinary excretion of PPi in Npt2a-/- mice when compared to WT mice. Presence of two hypomorphic Extracellular nucleotide pyrophosphatase phosphodiesterase 1 (Enpp1asj/asj) alleles decreased urine PPi and worsened renal calcifications in Npt2a-/- mice. These studies suggest that PPi is a thus far unrecognized factor protecting Npt2a-/- mice from the development of renal mineral deposits. Consistent with this conclusion, we next showed that renal calcifications in these mice can be reduced by intraperitoneal administration of sodium pyrophosphate. If confirmed in humans, urine PPi could therefore be of interest for developing new strategies to prevent the nephrocalcinosis and nephrolithiasis seen in phosphaturic disorders.
Collapse
Affiliation(s)
- Daniel Caballero
- Department of Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Yuwen Li
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jonathan Fetene
- Department of Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Julian Ponsetto
- Department of Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Alyssa Chen
- Department of Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Chuanlong Zhu
- Gastroenterology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, United States of America
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States of America
| | - Clemens Bergwitz
- Department of Medicine, Section Endocrinology, Yale University School of Medicine, New Haven, CT, United States of America
- * E-mail:
| |
Collapse
|
8
|
|
9
|
Li Y, Caballero D, Ponsetto J, Chen A, Zhu C, Guo J, Demay M, Jüppner H, Bergwitz C. Response of Npt2a knockout mice to dietary calcium and phosphorus. PLoS One 2017; 12:e0176232. [PMID: 28448530 PMCID: PMC5407772 DOI: 10.1371/journal.pone.0176232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/08/2017] [Indexed: 01/08/2023] Open
Abstract
Mutations in the renal sodium-dependent phosphate co-transporters NPT2a and NPT2c have been reported in patients with renal stone disease and nephrocalcinosis, but the relative contribution of genotype, dietary calcium and phosphate to the formation of renal mineral deposits is unclear. We previously reported that renal calcium phosphate deposits persist and/or reappear in older Npt2a-/- mice supplemented with phosphate despite resolution of hypercalciuria while no deposits are seen in wild-type (WT) mice on the same diet. Addition of calcium to their diets further increased calcium phosphate deposits in Npt2a-/-, but not WT mice. The response of PTH to dietary phosphate of Npt2a-/- was blunted when compared to WT mice and the response of the urinary calcium x phosphorus product to the addition of calcium and phosphate to the diet of Npt2a-/- was increased. These finding suggests that Npt2a-/- mice respond differently to dietary phosphate when compared to WT mice. Further evaluation in the Npt2a-/- cohort on different diets suggests that urinary calcium excretion, plasma phosphate and FGF23 levels appear to be positively correlated to renal mineral deposit formation while urine phosphate levels and the urine anion gap, an indirect measure of ammonia excretion, appear to be inversely correlated. Our observations in Npt2a-/- mice, if confirmed in humans, may be relevant for the optimization of existing and the development of novel therapies to prevent nephrolithiasis and nephrocalcinosis in human carriers of NPT2a and NPT2c mutations.
Collapse
Affiliation(s)
- Yuwen Li
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pediatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Daniel Caballero
- Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Julian Ponsetto
- Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Alyssa Chen
- Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Chuanlong Zhu
- Gastroenterology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Infectious Diseases, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Guo
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marie Demay
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Harald Jüppner
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Clemens Bergwitz
- Section Endocrinology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|