1
|
Regulation of P2X1 receptors by modulators of the cAMP effectors PKA and EPAC. Proc Natl Acad Sci U S A 2021; 118:2108094118. [PMID: 34508006 DOI: 10.1073/pnas.2108094118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
P2X1 receptors are adenosine triphosphate (ATP)-gated cation channels that are functionally important for male fertility, bladder contraction, and platelet aggregation. The activity of P2X1 receptors is modulated by lipids and intracellular messengers such as cAMP, which can stimulate protein kinase A (PKA). Exchange protein activated by cAMP (EPAC) is another cAMP effector; however, its effect on P2X1 receptors has not yet been determined. Here, we demonstrate that P2X1 currents, recorded from human embryonic kidney (HEK) cells transiently transfected with P2X1 cDNA, were inhibited by the highly selective EPAC activator 007-AM. In contrast, EPAC activation enhanced P2X2 current amplitude. The PKA activator 6-MB-cAMP did not affect P2X1 currents, but inhibited P2X2 currents. The inhibitory effects of EPAC on P2X1 were prevented by triple mutation of residues 21 to 23 on the amino terminus of P2X1 subunits to the equivalent amino acids on P2X2 receptors. Double mutation of residues 21 and 22 and single mutation of residue 23 also protected P2X1 receptors from inhibition by EPAC activation. Finally, the inhibitory effects of EPAC on P2X1 were also prevented by NSC23766, an inhibitor of Rac1, a member of the Rho family of small GTPases. These data suggest that EPAC is an important regulator of P2X1 and P2X2 receptors.
Collapse
|
2
|
Malysz J, Petkov GV. Urinary bladder smooth muscle ion channels: expression, function, and regulation in health and disease. Am J Physiol Renal Physiol 2020; 319:F257-F283. [PMID: 32628539 PMCID: PMC7473901 DOI: 10.1152/ajprenal.00048.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022] Open
Abstract
Urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, forms the bladder wall and ultimately determines the two main attributes of the organ: urine storage and voiding. The two functions are facilitated by UBSM relaxation and contraction, respectively, which depend on UBSM excitability shaped by multiple ion channels. In this review, we summarize the current understanding of key ion channels establishing and regulating UBSM excitability and contractility. They include excitation-enhancing voltage-gated Ca2+ (Cav) and transient receptor potential channels, excitation-reducing K+ channels, and still poorly understood Cl- channels. Dynamic interplay among UBSM ion channels determines the overall level of Cav channel activity. The net Ca2+ influx via Cav channels increases global intracellular Ca2+ concentration, which subsequently triggers UBSM contractility. Here, for each ion channel type, we describe UBSM tissue/cell expression (mRNA and protein) profiles and their role in regulating excitability and contractility of UBSM in various animal species, including the mouse, rat, and guinea pig, and, most importantly, humans. The currently available data reveal certain interspecies differences, which complicate the translational value of published animal research results to humans. This review highlights recent developments, findings on genetic knockout models, pharmacological data, reports on UBSM ion channel dysfunction in animal bladder disease models, and the very limited human studies currently available. Among all gaps in present-day knowledge, the unknowns on expression and functional roles for ion channels determined directly in human UBSM tissues and cells under both normal and disease conditions remain key hurdles in the field.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Department of Urology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
3
|
Yarotskyy V, Malysz J, Petkov GV. Properties of single-channel and whole cell Cl - currents in guinea pig detrusor smooth muscle cells. Am J Physiol Cell Physiol 2019; 316:C698-C710. [PMID: 30566392 DOI: 10.1152/ajpcell.00327.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple types of Cl- channels regulate smooth muscle excitability and contractility in vascular, gastrointestinal, and airway smooth muscle cells. However, little is known about Cl- channels in detrusor smooth muscle (DSM) cells. Here, we used inside-out single channel and whole cell patch-clamp recordings for detailed biophysical and pharmacological characterizations of Cl- channels in freshly isolated guinea pig DSM cells. The recorded single Cl- channels displayed unique gating with multiple subconductive states, a fully opened single-channel conductance of 164 pS, and a reversal potential of -41.5 mV, which is close to the ECl of -65 mV, confirming preferential permeability to Cl-. The Cl- channel demonstrated strong voltage dependence of activation (half-maximum of mean open probability, V0.5, ~-20 mV) and robust prolonged openings at depolarizing voltages. The channel displayed similar gating when exposed intracellularly to solutions containing Ca2+-free or 1 mM Ca2+. In whole cell patch-clamp recordings, macroscopic current demonstrated outward rectification, inhibitions by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid, and insensitivity to chlorotoxin. The outward current was reversibly reduced by 94% replacement of extracellular Cl- with I-, Br-, or methanesulfonate (MsO-), resulting in anionic permeability sequence: Cl->Br->I->MsO-. While intracellular Ca2+ levels (0, 300 nM, and 1 mM) did not affect the amplitude of Cl- current and outward rectification, high Ca2+ slowed voltage-step current activation at depolarizing voltages. In conclusion, our data reveal for the first time the presence of a Ca2+-independent DIDS and niflumic acid-sensitive, voltage-dependent Cl- channel in the plasma membrane of DSM cells. This channel may be a key regulator of DSM excitability.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
4
|
Fong Z, Griffin CS, Hollywood MA, Thornbury KD, Sergeant GP. β 3-Adrenoceptor agonists inhibit purinergic receptor-mediated contractions of the murine detrusor. Am J Physiol Cell Physiol 2019; 317:C131-C142. [PMID: 31042424 DOI: 10.1152/ajpcell.00488.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
β3-Adrenoceptor (β3-AR) agonists are used to treat overactive bladder syndrome; however, their mechanism of action has not been determined. The aims of this study were to compare the effects of β3-AR agonists on cholinergic versus purinergic receptor-mediated contractions of the detrusor and to examine the mechanisms underlying inhibition of the purinergic responses by β3-AR agonists. Isometric tension recordings were made from strips of murine detrusor and whole cell current recordings were made from freshly isolated detrusor myocytes using the patch-clamp technique. Transcriptional expression of exchange protein directly activated by cAMP (EPAC) subtypes in detrusor strips was assessed using RT-PCR and real-time quantitative PCR. The β3-AR agonists BRL37344 and CL316243 (100 nM) inhibited cholinergic nerve-mediated contractions of the detrusor by 19 and 23%, respectively, but did not reduce contractions induced by the cholinergic agonist carbachol (300 nM). In contrast, BRL37344 and CL316243 inhibited purinergic nerve-mediated responses by 55 and 56%, respectively, and decreased the amplitude of contractions induced by the P2X receptor agonist α,β-methylene ATP by 40 and 45%, respectively. The adenylate cyclase activator forskolin inhibited purinergic responses, and these effects were mimicked by a combination of the PKA activator N6-monobutyryl-cAMP and the EPAC activator 8-pCPT-2'-O-methyl-cAMP-AM (007-AM). Application of ATP (1 μM) evoked reproducible P2X currents in isolated detrusor myocytes voltage-clamped at -60 mV. These responses were reduced in amplitude in the presence of BRL37344 and also by 007-AM. This study demonstrates that β3-AR agonists reduce postjunctional purinergic responses in the detrusor via a pathway involving activation of the cAMP effector EPAC.
Collapse
Affiliation(s)
- Zhihui Fong
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Caoimhín S Griffin
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology , Dundalk , Ireland
| |
Collapse
|
5
|
Griffin CS, Bradley E, Hollywood MA, McHale NG, Thornbury KD, Sergeant GP. β3-adrenoceptor agonists inhibit carbachol-evoked Ca 2+ oscillations in murine detrusor myocytes. BJU Int 2018; 121:959-970. [PMID: 29211339 DOI: 10.1111/bju.14090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To test if carbachol (CCh)-evoked Ca2+ oscillations in freshly isolated murine detrusor myocytes are affected by β3-adrenoceptor (β-AR) modulators. MATERIALS AND METHODS Isometric tension recordings were made from strips of murine detrusor, and intracellular Ca2+ measurements were made from isolated detrusor myocytes using confocal microscopy. Transcriptional expression of β-AR sub-types in detrusor strips and isolated detrusor myocytes was assessed using reverse transcriptase-polymerase chain reaction (RT-PCR) and real-time quantitative PCR (qPCR). Immunocytochemistry experiments, using a β3-AR selective antibody, were performed to confirm that β3-ARs were present on detrusor myocytes. RESULTS The RT-PCR and qPCR experiments showed that β1-, β2- and β3-AR were expressed in murine detrusor, but that β3-ARs were the most abundant sub-type. The selective β3-AR agonist BRL37344 reduced the amplitude of CCh-induced contractions of detrusor smooth muscle. These responses were unaffected by addition of the BK channel blocker iberiotoxin. BRL37344 also reduced the amplitude of CCh-induced Ca2+ oscillations in freshly isolated murine detrusor myocytes. This effect was mimicked by CL316,243, another β3-AR agonist, and inhibited by the β3-AR antagonist L748,337, but not by propranolol, an antagonist of β1- and β2-ARs. BRL37344 did not affect caffeine-evoked Ca2+ transients or L-type Ca2+ current in isolated detrusor myocytes. CONCLUSION Inhibition of cholinergic-mediated contractions of the detrusor by β3-AR agonists was associated with a reduction in Ca2+ oscillations in detrusor myocytes.
Collapse
Affiliation(s)
- Caoimhin S Griffin
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co Louth, Ireland
| | - Eamonn Bradley
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co Louth, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co Louth, Ireland
| | - Noel G McHale
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co Louth, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co Louth, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co Louth, Ireland
| |
Collapse
|
6
|
Okatan EN, Tuncay E, Hafez G, Turan B. Profiling of cardiac β-adrenoceptor subtypes in the cardiac left ventricle of rats with metabolic syndrome: Comparison with streptozotocin-induced diabetic rats. Can J Physiol Pharmacol 2015; 93:517-525. [PMID: 25994289 DOI: 10.1139/cjpp-2014-0507] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Little is known about metabolic syndrome (MetS)-associated cardiomyopathy, especially in relation to the role and contribution of beta-adrenoceptor (β-AR) subtypes. Therefore, we examined the roles of β-AR subtypes in the cardiac function of rats with MetS (MetS group) and compared it with that of rats with streptozotocin (STZ)-induced diabetes (STZ group). Compared with the normal control rats, the protein levels of cardiac β1- and β2-AR in the MetS group were significantly decreased and with no changes in their mRNA levels, whereas the protein levels of β3-AR were similar to those of the controls. However, as shown previously, the protein levels of cardiac β1- and β2-AR in the STZ group were decreased, whereas the β3-AR levels were significantly increased by comparison with the controls. Additionally, the mRNA levels of β2- and β3-AR were increased, but β1-AR mRNA was decreased in the STZ group. Furthermore, left ventricular developed pressure responses to β3-AR agonist BRL37344 were increased in the STZ group but not in the MetS group, whereas for both groups, the responses to noradrenaline were not different from those of the controls. However, the response to stimulation with high concentrations of fenoterol was depressed in the MetS group, compared with the controls, but not in the STZ group. Consequently, our data suggest that the contribution of the β-AR system to cardiac dysfunction in the rats with MetS is not the same as that in the STZ group, although they have similar cardiac dysfunction with similar ultrastructural changes to the myocardium.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/pathology
- Gene Expression
- Heart Ventricles/metabolism
- Heart Ventricles/ultrastructure
- Hemodynamics/physiology
- Male
- Metabolic Syndrome/metabolism
- Metabolic Syndrome/pathology
- Microscopy, Electron, Transmission
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Rats, Wistar
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Streptozocin/pharmacology
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
Collapse
Affiliation(s)
- Esma N Okatan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Gaye Hafez
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| |
Collapse
|
7
|
Petkov GV. Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am J Physiol Regul Integr Comp Physiol 2014; 307:R571-84. [PMID: 24990859 DOI: 10.1152/ajpregu.00142.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The physiological functions of the urinary bladder are to store and periodically expel urine. These tasks are facilitated by the contraction and relaxation of the urinary bladder smooth muscle (UBSM), also known as detrusor smooth muscle, which comprises the bladder wall. The large-conductance voltage- and Ca(2+)-activated K(+) (BK, BKCa, MaxiK, Slo1, or KCa1.1) channel is highly expressed in UBSM and is arguably the most important physiologically relevant K(+) channel that regulates UBSM function. Its significance arises from the fact that the BK channel is the only K(+) channel that is activated by increases in both voltage and intracellular Ca(2+). The BK channels control UBSM excitability and contractility by maintaining the resting membrane potential and shaping the repolarization phase of the spontaneous action potentials that determine UBSM spontaneous rhythmic contractility. In UBSM, these channels have complex regulatory mechanisms involving integrated intracellular Ca(2+) signals, protein kinases, phosphodiesterases, and close functional interactions with muscarinic and β-adrenergic receptors. BK channel dysfunction is implicated in some forms of bladder pathologies, such as detrusor overactivity, and related overactive bladder. This review article summarizes the current state of knowledge of the functional role of UBSM BK channels under normal and pathophysiological conditions and provides new insight toward the BK channels as targets for pharmacological or genetic control of UBSM function. Modulation of UBSM BK channels can occur by directly or indirectly targeting their regulatory mechanisms, which has the potential to provide novel therapeutic approaches for bladder dysfunction, such as overactive bladder and detrusor underactivity.
Collapse
Affiliation(s)
- Georgi V Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
8
|
Lee H, Koh BH, Peri LE, Sanders KM, Koh SD. Purinergic inhibitory regulation of murine detrusor muscles mediated by PDGFRα+ interstitial cells. J Physiol 2014; 592:1283-93. [PMID: 24396055 DOI: 10.1113/jphysiol.2013.267989] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purines induce transient contraction and prolonged relaxation of detrusor muscles. Transient contraction could be due to activation of inward currents in smooth muscle cells, but the mechanism of purinergic relaxation has not been determined. We recently reported a new class of interstitial cells in detrusor muscles and showed that these cells could be identified with antibodies against platelet-derived growth factor receptor-α (PDGFRα(+) cells). The current density of small conductance Ca(2+)-activated K(+) (SK) channels in these cells is far higher (∼100 times) than in smooth muscle cells. Thus, we examined purinergic receptor (P2Y) mediated SK channel activation as a mechanism for purinergic relaxation. P2Y receptors (mainly P2ry1 gene) were highly expressed in PDGFRα(+) cells. Under voltage clamp conditions, ATP activated large outward currents in PDGFRα(+) cells that were inhibited by blockers of SK channels. ATP also induced significant hyperpolarization under current clamp conditions. A P2Y1 agonist, MRS2365, mimicked the effects of ATP, and a P2Y1 antagonist, MRS2500, inhibited ATP-activated SK currents. Responses to ATP were largely abolished in PDGFRα(+) cells of P2ry1(-/-) mice, and no response was elicited by MRS2365 in these cells. A P2X receptor agonist had no effect on PDGFRα(+) cells but, like ATP, activated transient inward currents in smooth muscle cells (SMCs). A P2Y1 antagonist decreased nerve-evoked relaxation. These data suggest that purines activate SK currents via mainly P2Y1 receptors in PDGFRα(+) cells. Our findings provide an explanation for purinergic relaxation in detrusor muscles and show that there are no discrete inhibitory nerve fibres. A dual receptive field for purines provides the basis for inhibitory neural regulation of excitability.
Collapse
Affiliation(s)
- Haeyeong Lee
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 N. Virginia St MS 0352, Reno, NV 89557, USA.
| | | | | | | | | |
Collapse
|
9
|
Parajuli SP, Hristov KL, Soder RP, Kellett WF, Petkov GV. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels. Br J Pharmacol 2013; 168:1611-25. [PMID: 23145946 DOI: 10.1111/bph.12049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 08/30/2012] [Accepted: 10/25/2012] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca(2+) -activated K(+) (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. EXPERIMENTAL APPROACH We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. KEY RESULTS We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. CONCLUSIONS AND IMPLICATIONS Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity.
Collapse
Affiliation(s)
- Shankar P Parajuli
- Department of Pharmaceutical & Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
10
|
Afeli SAY, Malysz J, Petkov GV. Molecular expression and pharmacological evidence for a functional role of kv7 channel subtypes in Guinea pig urinary bladder smooth muscle. PLoS One 2013; 8:e75875. [PMID: 24073284 PMCID: PMC3779188 DOI: 10.1371/journal.pone.0075875] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/19/2013] [Indexed: 12/30/2022] Open
Abstract
Voltage-gated Kv7 (KCNQ) channels are emerging as essential regulators of smooth muscle excitability and contractility. However, their physiological role in detrusor smooth muscle (DSM) remains to be elucidated. Here, we explored the molecular expression and function of Kv7 channel subtypes in guinea pig DSM by RT-PCR, qRT-PCR, immunohistochemistry, electrophysiology, and isometric tension recordings. In whole DSM tissue, mRNAs for all Kv7 channel subtypes were detected in a rank order: Kv7.1~Kv7.2Kv7.3~Kv7.5Kv7.4. In contrast, freshly-isolated DSM cells showed mRNA expression of: Kv7.1~Kv7.2Kv7.5Kv7.3~Kv7.4. Immunohistochemical confocal microscopy analyses of DSM, conducted by using co-labeling of Kv7 channel subtype-specific antibodies and α-smooth muscle actin, detected protein expression for all Kv7 channel subtypes, except for the Kv7.4, in DSM cells. L-364373 (R-L3), a Kv7.1 channel activator, and retigabine, a Kv7.2-7.5 channel activator, inhibited spontaneous phasic contractions and the 10-Hz electrical field stimulation (EFS)-induced contractions of DSM isolated strips. Linopiridine and XE991, two pan-Kv7 (effective at Kv7.1-Kv7.5 subtypes) channel inhibitors, had opposite effects increasing DSM spontaneous phasic and 10 Hz EFS-induced contractions. EFS-induced DSM contractions generated by a wide range of stimulation frequencies were decreased by L-364373 (10 µM) or retigabine (10 µM), and increased by XE991 (10 µM). Retigabine (10 µM) induced hyperpolarization and inhibited spontaneous action potentials in freshly-isolated DSM cells. In summary, Kv7 channel subtypes are expressed at mRNA and protein levels in guinea pig DSM cells. Their pharmacological modulation can control DSM contractility and excitability; therefore, Kv7 channel subtypes provide potential novel therapeutic targets for urinary bladder dysfunction.
Collapse
Affiliation(s)
- Serge A. Y. Afeli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - John Malysz
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Georgi V. Petkov
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Malysz J, Rovner ES, Petkov GV. Single-channel biophysical and pharmacological characterizations of native human large-conductance calcium-activated potassium channels in freshly isolated detrusor smooth muscle cells. Pflugers Arch 2013; 465:965-75. [PMID: 23344746 PMCID: PMC3659209 DOI: 10.1007/s00424-012-1214-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 12/27/2012] [Accepted: 12/29/2012] [Indexed: 10/27/2022]
Abstract
Recent studies have demonstrated the importance of large-conductance Ca(2+)-activated K(+) (BK) channels in detrusor smooth muscle (DSM) function in vitro and in vivo. However, in-depth characterization of human native DSM single BK channels has not yet been provided. Here, we conducted single-channel recordings from excised patches from native human DSM cells. Inside-out and outside-out recordings in high K(+) symmetrical solution (containing 140 mM KCl and ~300 nM free Ca(2+)) showed single-channel conductance of 215-220 pS, half-maximum constant for activation of ~+75 to +80 mV, and low probability of opening (P o) at +20 mV that increased ~10-fold at +40 mV and ~60-fold at +60 mV. Using the inside-out configuration at +30 mV, reduction of intracellular [Ca(2+)] from ~300 nM to Ca(2+)-free decreased the P o by ~85 %, whereas elevation to ~800 nM increased P o by ~50-fold. The BK channel activator NS1619 (10 μM) enhanced the P o by ~10-fold at +30 mV; subsequent application of the selective BK channel inhibitor paxilline (500 nM) blocked the activity. Changes in intracellular [Ca(2+)] or the addition of NS1619 did not significantly alter the current amplitude or single-channel conductance. This is the first report to provide biophysical and pharmacological profiles of native human DSM single BK channels highlighting their importance in regulating human DSM excitability.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
| | - Eric S. Rovner
- Medical University of South Carolina, Charleston, SC 29425
| | - Georgi V. Petkov
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208
- Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
12
|
Afeli SAY, Petkov GV. Functional BK channels facilitate the β3-adrenoceptor agonist-mediated relaxation of nerve-evoked contractions in rat urinary bladder smooth muscle isolated strips. Eur J Pharmacol 2013; 711:50-6. [PMID: 23643998 DOI: 10.1016/j.ejphar.2013.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 10/26/2022]
Abstract
The large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel is a major regulator of detrusor smooth muscle (DSM) contractility thus facilitating urinary bladder function. Recent findings suggest that activation of β3-adrenoceptors causes DSM relaxation. However, it is unknown whether the β3-adrenoceptor-mediated DSM relaxation is BK channel-dependent during nerve-evoked contractions. To test this hypothesis, we induced nerve-evoked contractions in rat DSM isolated strips by using a tissue bath system equipped with platinum electrodes for electrical field stimulation (EFS). (±)-(R(*),R(*))-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy] acetic acid sodium hydrate (BRL37344), a β3-adrenoceptor agonist, significantly decreased the amplitude and muscle force of the 20 Hz EFS-induced DSM contractions in a concentration-dependent manner. The BRL37344 inhibitory effect was significantly antagonized by 1-(2-ethylphenoxy)-3-[[(1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino]-(2S)-2-propanol hydrochloride (SR59230A), a β3-adrenoceptor antagonist. We further isolated the cholinergic from the purinergic component of the 0.5-50 Hz EFS-induced DSM contractions by using selective inhibitors, atropine as well as suramin and α,β-methylene-ATP. We found that BRL37344 inhibited both the purinergic and cholinergic components of the nerve-evoked contractions in rat DSM isolated strips. The pharmacological blockade of the BK channels with iberiotoxin, a selective BK channel inhibitor, increased the amplitude and muscle force of the 20 Hz EFS-induced contractions in rat DSM isolated strips. In the presence of iberiotoxin, there was a significant reduction in the BRL37344-induced inhibition of the 20 Hz EFS-induced contractions in rat DSM isolated strips. These latter findings suggest that BK channels play a critical role in the β3-adrenoceptor-mediated inhibition of rat DSM nerve-evoked contractions.
Collapse
Affiliation(s)
- Serge A Y Afeli
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | |
Collapse
|
13
|
Petersen LH, Needham SL, Burleson ML, Overturf MD, Huggett DB. Involvement of β3-adrenergic receptors in in vivo cardiovascular regulation in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A Mol Integr Physiol 2013; 164:291-300. [DOI: 10.1016/j.cbpa.2012.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/30/2012] [Accepted: 11/01/2012] [Indexed: 01/10/2023]
|
14
|
Smith AC, Hristov KL, Cheng Q, Xin W, Parajuli SP, Earley S, Malysz J, Petkov GV. Novel role for the transient potential receptor melastatin 4 channel in guinea pig detrusor smooth muscle physiology. Am J Physiol Cell Physiol 2013; 304:C467-77. [PMID: 23302778 DOI: 10.1152/ajpcell.00169.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the transient receptor potential (TRP) channel superfamily, including the Ca(2+)-activated monovalent cation-selective TRP melastatin 4 (TRPM4) channel, have been recently identified in the urinary bladder. However, their expression and function at the level of detrusor smooth muscle (DSM) remain largely unexplored. In this study, for the first time we investigated the role of TRPM4 channels in guinea pig DSM excitation-contraction coupling using a multidisciplinary approach encompassing protein detection, electrophysiology, live-cell Ca(2+) imaging, DSM contractility, and 9-phenanthrol, a recently characterized selective inhibitor of the TRPM4 channel. Western blot and immunocytochemistry experiments demonstrated the expression of the TRPM4 channel in whole DSM tissue and freshly isolated DSM cells with specific localization on the plasma membrane. Perforated whole cell patch-clamp recordings and real-time Ca(2+) imaging experiments with fura 2-AM, both using freshly isolated DSM cells, revealed that 9-phenanthrol (30 μM) significantly reduced the cation current and decreased intracellular Ca(2+) levels. 9-Phenanthrol (0.1-30 μM) significantly inhibited spontaneous, 0.1 μM carbachol-induced, 20 mM KCl-induced, and nerve-evoked contractions in guinea pig DSM-isolated strips with IC50 values of 1-7 μM and 70-80% maximum inhibition. 9-Phenanthrol also reduced nerve-evoked contraction amplitude induced by continuous repetitive electrical field stimulation of 10-Hz frequency and shifted the frequency-response curve (0.5-50 Hz) relative to the control. Collectively, our data demonstrate the novel finding that TRPM4 channels are expressed in guinea pig DSM and reveal their critical role in the regulation of guinea pig DSM excitation-contraction coupling.
Collapse
Affiliation(s)
- Amy C Smith
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xin W, Soder RP, Cheng Q, Rovner ES, Petkov GV. Selective inhibition of phosphodiesterase 1 relaxes urinary bladder smooth muscle: role for ryanodine receptor-mediated BK channel activation. Am J Physiol Cell Physiol 2012; 303:C1079-89. [PMID: 22992675 DOI: 10.1152/ajpcell.00162.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The large conductance voltage- and Ca(2+)-activated K(+) (BK) channel is a major regulator of detrusor smooth muscle (DSM) excitability and contractility. Recently, we showed that nonselective phosphodiesterase (PDE) inhibition reduces guinea pig DSM excitability and contractility by increasing BK channel activity. Here, we investigated how DSM excitability and contractility changes upon selective inhibition of PDE type 1 (PDE1) and the underlying cellular mechanism involving ryanodine receptors (RyRs) and BK channels. PDE1 inhibition with 8-methoxymethyl-3-isobutyl-1-methylxanthine (8MM-IBMX; 10 μM) increased the cAMP levels in guinea pig DSM cells. Patch-clamp experiments on freshly isolated DSM cells showed that 8MM-IBMX increased transient BK currents and the spontaneous transient hyperpolarization (STH) frequency by ∼2.5- and ∼1.8-fold, respectively. 8MM-IBMX hyperpolarized guinea pig and human DSM cell membrane potential and significantly decreased the intracellular Ca(2+) levels in guinea pig DSM cells. Blocking BK channels with 1 μM paxilline or inhibiting RyRs with 30 μM ryanodine abolished the STHs and the 8MM-IBMX inhibitory effects on the DSM cell membrane potential. Isometric DSM tension recordings showed that 8MM-IBMX significantly reduced the spontaneous phasic contraction amplitude, muscle force integral, duration, frequency, and tone of DSM isolated strips. The electrical field stimulation-induced DSM contraction amplitude, muscle force integral, and duration were also attenuated by 10 μM 8MM-IBMX. Blocking BK channels with paxilline abolished the 8MM-IBMX effects on DSM contractions. Our data provide evidence that PDE1 inhibition relaxes DSM by raising cellular cAMP levels and subsequently stimulates RyRs, which leads to BK channel activation, membrane potential hyperpolarization, and decrease in intracellular Ca(2+) levels.
Collapse
Affiliation(s)
- Wenkuan Xin
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Coker Life Sciences Bldg., Rm. 609D, 715 Sumter St, Columbia, SC 29208, USA
| | | | | | | | | |
Collapse
|
16
|
Afeli SAY, Rovner ES, Petkov GV. SK but not IK channels regulate human detrusor smooth muscle spontaneous and nerve-evoked contractions. Am J Physiol Renal Physiol 2012; 303:F559-68. [PMID: 22592639 DOI: 10.1152/ajprenal.00615.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Animal studies suggest that the small (SK) and intermediate (IK) conductance Ca(2+)-activated K(+) channels may contribute to detrusor smooth muscle (DSM) excitability and contractility. However, the ability of SK and IK channels to control DSM spontaneous phasic and nerve-evoked contractions in human DSM remains unclear. We first investigated SK and IK channels molecular expression in native human DSM and further assessed their functional role using isometric DSM tension recordings and SK/IK channel-selective inhibitors. Quantitative PCR experiments revealed that SK3 channel mRNA expression in isolated DSM single cells was ∼12- to 44-fold higher than SK1, SK2, and IK channels. RT-PCR studies at the single-cell level detected mRNA messages for SK3 channels but not SK1, SK2, and IK channels. Western blot and immunohistochemistry analysis further confirmed protein expression for the SK3 channel and lack of detectable protein expression for IK channel in whole DSM tissue. Apamin (1 μM), a selective SK channel inhibitor, significantly increased the spontaneous phasic contraction amplitude, muscle force integral, phasic contraction duration, and muscle tone of human DSM isolated strips. Apamin (1 μM) also increased the amplitude of human DSM electrical field stimulation (EFS)-induced contractions. However, TRAM-34 (1 μM), a selective IK channel inhibitor, had no effect on the spontaneous phasic and EFS-induced DSM contractions suggesting a lack of IK channel functional role in human DSM. In summary, our molecular and functional studies revealed that the SK, particularly the SK3 subtype, but not IK channels are expressed and regulate the spontaneous and nerve-evoked contractions in human DSM.
Collapse
Affiliation(s)
- Serge A Y Afeli
- Dept. of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, Univ. of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
17
|
Hristov KL, Chen M, Afeli SAY, Cheng Q, Rovner ES, Petkov GV. Expression and function of K(V)2-containing channels in human urinary bladder smooth muscle. Am J Physiol Cell Physiol 2012; 302:C1599-608. [PMID: 22422395 DOI: 10.1152/ajpcell.00447.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functional role of the voltage-gated K(+) (K(V)) channels in human detrusor smooth muscle (DSM) is largely unexplored. Here, we provide molecular, electrophysiological, and functional evidence for the expression of K(V)2.1, K(V)2.2, and the electrically silent K(V)9.3 subunits in human DSM. Stromatoxin-1 (ScTx1), a selective inhibitor of K(V)2.1, K(V)2.2, and K(V)4.2 homotetrameric channels and of K(V)2.1/9.3 heterotetrameric channels, was used to examine the role of these channels in human DSM function. Human DSM tissues were obtained during open bladder surgeries from patients without a history of overactive bladder. Freshly isolated human DSM cells were studied using RT-PCR, immunocytochemistry, live-cell Ca(2+) imaging, and the perforated whole cell patch-clamp technique. Isometric DSM tension recordings of human DSM isolated strips were conducted using tissue baths. RT-PCR experiments showed mRNA expression of K(V)2.1, K(V)2.2, and K(V)9.3 (but not K(V)4.2) channel subunits in human isolated DSM cells. K(V)2.1 and K(V)2.2 protein expression was confirmed by Western blot analysis and immunocytochemistry. Perforated whole cell patch-clamp experiments revealed that ScTx1 (100 nM) inhibited the amplitude of the voltage step-induced K(V) current in freshly isolated human DSM cells. ScTx1 (100 nM) significantly increased the intracellular Ca(2+) level in DSM cells. In human DSM isolated strips, ScTx1 (100 nM) increased the spontaneous phasic contraction amplitude and muscle force, and enhanced the amplitude of the electrical field stimulation-induced contractions within the range of 3.5-30 Hz stimulation frequencies. These findings reveal that ScTx1-sensitive K(V)2-containing channels are key regulators of human DSM excitability and contractility and may represent new targets for pharmacological or genetic intervention for bladder dysfunction.
Collapse
Affiliation(s)
- Kiril L Hristov
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, 29208, USA
| | | | | | | | | | | |
Collapse
|
18
|
Xin W, Cheng Q, Soder RP, Petkov GV. Inhibition of phosphodiesterases relaxes detrusor smooth muscle via activation of the large-conductance voltage- and Ca²⁺-activated K⁺ channel. Am J Physiol Cell Physiol 2012; 302:C1361-70. [PMID: 22322973 DOI: 10.1152/ajpcell.00432.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Detrusor smooth muscle (DSM) exhibits increased spontaneous phasic contractions under pathophysiological conditions such as detrusor overactivity (DO). Our previous studies showed that activation of cAMP signaling pathways reduces DSM contractility by increasing the large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel activity. Here, we tested the hypothesis whether inhibition of phosphodiesterases (PDEs) can reduce guinea pig DSM excitability and contractility by increasing BK channel activity. Utilizing isometric tension recordings of DSM isolated strips and the perforated patch-clamp technique on freshly isolated DSM cells, we examined the mechanism of DSM relaxation induced by PDE inhibition. Inhibition of PDEs by 3-isobutyl-1-methylxanthine (IBMX), a nonselective PDE inhibitor, significantly reduced DSM spontaneous and carbachol-induced contraction amplitude, frequency, duration, muscle force integral, and tone in a concentration-dependent manner. IBMX significantly reduced electrical field stimulation-induced contractions of DSM strips. Blocking BK channels with paxilline diminished the inhibitory effects of IBMX on DSM contractility, indicating a role for BK channels in DSM relaxation mediated by PDE inhibition. IBMX increased the transient BK currents (TBKCs) frequency by ∼3-fold without affecting the TBKCs amplitude. IBMX increased the frequency of the spontaneous transient hyperpolarizations by ∼2-fold and hyperpolarized the DSM cell resting membrane potential by ∼6 mV. Blocking the BK channels with paxilline abolished the IBMX hyperpolarizing effects. Under conditions of blocked Ca(2+) sources for BK channel activation, IBMX did not affect the depolarization-induced steady-state whole cell BK currents. Our data reveal that PDE inhibition with IBMX relaxes guinea pig DSM via TBKCs activation and subsequent DSM cell membrane hyperpolarization.
Collapse
Affiliation(s)
- Wenkuan Xin
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | | | |
Collapse
|