1
|
Wang LM, Wang P, Teka T, Zhang YC, Yang WZ, Zhang Y, Wang T, Liu LX, Han LF, Liu CX. 1H NMR and UHPLC/Q-Orbitrap-MS-Based Metabolomics Combined with 16S rRNA Gut Microbiota Analysis Revealed the Potential Regulation Mechanism of Nuciferine in Hyperuricemia Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14059-14070. [PMID: 33146009 DOI: 10.1021/acs.jafc.0c04985] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hyperuricemia seriously jeopardizes human health by increasing the risk of several diseases, such as gout and stroke. Nuciferine is able to alleviate hyperuricemia significantly. However, the underlying metabolic regulation mechanism remains unknown. To understand the metabolic effects of nuciferine on hyperuricemia by establishing a rat model of rapid hyperuricemia, 1H NMR and liquid chromatography-mass spectrometry were used to conduct nontargeted metabolomics studies. A total of 21 metabolites were authenticated in plasma and urine to be closely related with hyperuricemia, which were mainly correlated to the six metabolic pathways. Moreover, 16S rRNA analysis indicated that diversified intestinal microorganisms are closely related to changes in differential metabolites, especially bacteria from Firmicutes and Bacteroidetes. We propose that indoxyl sulfate and N-acetylglutamate in urine may be the potential biomarkers besides uric acid for early diagnosis and prevention of hyperuricemia. Gut microbiological analysis found that changes in the gut microbiota are closely related to these metabolites.
Collapse
Affiliation(s)
- Li-Ming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Piao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Tekleab Teka
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
- Department of Pharmacy, College of Medicine and Health Sciences, Wollo University, P.O. Box 1145, Dessie +251-1145, Ethiopia
| | - You-Cai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wen-Zhi Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Yi Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Lai-Xing Liu
- School of Management, Wuhan Institute of Technology, Wuhan 430205, China
| | - Li-Feng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China
| | - Cai-Xiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Wuhan Institute of Physics and Mathematics, The Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
2
|
Oestreicher J, Morgan B. Glutathione: subcellular distribution and membrane transport 1. Biochem Cell Biol 2018; 97:270-289. [PMID: 30427707 DOI: 10.1139/bcb-2018-0189] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Glutathione (γ-l-glutamyl-l-cysteinylglycine) is a small tripeptide found at millimolar concentrations in nearly all eukaryotes as well as many prokaryotic cells. Glutathione synthesis is restricted to the cytosol in animals and fungi and to the cytosol and plastids in plants. Nonetheless, glutathione is found in virtually all subcellular compartments. This implies that transporters must exist that facilitate glutathione transport into and out of the various subcellular compartments. Glutathione may also be exported and imported across the plasma membrane in many cells. However, in most cases, the molecular identity of these transporters remains unclear. Whilst glutathione transport is essential for the supply and replenishment of subcellular glutathione pools, recent evidence supports a more active role for glutathione transport in the regulation of subcellular glutathione redox homeostasis. However, our knowledge of glutathione redox homeostasis at the level of specific subcellular compartments remains remarkably limited and the role of glutathione transport remains largely unclear. In this review, we discuss how new tools and techniques have begun to yield insights into subcellular glutathione distribution and glutathione redox homeostasis. In particular, we discuss the known and putative glutathione transporters and examine their contribution to the regulation of subcellular glutathione redox homeostasis.
Collapse
Affiliation(s)
- Julian Oestreicher
- a Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.,b Institute of Biochemistry, Center of Human and Molecular Biology (ZHMB), University of the Saarland, Campus B 2.2, D-66123 Saarbrücken, Germany
| | - Bruce Morgan
- a Cellular Biochemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany.,b Institute of Biochemistry, Center of Human and Molecular Biology (ZHMB), University of the Saarland, Campus B 2.2, D-66123 Saarbrücken, Germany
| |
Collapse
|
3
|
Estrone sulphate uptake by the microvillous membrane of placental syncytiotrophoblast is coupled to glutamate efflux. Biochem Biophys Res Commun 2018; 506:237-242. [PMID: 30343886 PMCID: PMC6255796 DOI: 10.1016/j.bbrc.2018.10.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023]
Abstract
Organic anion transporters (OATs) and organic anion transporting polypeptides (OATPs) are transport proteins that mediate exchange of metabolites, hormones and waste products. Directional transport by these transporters can occur when exchange is coupled to the gradients of other substrates. This study investigates whether the activity of OATP4A1 and OATP2A1 on the maternal facing microvillus membrane of the placental syncytiotrophoblast is coupled to the glutamate gradient. OAT and OATP transporter proteins were over expressed in Xenopus oocytes to study their transport characteristics. Further transport studies were performed in term human placental villous fragments. Xenopus oocytes expressing OATP4A1 mediated glutamate uptake. No glutamate transport was observed in oocytes expressing OAT1, OAT3, OAT7 or OATP2A1. In oocytes expressing OATP4A1, uptake of estrone sulphate, thyroid hormones T3 and T4 and the bile acid taurocholate stimulated glutamate efflux. In term placental villous fragments addition of estrone sulphate and taurocholate trans-stimulated glutamate efflux. Coupling of OATP4A1 to the glutamate gradient may drive placental uptake of estrone-sulphate and thyroid hormone while also facilitating uptake of potentially harmful bile acids. In contrast, if OATP2A1 is not coupled to a similar gradient, it may function more effectively as an efflux transporter, potentially mediating efflux of prostaglandins to the mother. This study provides further evidence for glutamate as an important counter-ion driving transport into the placenta. OATP4A1 and OATP2A1 are present on the maternal facing surface of the placenta. OATP4A1, but not OATP2A1, activity was coupled to glutamate efflux. Placental estrone-sulphate and thyroid hormone uptake is coupled to glutamate efflux. Glutamate acts as a counter-ion for OATP4A1, driving transport into the placenta.
Collapse
|
4
|
Dawson HD, Chen C, Gaynor B, Shao J, Urban JF. The porcine translational research database: a manually curated, genomics and proteomics-based research resource. BMC Genomics 2017; 18:643. [PMID: 28830355 PMCID: PMC5568366 DOI: 10.1186/s12864-017-4009-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The use of swine in biomedical research has increased dramatically in the last decade. Diverse genomic- and proteomic databases have been developed to facilitate research using human and rodent models. Current porcine gene databases, however, lack the robust annotation to study pig models that are relevant to human studies and for comparative evaluation with rodent models. Furthermore, they contain a significant number of errors due to their primary reliance on machine-based annotation. To address these deficiencies, a comprehensive literature-based survey was conducted to identify certain selected genes that have demonstrated function in humans, mice or pigs. RESULTS The process identified 13,054 candidate human, bovine, mouse or rat genes/proteins used to select potential porcine homologs by searching multiple online sources of porcine gene information. The data in the Porcine Translational Research Database (( http://www.ars.usda.gov/Services/docs.htm?docid=6065 ) is supported by >5800 references, and contains 65 data fields for each entry, including >9700 full length (5' and 3') unambiguous pig sequences, >2400 real time PCR assays and reactivity information on >1700 antibodies. It also contains gene and/or protein expression data for >2200 genes and identifies and corrects 8187 errors (gene duplications artifacts, mis-assemblies, mis-annotations, and incorrect species assignments) for 5337 porcine genes. CONCLUSIONS This database is the largest manually curated database for any single veterinary species and is unique among porcine gene databases in regard to linking gene expression to gene function, identifying related gene pathways, and connecting data with other porcine gene databases. This database provides the first comprehensive description of three major Super-families or functionally related groups of proteins (Cluster of Differentiation (CD) Marker genes, Solute Carrier Superfamily, ATP binding Cassette Superfamily), and a comparative description of porcine microRNAs.
Collapse
Affiliation(s)
- Harry D Dawson
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, USA.
| | - Celine Chen
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Brady Gaynor
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Molecular Plant Pathology Lab, Beltsville, MD, 20705, USA
| | - Jonathan Shao
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Molecular Plant Pathology Lab, Beltsville, MD, 20705, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, USA
| |
Collapse
|
5
|
Henjakovic M, Hagos Y, Krick W, Burckhardt G, Burckhardt BC. Human organic anion transporter 2 is distinct from organic anion transporters 1 and 3 with respect to transport function. Am J Physiol Renal Physiol 2015; 309:F843-51. [DOI: 10.1152/ajprenal.00140.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/15/2015] [Indexed: 02/03/2023] Open
Abstract
Phylogentically, organic anion transporter (OAT)1 and OAT3 are closely related, whereas OAT2 is more distant. Experiments with human embryonic kidney-293 cells stably transfected with human OAT1, OAT2, or OAT3 were performed to compare selected transport properties. Common to OAT1, OAT2, and OAT3 is their ability to transport cGMP. OAT2 interacted with prostaglandins, and cGMP uptake was inhibited by PGE2 and PGF2α with IC50 values of 40.8 and 12.7 μM, respectively. OAT1 (IC50: 23.7 μM), OAT2 (IC50: 9.5 μM), and OAT3 (IC50: 1.6 μM) were potently inhibited by MK571, an established multidrug resistance protein inhibitor. OAT2-mediated cGMP uptake was not inhibited by short-chain monocarboxylates and, as opposed to OAT1 and OAT3, not by dicarboxylates. Consequently, OAT2 showed no cGMP/glutarate exchange. OAT1 and OAT3 exhibited a pH and a Cl− dependence with higher substrate uptake at acidic pH and lower substrate uptake in the absence of Cl−, respectively. Such pH and Cl− dependencies were not observed with OAT2. Depolarization of membrane potential by high K+ concentrations in the presence of the K+ ionophore valinomycin left cGMP uptake unaffected. In addition to cGMP, OAT2 transported urate and glutamate, but cGMP/glutamate exchange could not be demonstrated. These experiments suggest that OAT2-mediated cGMP uptake does not occur via exchange with monocarboxylates, dicarboxylates, and hydroxyl ions. The counter anion for electroneutral cGMP uptake remains to be identified.
Collapse
Affiliation(s)
- Maja Henjakovic
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Yohannes Hagos
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfgang Krick
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerhard Burckhardt
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Birgitta C. Burckhardt
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Schwob E, Hagos Y, Burckhardt G, Burckhardt BC. Transporters involved in renal excretion of N-carbamoylglutamate, an orphan drug to treat inborn n-acetylglutamate synthase deficiency. Am J Physiol Renal Physiol 2014; 307:F1373-9. [PMID: 25354943 DOI: 10.1152/ajprenal.00482.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inborn defects in N-acetylglutamate (NAG) synthase (NAGS) cause a reduction of NAG, an essential cofactor for the initiation of the urea cycle. As a consequence, blood ammonium concentrations are elevated, leading to severe neurological disorders. The orphan drug N-carbamoylglutamate (NCG; Carbaglu), efficiently overcomes NAGS deficiency. However, not much is known about the transporters involved in the uptake, distribution, and elimination of the divalent organic anion NCG. Organic anion-transporting polypeptides (OATPs) as well as organic anion transporters (OATs) working in cooperation with sodium dicarboxylate cotransporter 3 (NaDC3) accept a wide variety of structurally unrelated drugs. To test for possible interactions with OATPs and OATs, the impact of NCG on these transporters in stably transfected human embryonic kidney-293 cells was measured. The two-electrode voltage-clamp technique was used to monitor NCG-mediated currents in Xenopus laevis oocytes that expressed NaDC3. Neither OATPs nor OAT2 and OAT3 interacted with NCG, but OAT1 transported NCG. In addition, NCG was identified as a high-affinity substrate of NaDC3. Preincubation of OAT4-transfected human embryonic kidney-293 cells with NCG showed an increased uptake of estrone sulfate, the reference substrate of OAT4, indicating efflux of NCG by OAT4. In summary, NaDC3 and, to a lesser extent, OAT1 are likely to be responsible for the uptake of NCG from the blood. Efflux of NCG across the luminal membrane into the tubular lumen probably occurs by OAT4 completing renal secretion of this drug.
Collapse
Affiliation(s)
- Elisabeth Schwob
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Yohannes Hagos
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerhard Burckhardt
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | - Birgitta C Burckhardt
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
7
|
Jansen J, Schophuizen CMS, Wilmer MJ, Lahham SHM, Mutsaers HAM, Wetzels JFM, Bank RA, van den Heuvel LP, Hoenderop JG, Masereeuw R. A morphological and functional comparison of proximal tubule cell lines established from human urine and kidney tissue. Exp Cell Res 2014; 323:87-99. [PMID: 24560744 DOI: 10.1016/j.yexcr.2014.02.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/22/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
Abstract
Promising renal replacement therapies include the development of a bioartificial kidney using functional human kidney cell models. In this study, human conditionally immortalized proximal tubular epithelial cell (ciPTEC) lines originating from kidney tissue (ciPTEC-T1 and ciPTEC-T2) were compared to ciPTEC previously isolated from urine (ciPTEC-U). Subclones of all ciPTEC isolates formed tight cell layers on Transwell inserts as determined by transepithelial resistance, inulin diffusion, E-cadherin expression and immunocytochemisty. Extracellular matrix genes collagen I and -IV α1 were highly present in both kidney tissue derived matured cell lines (p<0.001) compared to matured ciPTEC-U, whereas matured ciPTEC-U showed a more pronounced fibronectin I and laminin 5 gene expression (p<0.01 and p<0.05, respectively). Expression of the influx carrier Organic Cation Transporter 2 (OCT-2), and the efflux pumps P-glycoprotein (P-gp), Multidrug Resistance Protein 4 (MRP4) and Breast Cancer Resistance Protein (BCRP) were confirmed in the three cell lines using real-time PCR and Western blotting. The activities of OCT-2 and P-gp were sensitive to specific inhibition in all models (p<0.001). The highest activity of MRP4 and BCRP was demonstrated in ciPTEC-U (p<0.05). Finally, active albumin reabsorption was highest in ciPTEC-T2 (p<0.001), while Na(+)-dependent phosphate reabsorption was most abundant in ciPTEC-U (p<0.01). In conclusion, ciPTEC established from human urine or kidney tissue display comparable functional PTEC specific transporters and physiological characteristics, providing ideal human tools for bioartificial kidney development.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/metabolism
- Bioartificial Organs
- Cadherins/biosynthesis
- Cell Adhesion Molecules/biosynthesis
- Cell Culture Techniques
- Cell Line
- Collagen Type I/biosynthesis
- Collagen Type I/metabolism
- Fibronectins/biosynthesis
- Humans
- Inulin/metabolism
- Kidney Tubules, Proximal/cytology
- Kidneys, Artificial
- Multidrug Resistance-Associated Proteins/biosynthesis
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/metabolism
- Octamer Transcription Factor-2/antagonists & inhibitors
- Octamer Transcription Factor-2/biosynthesis
- Octamer Transcription Factor-2/metabolism
- Tissue Engineering
- Transendothelial and Transepithelial Migration/physiology
- Urine/cytology
- Kalinin
Collapse
Affiliation(s)
- J Jansen
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatrics, Radboud University Medical Center, The Netherlands
| | - C M S Schophuizen
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatrics, Radboud University Medical Center, The Netherlands
| | - M J Wilmer
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - S H M Lahham
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H A M Mutsaers
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatrics, Radboud University Medical Center, The Netherlands
| | - J F M Wetzels
- Department of Nephrology, Radboud University Medical Center, The Netherlands
| | - R A Bank
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - L P van den Heuvel
- Department of Pediatrics, Radboud University Medical Center, The Netherlands; Department of Pediatrics, Catholic University Leuven, Leuven, Belgium
| | - J G Hoenderop
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - R Masereeuw
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
8
|
Volk C. OCTs, OATs, and OCTNs: structure and function of the polyspecific organic ion transporters of the SLC22 family. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/wmts.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christopher Volk
- Department of Natural Sciences; Bonn-Rhein-Sieg University of Applied Sciences; Rheinbach Germany
| |
Collapse
|
9
|
Schorbach L, Krick W, Burckhardt G, Burckhardt BC. Glutathione is a low-affinity substrate of the human sodium-dependent dicarboxylate transporter. Nephron Clin Pract 2013; 124:1-5. [PMID: 24247155 DOI: 10.1159/000356419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/16/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND/AIMS During a single pass through the kidneys, more than 80% of glutathione (GSH) is excreted, indicating not only glomerular filtration, but also tubular secretion. The first step in tubular secretion is the uptake of a substance across the basolateral membrane of proximal tubule cells by sodium-dependent and -independent transporters. Due to the dicarboxylate-like structure, we postulated that GSH uptake across the basolateral membrane is mediated by the sodium-dependent dicarboxylate transporter 3 (NaDC3). METHODS Tracer uptake and electrophysiologic measurements using a two-electrode voltage clamp device were performed in Xenopus laevis oocytes expressing the human (h)NaDC3. RESULTS Uptake of succinate, the reference substrate of hNaDC3, was inhibited by GSH in a dose-dependent manner with an IC50 of 1.88 mM. GSH evoked potential-dependent inward currents, which were abolished under sodium-free conditions. At -60 mV, GSH currents showed saturation kinetics with a KM of 1.65 mM. CONCLUSION hNaDC3 present at the basolateral membrane of proximal tubule cells mediates sodium-dependent GSH uptake. The kinetic data show that NaDC3 is a low-affinity GSH transporter.
Collapse
Affiliation(s)
- Lena Schorbach
- Institute of Systemic Physiology and Pathophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|