1
|
Lapão T, Barata R, Jorge C, Flores C, Calado J. Autosomal Dominant Polycystic Kidney Disease Inflammation Biomarkers in the Tolvaptan Era. Int J Mol Sci 2025; 26:1121. [PMID: 39940890 PMCID: PMC11817632 DOI: 10.3390/ijms26031121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/19/2025] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
With the approval of tolvaptan as the first specific medicine for the treatment of rapidly progressive Autosomal Dominant Polycystic Kidney Disease (ADPKD), biomarker discovery has gained renewed interest as it is widely recognized that these will be crucial in clinical decision-making, serving as either prognostic or predictive tools. Since the marketing authorization was first issued in 2015 for ADPKD, tolvaptan has remained the sole pharmacological compound specifically targeting the disease. For ADPKD patients it is an invaluable medicine for retarding disease progression. Although the field of overall biomarker discovery and validation has been detailed in several publications, the role of inflammation remains largely overlooked in ADPKD. The current work aims to provide the reader with an updated review of inflammation biomarkers research in ADPKD, highlighting the role of urinary MCP-1 (monocyte chemoattractant protein-1) as the most promising tool.
Collapse
Affiliation(s)
- Tânia Lapão
- Unidade Local de Saúde São José, Serviço de Patologia Clínica, Centro Clínico Académico de Lisboa, 1150-199 Lisboa, Portugal; (T.L.); (C.F.)
- ToxOmics, NOVA Medical School, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
| | - Rui Barata
- Unidade Local de Saúde São José, Serviço de Nefrologia, Centro Clínico Académico de Lisboa, 1069-166 Lisboa, Portugal; (R.B.); (C.J.)
| | - Cristina Jorge
- Unidade Local de Saúde São José, Serviço de Nefrologia, Centro Clínico Académico de Lisboa, 1069-166 Lisboa, Portugal; (R.B.); (C.J.)
| | - Carlos Flores
- Unidade Local de Saúde São José, Serviço de Patologia Clínica, Centro Clínico Académico de Lisboa, 1150-199 Lisboa, Portugal; (T.L.); (C.F.)
| | - Joaquim Calado
- ToxOmics, NOVA Medical School, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal
- Unidade Local de Saúde São José, Serviço de Nefrologia, Centro Clínico Académico de Lisboa, 1069-166 Lisboa, Portugal; (R.B.); (C.J.)
| |
Collapse
|
2
|
Chai HC, Mahendran R, Ong KC, Chua KH. Revisiting the gene mutations and protein profile of WT 9-12: An autosomal dominant polycystic kidney disease cell line. Genes Cells 2024; 29:599-607. [PMID: 38782708 DOI: 10.1111/gtc.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
WT 9-12 is one of the cell lines commonly used for autosomal dominant polycystic kidney disease (ADPKD) studies. Previous studies had described the PKD gene mutations and polycystin expression in WT 9-12. Nonetheless, the mutations occurring in other ADPKD-associated genes have not been investigated. This study aims to revisit these mutations and protein profile of WT 9-12. Whole genome sequencing verified the presence of truncation mutation at amino acid 2556 (Q2556X) in PKD1 gene of WT 9-12. Besides, those variations with high impacts included single nucleotide polymorphisms (rs8054182, rs117006360, and rs12925771) and insertions and deletions (InDels) (rs145602984 and rs55980345) in PKD1L2; InDel (rs1296698195) in PKD1L3; and copy number variations in GANAB. Protein profiles generated from the total proteins of WT 9-12 and HK-2 cells were compared using isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Polycystin-1 was absent in WT 9-12. The gene ontology enrichment and reactome pathway analyses revealed that the upregulated and downregulated proteins of WT 9-12 relative to HK-2 cell line leaded to signaling pathways related to immune response and amino acid metabolism, respectively. The ADPKD-related mutations and signaling pathways associated with differentially expressed proteins in WT 9-12 may help researchers in cell line selection for their studies.
Collapse
Affiliation(s)
- Hwa Chia Chai
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rhubaniya Mahendran
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Cheng T, Mariappan A, Langner E, Shim K, Gopalakrishnan J, Mahjoub MR. Inhibiting centrosome clustering reduces cystogenesis and improves kidney function in autosomal dominant polycystic kidney disease. JCI Insight 2024; 9:e172047. [PMID: 38385746 DOI: 10.1172/jci.insight.172047] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disorder accounting for approximately 5% of patients with renal failure, yet therapeutics for the treatment of ADPKD remain limited. ADPKD tissues display abnormalities in the biogenesis of the centrosome, a defect that can cause genome instability, aberrant ciliary signaling, and secretion of pro-inflammatory factors. Cystic cells form excess centrosomes via a process termed centrosome amplification (CA), which causes abnormal multipolar spindle configurations, mitotic catastrophe, and reduced cell viability. However, cells with CA can suppress multipolarity via "centrosome clustering," a key mechanism by which cells circumvent apoptosis. Here, we demonstrate that inhibiting centrosome clustering can counteract the proliferation of renal cystic cells with high incidences of CA. Using ADPKD human cells and mouse models, we show that preventing centrosome clustering with 2 inhibitors, CCB02 and PJ34, blocks cyst initiation and growth in vitro and in vivo. Inhibiting centrosome clustering activates a p53-mediated surveillance mechanism leading to apoptosis, reduced cyst expansion, decreased interstitial fibrosis, and improved kidney function. Transcriptional analysis of kidneys from treated mice identified pro-inflammatory signaling pathways implicated in CA-mediated cystogenesis and fibrosis. Our results demonstrate that centrosome clustering is a cyst-selective target for the improvement of renal morphology and function in ADPKD.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aruljothi Mariappan
- Institute of Human Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Ewa Langner
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kyuhwan Shim
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Jena, Germany
| | - Moe R Mahjoub
- Department of Medicine, Nephrology Division, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Myram S, Venzac B, Lapin B, Battistella A, Cayrac F, Cinquin B, Cavaniol C, Gropplero G, Bonnet I, Demolombe S, Descroix S, Coscoy S. A Multitubular Kidney-on-Chip to Decipher Pathophysiological Mechanisms in Renal Cystic Diseases. Front Bioeng Biotechnol 2021; 9:624553. [PMID: 34124016 PMCID: PMC8188354 DOI: 10.3389/fbioe.2021.624553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a major renal pathology provoked by the deletion of PKD1 or PKD2 genes leading to local renal tubule dilation followed by the formation of numerous cysts, ending up with renal failure in adulthood. In vivo, renal tubules are tightly packed, so that dilating tubules and expanding cysts may have mechanical influence on adjacent tubules. To decipher the role of this coupling between adjacent tubules, we developed a kidney-on-chip reproducing parallel networks of tightly packed tubes. This original microdevice is composed of cylindrical hollow tubes of physiological dimensions, parallel and closely packed with 100-200 μm spacing, embedded in a collagen I matrix. These multitubular systems were properly colonized by different types of renal cells with long-term survival, up to 2 months. While no significant tube dilation over time was observed with Madin-Darby Canine Kidney (MDCK) cells, wild-type mouse proximal tubule (PCT) cells, or with PCT Pkd1 +/- cells (with only one functional Pkd1 allele), we observed a typical 1.5-fold increase in tube diameter with isogenic PCT Pkd1 -/- cells, an ADPKD cellular model. This tube dilation was associated with an increased cell proliferation, as well as a decrease in F-actin stress fibers density along the tube axis. With this kidney-on-chip model, we also observed that for larger tube spacing, PCT Pkd1 -/- tube deformations were not spatially correlated with adjacent tubes whereas for shorter spacing, tube deformations were increased between adjacent tubes. Our device reveals the interplay between tightly packed renal tubes, constituting a pioneering tool well-adapted to further study kidney pathophysiology.
Collapse
Affiliation(s)
- Sarah Myram
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Bastien Venzac
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Brice Lapin
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Aude Battistella
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Fanny Cayrac
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Bertrand Cinquin
- Institut Pierre-Gilles de Gennes, IPGG Technology Platform, UMS 3750 CNRS, Paris, France
| | - Charles Cavaniol
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
- Fluigent SA, France
| | - Giacomo Gropplero
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Isabelle Bonnet
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Sophie Demolombe
- Université Côte d’Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Stéphanie Descroix
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| | - Sylvie Coscoy
- Institut Curie, Université PSL (Paris Sciences & Lettres), Sorbonne Université, CNRS UMR 168, Laboratoire Physico Chimie Curie, Paris, France
| |
Collapse
|
5
|
Lasić V, Kosović I, Jurić M, Racetin A, Čurčić J, Šolić I, Lozić M, Filipović N, Šoljić V, Martinović V, Saraga-Babić M, Vukojević K. GREB1L, CRELD2 and ITGA10 expression in the human developmental and postnatal kidneys: an immunohistochemical study. Acta Histochem 2021; 123:151679. [PMID: 33460985 DOI: 10.1016/j.acthis.2021.151679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/19/2020] [Accepted: 01/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aim of our study is to provide an insight into the genetic expression landscape of GREB1L, ITGA10 and CRELD2 which are important in human genitourinary tract development which might help elucidate the critical stages for the onset of kidney anomalies. METHODS Morphological parameters were analyzed using immunohistochemistry on human foetal (13-38 w) and postnatal (1.5 and 7.5y) human kidney samples. RESULTS GREB1L marker had a strong intensity and the highest rate in proximal tubules (PTC) of 1.5 years' kidney (90.25%). In the distal tubules (DCT) there were statistically significant differences in 13 w, 15 w, 16 w, 21 w, 38 w and 7.5y regarding 1.5y (Kruskal-Wallis test, p < 0.001). There was significantly more GREB1L in the glomeruli at 21 w and 38 w in regard to all other stages (Kruskal-Wallis test, p < 0.01). ITGA10 staining intensity was strongest in PCT with the highest rate in 13 w (92.75%), while the lowest rate was found in glomeruli and DCT (Kruskal-Wallis test, p < 0.001). CRELD2 had the strongest staining intensity in PCT with the highest rate in 13 w and 1.5y (92.25%) and lowest in the glomeruli of 7.5 years (24.3 %). In DCT there were statistically significant differences in CRELD2 positive cells in 13 w, 15 w, 16 w, 21 w, 38 w and 7.5y regarding 1.5y (Kruskal-Wallis test, p < 0.01). ITGA10 and CRELD2 co-localised in the postnatal period in DCT. CONCLUSION High kidney expressions of GREB1L, ITGA10 and CRELD2 even in the postnatal period implicate their importance not only for the onset of CAKUT in the case of their mutation but also for maintenance of kidney homeostasis.
Collapse
|
6
|
Molecular pathways involved in injury-repair and ADPKD progression. Cell Signal 2020; 72:109648. [PMID: 32320858 DOI: 10.1016/j.cellsig.2020.109648] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/29/2022]
Abstract
The major hallmark of Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the formation of many fluid-filled cysts in the kidneys, which ultimately impairs the normal renal structure and function, leading to end-stage renal disease (ESRD). A large body of evidence suggests that injury-repair mechanisms are part of ADPKD progression. Once cysts have been formed, proliferation and fluid secretion contribute to the cyst size increase, which eventually causes stress on the surrounding tissue resulting in local injury and fibrosis. In addition, renal injury can cause or accelerate cyst formation. In this review, we will describe the various mechanisms activated during renal injury and tissue repair and show how they largely overlap with the molecular mechanisms activated during PKD progression. In particular, we will discuss molecular mechanisms such as proliferation, inflammation, cell differentiation, cytokines and growth factors secretion, which are activated following the renal injury to allow the remodelling of the tissue and a proper organ repair. We will also underline how, in a context of PKD-related gene mutations, aberrant or chronic activation of these developmental pathways and repair/remodelling mechanisms results in exacerbation of the disease.
Collapse
|
7
|
The role of DNA damage as a therapeutic target in autosomal dominant polycystic kidney disease. Expert Rev Mol Med 2019; 21:e6. [PMID: 31767049 DOI: 10.1017/erm.2019.6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease and is caused by heterozygous germ-line mutations in either PKD1 (85%) or PKD2 (15%). It is characterised by the formation of numerous fluid-filled renal cysts and leads to adult-onset kidney failure in ~50% of patients by 60 years. Kidney cysts in ADPKD are focal and sporadic, arising from the clonal proliferation of collecting-duct principal cells, but in only 1-2% of nephrons for reasons that are not clear. Previous studies have demonstrated that further postnatal reductions in PKD1 (or PKD2) dose are required for kidney cyst formation, but the exact triggering factors are not clear. A growing body of evidence suggests that DNA damage, and activation of the DNA damage response pathway, are altered in ciliopathies. The aims of this review are to: (i) analyse the evidence linking DNA damage and renal cyst formation in ADPKD; (ii) evaluate the advantages and disadvantages of biomarkers to assess DNA damage in ADPKD and finally, (iii) evaluate the potential effects of current clinical treatments on modifying DNA damage in ADPKD. These studies will address the significance of DNA damage and may lead to a new therapeutic approach in ADPKD.
Collapse
|