1
|
Haug S, Muthusamy S, Li Y, Stewart G, Li X, Treppner M, Köttgen A, Akilesh S. Multi-omic analysis of human kidney tissue identified medulla-specific gene expression patterns. Kidney Int 2024; 105:293-311. [PMID: 37995909 PMCID: PMC10843743 DOI: 10.1016/j.kint.2023.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 09/21/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
The kidney medulla is a specialized region with important homeostatic functions. It has been implicated in genetic and developmental disorders along with ischemic and drug-induced injuries. Despite its role in kidney function and disease, the medulla's baseline gene expression and epigenomic signatures have not been well described in the adult human kidney. Here we generated and analyzed gene expression (RNA-seq), chromatin accessibility (ATAC-seq), chromatin conformation (Hi-C) and spatial transcriptomic data from the adult human kidney cortex and medulla. Tissue samples were obtained from macroscopically dissected cortex and medulla of tumor-adjacent normal material in nephrectomy specimens from five male patients. We used these carefully annotated specimens to reassign incorrectly labeled samples in the larger public Genotype-Tissue Expression (GTEx) Project, and to extract meaningful medullary gene expression signatures. Using integrated analysis of gene expression, chromatin accessibility and conformation profiles, we found insights into medulla development and function and then validated this by spatial transcriptomics and immunohistochemistry. Thus, our datasets provide a valuable resource for functional annotation of variants from genome-wide association studies and are freely accessible through an epigenome browser portal.
Collapse
Affiliation(s)
- Stefan Haug
- Institute of Genetic Epidemiology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Selvaraj Muthusamy
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Yong Li
- Institute of Genetic Epidemiology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Galen Stewart
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Xianwu Li
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Martin Treppner
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Medical Center-University of Freiburg, Freiburg, Germany.
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
2
|
Maas SL, Donners MMPC, van der Vorst EPC. ADAM10 and ADAM17, Major Regulators of Chronic Kidney Disease Induced Atherosclerosis? Int J Mol Sci 2023; 24:ijms24087309. [PMID: 37108478 PMCID: PMC10139114 DOI: 10.3390/ijms24087309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Chronic kidney disease (CKD) is a major health problem, affecting millions of people worldwide, in particular hypertensive and diabetic patients. CKD patients suffer from significantly increased cardiovascular disease (CVD) morbidity and mortality, mainly due to accelerated atherosclerosis development. Indeed, CKD not only affects the kidneys, in which injury and maladaptive repair processes lead to local inflammation and fibrosis, but also causes systemic inflammation and altered mineral bone metabolism leading to vascular dysfunction, calcification, and thus, accelerated atherosclerosis. Although CKD and CVD individually have been extensively studied, relatively little research has studied the link between both diseases. This narrative review focuses on the role of a disintegrin and metalloproteases (ADAM) 10 and ADAM17 in CKD and CVD and will for the first time shed light on their role in CKD-induced CVD. By cleaving cell surface molecules, these enzymes regulate not only cellular sensitivity to their micro-environment (in case of receptor cleavage), but also release soluble ectodomains that can exert agonistic or antagonistic functions, both locally and systemically. Although the cell-specific roles of ADAM10 and ADAM17 in CVD, and to a lesser extent in CKD, have been explored, their impact on CKD-induced CVD is likely, yet remains to be elucidated.
Collapse
Affiliation(s)
- Sanne L Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
| | - Marjo M P C Donners
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P C van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
- Aachen-Maastricht Institute for CardioRenal Disease (AMICARE), RWTH Aachen University, 52074 Aachen, Germany
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
| |
Collapse
|
3
|
Zhou X, Xu C, Dong J, Liao L. Role of renal tubular programed cell death in diabetic kidney disease. Diabetes Metab Res Rev 2023; 39:e3596. [PMID: 36401596 PMCID: PMC10078574 DOI: 10.1002/dmrr.3596] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022]
Abstract
The pathogenic mechanism of diabetic kidney disease (DKD) is involved in various functions; however, its inadequate characterisation limits the availability of effective treatments. Tubular damage is closely correlated with renal function and is thought to be the main contributor to the injury observed in early DKD. Programed cell death (PCD) occurs during the biological development of the living body. Accumulating evidence has clarified the fundamental role of abnormalities in tubular PCD during DKD pathogenesis. Among PCD types, classical apoptosis, autophagic cell death, and pyroptosis are the most studied and will be the focus of this review. Our review aims to elucidate the current knowledge of the mechanism of DKD and the potential therapeutic potential of drugs targeting tubular PCD pathways in DKD.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chunmei Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
4
|
Zhang C, Pan R, Ma S, Xu S, Wang B. Dezocine inhibits cell proliferation, migration, and invasion by targeting CRABP2 in ovarian cancer. Open Med (Wars) 2022; 17:2052-2061. [PMID: 36568517 PMCID: PMC9755696 DOI: 10.1515/med-2022-0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 12/23/2022] Open
Abstract
Previous studies have shown that some anesthesia drugs can inhibit tumor growth and metastasis. As a clinical anesthetic drug, dezocine has been reported to play an important role in immune function. However, the effects of dezocine on ovarian cancer cell growth and metastasis are not fully understood. In this study, we found that dezocine dose-dependently inhibited the viability of ES-2 and SKOV3 cells. Dezocine suppressed the migration and invasion abilities of ovarian cancer cells, and promoted apoptosis. Moreover, the Akt/mTOR signaling pathway was also inhibited by dezocine. Furthermore, mechanism study showed that dezocine could significantly inhibit the expression of CRABP2, and CRABP2 overexpression reversed the inhibitory effects of dezocine on ovarian cancer cell proliferation and migration. In conclusion, dezocine has significant anti-tumor effects on the growth and metastatic potential of ovarian cancer cells, and CRABP2 functions as a downstream effector of dezocine.
Collapse
Affiliation(s)
- Chuanfeng Zhang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ruirui Pan
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shuangshuang Ma
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Shoucai Xu
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Baosheng Wang
- Department of Anesthesiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No.440 Jiyan Road, Jinan 250117, Shandong, China
| |
Collapse
|
5
|
Hagiyama M, Mimae T, Wada A, Takeuchi F, Yoneshige A, Inoue T, Kotoku N, Hamada H, Sekido Y, Okada M, Ito A. Possible Therapeutic Utility of anti-Cell Adhesion Molecule 1 Antibodies for Malignant Pleural Mesothelioma. Front Cell Dev Biol 2022; 10:945007. [PMID: 35903548 PMCID: PMC9315061 DOI: 10.3389/fcell.2022.945007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/15/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive malignant tumor, and the effective therapeutic drugs are limited. Thus, the establishment of novel therapeutic method is desired. Considerable proportion of MPMs are shown to express cell adhesion molecule 1 (CADM1), and to use CADM1 to bind to and proliferate on the pleural mesothelial surface, suggesting that CADM1 is a possible therapeutic target. Here, anti-CADM1 ectodomain chicken monoclonal antibodies, 3E1 and 9D2, were examined for their possible therapeutic utility. The full-length form of CADM1 was expressed in eight out of twelve human MPM cell lines. MPM cell lines were cultured on a confluent monolayer of mesothelial MeT-5A cells in the presence of 9D2, the neutralizing antibody. 9D2 suppressed the cell growth of CADM1-positive MPM cells with the loss and aggregation of CADM1 molecules on the MPM cell membrane, but not of CADM1-negative MPM cells. Co-addition of 3E1, lacking the neutralizing action, enhanced the growth-suppressive effect of 9D2. The two antibodies were tested as drug delivery vectors. 3E1 was converted into a humanized antibody (h3E1) and conjugated with monomethyl auristatin E (MMAE), a tubulin polymerization inhibitor. When the resulting h3E1–MMAE antibody-drug conjugate (ADC) was added to the standard cultures of CADM1-positive MPM cells, it suppressed the cell growth in a dose-dependent manner. Co-addition of 9D2 enhanced the growth-suppressive effect of h3E1–MMAE ADC. Anti-CADM1 ectodomain antibodies were suggested to serve as both antibody drugs and drug vectors in the treatment of MPM.
Collapse
Affiliation(s)
- Man Hagiyama
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takahiro Mimae
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Akihiro Wada
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Fuka Takeuchi
- Division of Molecular Pathology, Graduate School of Medical Science, Kindai University, Osaka, Japan
| | - Azusa Yoneshige
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Takao Inoue
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Naoyuki Kotoku
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yoshitaka Sekido
- Division of Cancer Biology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, Hiroshima, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka, Japan
- Division of Molecular Pathology, Graduate School of Medical Science, Kindai University, Osaka, Japan
- *Correspondence: Akihiko Ito,
| |
Collapse
|
6
|
Otani T, Murakami K, Shiraishi N, Hagiyama M, Satou T, Matsuki M, Matsumura N, Ito A. α-Fetoprotein-Producing Endometrial Carcinoma Is Associated With Fetal Gut-Like and/or Hepatoid Morphology, Lymphovascular Infiltration, TP53 Abnormalities, and Poor Prognosis: Five Cases and Literature Review. Front Med (Lausanne) 2022; 8:799163. [PMID: 34977100 PMCID: PMC8714782 DOI: 10.3389/fmed.2021.799163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 11/18/2022] Open
Abstract
The clinicopathological, immunohistochemical, and molecular characteristics of α-fetoprotein (AFP)-producing endometrial carcinoma (AFP+ EC) are poorly understood. From 284 cases of endometrial carcinoma in our pathology archive, we identified five cases (1.8%) of AFP+ EC with fetal gut–like (4/5) and/or hepatoid (2/5) morphology. All cases exhibited lymphovascular infiltration. In addition, 24 cases of endometrial carcinoma with elevated serum AFP levels were retrieved from the literature. The patient age ranged from 44 to 86 years (median: 63). Of 26 cases whose FIGO (International Federation of Gynecology and Obstetrics) stage and follow-up information was available (mean follow-up 24 months), 15 were stage I or II and 11 were stage III or IV. Even in stage I or II disease, death or relapse occurred in more than half of the patients (8/15). Detailed analysis of our five cases revealed that, on immunohistochemistry, AFP+ EC was positive for SALL4 (4/5), AFP (3/5), and HNF1β (4/5) in >50% of neoplastic cells and negative for estrogen and progesterone receptors (5/5), PAX8 (4/5), and napsin A (5/5). Four cases exhibited aberrant p53 immunohistochemistry and were confirmed to harbor TP53 mutations by direct sequencing. No mutation was found in POLE, CTNNB1, or KRAS. In conclusion, AFP+ EC merits recognition as a distinct subtype of endometrial carcinoma, which occurs in 1.8% of endometrial carcinoma cases, are associated with TP53 abnormalities, exhibit lymphovascular infiltration, and can show distant metastasis even when treated in early stage.
Collapse
Affiliation(s)
- Tomoyuki Otani
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.,Division of Hospital Pathology, Kindai University Hospital, Osaka-Sayama, Japan
| | - Kosuke Murakami
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Naoki Shiraishi
- Genome Medical Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Man Hagiyama
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takao Satou
- Division of Hospital Pathology, Kindai University Hospital, Osaka-Sayama, Japan
| | - Mitsuru Matsuki
- Department of Radiology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
7
|
Zhou Y, Bu Z, Qian J, Cheng Y, Qiao L, Yang S, Cheng S, Wang X, Ren L, Yang Y. Brucella melitensis UGPase inhibits the activation of NF-κB by modulating the ubiquitination of NEMO. BMC Vet Res 2021; 17:289. [PMID: 34461896 PMCID: PMC8404259 DOI: 10.1186/s12917-021-02993-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND UTP-glucose-1-phosphoryl transferase (UGPase) catalyzes the synthesis of UDP-glucose, which is essential for generating the glycogen needed for the synthesis of bacterial lipopolysaccharide (LPS) and capsular polysaccharide, which play important roles in bacterial virulence. However, the molecular function of UGPase in Brucella is still unknown. RESULTS In this study, the ubiquitination modification of host immune-related protein in cells infected with UGPase-deleted or wild-type Brucella was analyzed using ubiquitination proteomics technology. The ubiquitination modification level and type of NF-κB Essential Modulator (NEMO or Ikbkg), a molecule necessary for NF-κB signal activation, was evaluated using Coimmunoprecipitation, Western blot, and dual-Luciferase Assay. We found 80 ubiquitin proteins were upregulated and 203 ubiquitin proteins were downregulated in cells infected with B. melitensis 16 M compared with those of B. melitensis UGPase-deleted strain (16 M-UGPase-). Moreover, the ubiquitin-modified proteins were mostly enriched in the categories of regulation of kinase/NF-κB signaling and response to a bacterium, suggesting Brucella UGPase inhibits ubiquitin modification of related proteins in the host NF-κB signaling pathway. Further analysis showed that the ubiquitination levels of NEMO K63 (K63-Ub) and Met1 (Met1-Ub) were significantly increased in the 16 M-UGPase--infected cells compared with that of the 16 M-infected cells, further confirming that the ubiquitination levels of NF-κB signaling-related proteins were regulated by the bacterial UGPase. Besides, the expression level of IκBα was decreased, but the level of p-P65 was significantly increased in the 16 M-UGPase--infected cells compared with that of the 16 M- and mock-infected cells, demonstrating that B. melitensis UGPase can significantly inhibit the degradation of IκBα and the phosphorylation of p65, and thus suppressing the NF-κB pathway. CONCLUSIONS The results of this study showed that Brucella melitensis UGPase inhibits the activation of NF-κB by modulating the ubiquitination of NEMO, which will provide a new scientific basis for the study of immune mechanisms induced by Brucella.
Collapse
Affiliation(s)
- Yucheng Zhou
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Zhaoyang Bu
- Military Veterinary Institute, Academy of Military Medical Sciences, 130112, Changchun, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Yuening Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Lianjiang Qiao
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Sen Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Shipeng Cheng
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Xinglong Wang
- Military Veterinary Institute, Academy of Military Medical Sciences, 130112, Changchun, China
| | - Linzhu Ren
- College of Animal Sciences, Jilin University, 130062, Changchun, China.
| | - Yanling Yang
- State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China.
| |
Collapse
|
8
|
Wen-Jin C, Xiu-Wu P, Jian C, Da X, Jia-Xin C, Wei-Jie C, Lin-Hui W, Xin-Gang C. Study of cellular heterogeneity and differential dynamics of autophagy in human embryonic kidney development by single-cell RNA sequencing. Cancer Cell Int 2021; 21:460. [PMID: 34461918 PMCID: PMC8404318 DOI: 10.1186/s12935-021-02154-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background Autophagy is believed to participate in embryonic development, but whether the expression of autophagy-associated genes undergoes changes during the development of human embryonic kidneys remains unknown. Methods In this work, we identified 36,151 human renal cells from embryonic kidneys of 9–18 gestational weeks in 16 major clusters by single-cell RNA sequencing (scRNA-seq), and detected 1350 autophagy-related genes in all fetal renal cells. The abundance of each cell cluster in Wilms tumor samples from scRNA-seq and GDC TARGET WT datasets was detected by CIBERSORTx. R package Monocle 3 was used to determine differentiation trajectories. Cyclone tool of R package scran was applied to calculate the cell cycle scores. R package SCENIC was used to investigate the transcriptional regulons. The FindMarkers tool from Seurat was used to calculate DEGs. GSVA was used to perform gene set enrichment analyses. CellphoneDB was utilized to analyze intercellular communication. Results It was found that cells in the 13th gestational week showed the lowest transcriptional level in each cluster in all stages. Nephron progenitors could be divided into four subgroups with diverse levels of autophagy corresponding to different SIX2 expressions. SSBpod (podocyte precursors) could differentiate into four types of podocytes (Pod), and autophagy-related regulation was involved in this process. Pseudotime analysis showed that interstitial progenitor cells (IPCs) potentially possessed two primitive directions of differentiation to interstitial cells with different expressions of autophagy. It was found that NPCs, pretubular aggregates and interstitial cell clusters had high abundance in Wilms tumor as compared with para-tumor samples with active intercellular communication. Conclusions All these findings suggest that autophagy may be involved in the development and cellular heterogeneity of early human fetal kidneys. In addition, part of Wilms tumor cancer cells possess the characteristics of some fetal renal cell clusters. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02154-w.
Collapse
Affiliation(s)
- Chen Wen-Jin
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Pan Xiu-Wu
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China.,Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Chu Jian
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China.,Department of Urology, Gongli Hospital of Second Military Medical University, 219 Miaopu Road, Shanghai, 200135, China
| | - Xu Da
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Chen Jia-Xin
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Chen Wei-Jie
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China
| | - Wang Lin-Hui
- Department of Urology, Changzheng Hospital of Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| | - Cui Xin-Gang
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, 700 North Moyu Road, Shanghai, 201805, China. .,Department of Urology, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
9
|
Andreucci M, Provenzano M, Faga T, Michael A, Patella G, Mastroroberto P, Serraino GF, Bracale UM, Ielapi N, Serra R. Aortic Aneurysms, Chronic Kidney Disease and Metalloproteinases. Biomolecules 2021; 11:194. [PMID: 33573220 PMCID: PMC7912263 DOI: 10.3390/biom11020194] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
Metalloproteinases (MPs) are proteolytic enzymes involved in extracellular matrix deposition, regulation of cellular signals of inflammation, proliferation, and apoptosis. Metalloproteinases are classified into three families: Matrix-MPs (MMPs), A-Disintegrin-and-Metalloprotease (ADAMs), and the A-Disintegrin-and-Metalloproteinase-with-Thrombospondin-1-like-Domains (ADAMTS). Previous studies showed that MPs are involved in the development of aortic aneurysms (AA) and, concomitantly, in the onset of chronic kidney disease (CKD). CKD has been, per se, associated with an increased risk for AA. The aim of this review is to examine the pathways that may associate MPs with CKD and AA. Several MMPs, such as MMP-2, -8, -9, and TIMP-1 have been shown to damage the AA wall and to have a toxic effect on renal tubular cells, leading to fibrosis. Similarly, ADAM10 and 17 have been shown to degrade collagen in the AA wall and to worsen kidney function via pro-inflammatory stimuli, the impairment of the Renin-Angiotensin-Aldosterone System, and the degradation of structural proteins. Moreover, MMP-2 and -9 inhibitors reduced aneurysm growth and albuminuria in experimental and human studies. It would be important, in the future, to expand research on MPs from both a prognostic, namely, to refine risk stratification in CKD patients, and a predictive perspective, likely to improve prognosis in response to targeted treatments.
Collapse
Affiliation(s)
- Michele Andreucci
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (M.A.); (T.F.); (A.M.); (G.P.)
| | - Michele Provenzano
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy;
| | - Teresa Faga
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (M.A.); (T.F.); (A.M.); (G.P.)
| | - Ashour Michael
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (M.A.); (T.F.); (A.M.); (G.P.)
| | - Gemma Patella
- Department of Health Sciences, “Magna Graecia” University, I-88100 Catanzaro, Italy; (M.A.); (T.F.); (A.M.); (G.P.)
| | - Pasquale Mastroroberto
- Department of Experimental and Clinical Medicine, University of Catanzaro, I-88100 Catanzaro, Italy; (P.M.); (G.F.S.)
| | - Giuseppe Filiberto Serraino
- Department of Experimental and Clinical Medicine, University of Catanzaro, I-88100 Catanzaro, Italy; (P.M.); (G.F.S.)
| | | | - Nicola Ielapi
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, I-00185 Roma, Italy;
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy;
- Interuniversity Center of Phlebolymphology (CIFL), “Magna Graecia” University, I-88100 Catanzaro, Italy
| |
Collapse
|
10
|
Sawada Y, Mashima E, Saito-Sasaki N, Nakamura M. The Role of Cell Adhesion Molecule 1 (CADM1) in Cutaneous Malignancies. Int J Mol Sci 2020; 21:E9732. [PMID: 33419290 PMCID: PMC7766610 DOI: 10.3390/ijms21249732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Cell adhesion ability is one of the components to establish cell organization and shows a great contribution to human body construction consisting of various types of cells mixture to orchestrate tissue specific function. The cell adhesion molecule 1 (CADM1) is a molecule of cell adhesion with multiple functions and has been identified as a tumor suppressor gene. CADM1 has multifunctions on the pathogenesis of malignancies, and other normal cells such as immune cells. However, little is known about the function of CADM1 on cutaneous cells and cutaneous malignancies. CADM1 plays an important role in connecting cells with each other, contacting cells to deliver their signal, and acting as a scaffolding molecule for other immune cells to develop their immune responses. A limited number of studies reveal the contribution of CADM1 on the development of cutaneous malignancies. Solid cutaneous malignancies, such as cutaneous squamous cell carcinoma and malignant melanoma, reduce their CADM1 expression to promote the invasion and metastasis of the tumor. On the contrary to these cutaneous solid tumors except for Merkel cell carcinoma, cutaneous lymphomas, such as adult-T cell leukemia/lymphoma, mycosis fungoides, and Sézary syndrome, increase their CADM1 expression for the development of tumor environment. Based on the role of CADM1 in the etiology of tumor development, the theory of CADM1 contribution will desirably be applied to skin tumors according to other organ malignancies, however, the characteristics of skin as a multicomponent peripheral organ should be kept in mind to conclude their prognoses.
Collapse
Affiliation(s)
- Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (E.M.); (N.S.-S.); (M.N.)
| | | | | | | |
Collapse
|
11
|
Hagiyama M, Kimura R, Yoneshige A, Inoue T, Otani T, Ito A. Cell Adhesion Molecule 1 Contributes to Cell Survival in Crowded Epithelial Monolayers. Int J Mol Sci 2020; 21:ijms21114123. [PMID: 32527032 PMCID: PMC7312920 DOI: 10.3390/ijms21114123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
When epithelial cells in vivo are stimulated to proliferate, they crowd and often grow in height. These processes are likely to implicate dynamic interactions among lateral membranous proteins, such as cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member. Pulmonary epithelial cell lines that express CADM1, named NCI-H441 and RLE-6TN, were grown to become overconfluent in the polarized 2D culture system, and were examined for the expression of CADM1. Western analyses showed that the CADM1 expression levels increased gradually up to 3 times in a cell density-dependent manner. Confocal microscopic observations revealed dense immunostaining for CADM1 on the lateral membrane. In the overconfluent monolayers, CADM1 knockdown was achieved by two methods using CADM1-targeting siRNA and an anti-CADM1 neutralizing antibody. Antibody treatment experiments were also done on 6 other epithelial cell lines expressing CADM1. The CADM1 expression levels were reduced roughly by half, in association with cell height decrease by half in 3 lines. TUNEL assays revealed that the CADM1 knockdown increased the proportion of TUNEL-positive apoptotic cells approximately 10 folds. Increased expression of CADM1 appeared to contribute to cell survival in crowded epithelial monolayers.
Collapse
|
12
|
CADM1 inhibits ovarian cancer cell proliferation and migration by potentially regulating the PI3K/Akt/mTOR pathway. Biomed Pharmacother 2019; 123:109717. [PMID: 31865146 DOI: 10.1016/j.biopha.2019.109717] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/27/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member, is frequently inactivated but functions as a tumor suppressor in many solid tumors. However, the characterization of CADM1 expression in ovarian cancer cells and the mechanisms of its tumor suppressor function are not fully understood. We generated ovarian cancer cell lines in which CADM1 was stably upregulated or downregulated. CADM1 expression was significantly decreased in ovarian cancer tissue and cells lines. Functionally, knockdown of CADM1 promoted the growth, migration and invasion of ovarian cancer cells. Conversely, further experimental evidence indicated that overexpression of CADM1 inhibited the migration and invasion of ovarian cancer cells potentially through inhibition of the PI3K/Akt/mTOR signaling pathway by regulating upstream regulators (LXR/RXR, IGF1, IFI44L and C4BPA) and downstream effectors (APP, EDN1, TGFBI and Rap1A). In conclusion, CADM1 inhibits ovarian cancer cell proliferation and migration by potentially regulating the PI3K/Akt/mTOR signaling pathway. CADM1 could be a potential therapeutic target for ovarian cancer.
Collapse
|
13
|
Hagiyama M, Nakatani Y, Takashima Y, Kato T, Inoue T, Kimura R, Otani T, Sato Y, Mori H, Arima S, Ito A. Urinary Cell Adhesion Molecule 1 Is a Novel Biomarker That Links Tubulointerstitial Damage to Glomerular Filtration Rates in Chronic Kidney Disease. Front Cell Dev Biol 2019; 7:111. [PMID: 31316980 PMCID: PMC6610501 DOI: 10.3389/fcell.2019.00111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
Abstract
Cell adhesion molecule 1 (CADM1) is an immunoglobulin superfamily member strongly expressed on renal tubular epithelia in the urinary tract. Enzymatic cleavage of its ectodomain increases in chronic kidney disease (CKD), and is assumed to contribute to tubulointerstitial lesion formation. Because the cleaved ectodomain fragments are likely to be released into the urine, a sandwich enzyme-linked immunosorbent assay (ELISA) system for urinary CADM1 was developed using two anti-ectodomain antibodies. Urinary CADM1 concentrations in patients with CKD based on various forms of glomerulonephritis and nephropathy (n = 127) were measured. A total of 44 patients (35%) had elevated CADM1 concentrations over the normal upper limit (362 pg/mL), with a mean of 1,727 pg/mL. Renal biopsy specimens of all patients were pathologically scored for tubulointerstitial lesions using epithelial degeneration, interstitial inflammation, and fibrosis. There were no correlations between urinary CADM1 concentrations and pathological scores or any widely used renal markers, including glomerular filtration rate (GFR), but there was a weak inverse correlation between pathological scores and GFR (R2 = 0.292). Notably, this correlation gradually increased in patients with increasing CADM1 concentrations, and reached a maximum R2 (0.899) at a cutoff of 1,569 pg/mL. The results of this study suggest that urinary CADM1 is a useful marker indicating tubulointerstitial damage from elevated GFR levels in CKD.
Collapse
Affiliation(s)
- Man Hagiyama
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Yoshihisa Nakatani
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Yasutoshi Takashima
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Takashi Kato
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Takao Inoue
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Ryuichiro Kimura
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Tomoyuki Otani
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Yasufumi Sato
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Hideo Mori
- Department of Pathology, Osaka Rosai Hospital, Sakai, Japan
| | - Shuji Arima
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Akihiko Ito
- Department of Pathology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| |
Collapse
|
14
|
Kato T, Hagiyama M, Ito A. Renal ADAM10 and 17: Their Physiological and Medical Meanings. Front Cell Dev Biol 2018; 6:153. [PMID: 30460232 PMCID: PMC6232257 DOI: 10.3389/fcell.2018.00153] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
A disintegrin and metalloproteinases (ADAMs) are a Zn2+-dependent transmembrane and secreted metalloprotease superfamily, so-called “molecular scissors,” and they consist of an N-terminal signal sequence, a prodomain, zinc-binding metalloprotease domain, disintegrin domain, cysteine-rich domain, transmembrane domain and cytoplasmic tail. ADAMs perform proteolytic processing of the ectodomains of diverse transmembrane molecules into bioactive mediators. This review summarizes on their most well-known members, ADAM10 and 17, focusing on the kidneys. ADAM10 is expressed in renal tubular cells and affects the expression of specific brush border genes, and its activation is involved in some renal diseases. ADAM17 is weakly expressed in normal kidneys, but its expression is markedly induced in the tubules, capillaries, glomeruli, and mesangium, and it is involved in interstitial fibrosis and tubular atrophy. So far, the various substrates have been identified in the kidneys. Shedding fragments become released ligands, such as Notch and EGFR ligands, and act as the chemoattractant factors including CXCL16. Their ectodomain shedding is closely correlated with pathological factors, which include inflammation, interstitial fibrosis, and renal injury. Also, the substrates of both ADAMs contain the molecules that play important roles at the plasma membrane, such as meaprin, E-cadherin, Klotho, and CADM1. By being released into urine, the shedding products could be useful for biomarkers of renal diseases, but ADAM10 and 17 per se are also notable as biomarkers. Furthermore, ADAM10 and/or 17 inhibitions based on various strategies such as small molecules, antibodies, and their recombinant prodomains are valuable, because they potentially protect renal tissues and promote renal regeneration. Although temporal and spatial regulations of inhibitors are problems to be solved, their inhibitors could be useful for renal diseases.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Man Hagiyama
- Department of Pathology, Kindai University School of Medicine, Osakasayama, Japan
| | - Akihiko Ito
- Department of Pathology, Kindai University School of Medicine, Osakasayama, Japan
| |
Collapse
|