1
|
Suárez Freire S, Perez-Pandolfo S, Fresco SM, Valinoti J, Sorianello E, Wappner P, Melani M. The exocyst complex controls multiple events in the pathway of regulated exocytosis. eLife 2024; 12:RP92404. [PMID: 39585321 PMCID: PMC11588341 DOI: 10.7554/elife.92404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.
Collapse
Affiliation(s)
- Sofía Suárez Freire
- Fundación Instituto LeloirBuenos AiresArgentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
| | - Sebastián Perez-Pandolfo
- Fundación Instituto LeloirBuenos AiresArgentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
| | | | | | - Eleonora Sorianello
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
- Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental (IBYME-CONICET)Buenos AiresArgentina
| | - Pablo Wappner
- Fundación Instituto LeloirBuenos AiresArgentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos AiresBuenos AiresArgentina
| | - Mariana Melani
- Fundación Instituto LeloirBuenos AiresArgentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos AiresBuenos AiresArgentina
| |
Collapse
|
2
|
Zuo X, Winkler B, Lerner K, Ilatovskaya DV, Zamaro AS, Dang Y, Su Y, Deng P, Fitzgibbon W, Hartman J, Park KM, Lipschutz JH. Cilia-deficient renal tubule cells are primed for injury with mitochondrial defects and aberrant tryptophan metabolism. Am J Physiol Renal Physiol 2024; 327:F61-F76. [PMID: 38721661 PMCID: PMC11390130 DOI: 10.1152/ajprenal.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 06/21/2024] Open
Abstract
The exocyst and Ift88 are necessary for primary ciliogenesis. Overexpression of Exoc5 (OE), a central exocyst component, resulted in longer cilia and enhanced injury recovery. Mitochondria are involved in acute kidney injury (AKI). To investigate cilia and mitochondria, basal respiration and mitochondrial maximal and spare respiratory capacity were measured in Exoc5 OE, Exoc5 knockdown (KD), Exoc5 ciliary targeting sequence mutant (CTS-mut), control Madin-Darby canine kidney (MDCK), Ift88 knockout (KO), and Ift88 rescue cells. In Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells, these parameters were decreased. In Exoc5 OE and Ift88 rescue cells they were increased. Reactive oxygen species were higher in Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells compared with Exoc5 OE, control, and Ift88 rescue cells. By electron microscopy, mitochondria appeared abnormal in Exoc5 KD, Exoc5 CTS-mut, and Ift88 KO cells. A metabolomics screen of control, Exoc5 KD, Exoc5 CTS-mut, Exoc5 OE, Ift88 KO, and Ift88 rescue cells showed a marked increase in tryptophan levels in Exoc5 CTS-mut (113-fold) and Exoc5 KD (58-fold) compared with control cells. A 21% increase was seen in Ift88 KO compared with rescue cells. In Exoc5 OE compared with control cells, tryptophan was decreased 59%. To determine the effects of ciliary loss on AKI, we generated proximal tubule-specific Exoc5 and Ift88 KO mice. These mice had loss of primary cilia, decreased mitochondrial ATP synthase, and increased tryptophan in proximal tubules with greater injury following ischemia-reperfusion. These data indicate that cilia-deficient renal tubule cells are primed for injury with mitochondrial defects in tryptophan metabolism.NEW & NOTEWORTHY Mitochondria are centrally involved in acute kidney injury (AKI). Here, we show that cilia-deficient renal tubule cells both in vitro in cell culture and in vivo in mice are primed for injury with mitochondrial defects and aberrant tryptophan metabolism. These data suggest therapeutic strategies such as enhancing ciliogenesis or improving mitochondrial function to protect patients at risk for AKI.
Collapse
Affiliation(s)
- Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Brennan Winkler
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kasey Lerner
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Aleksandra S Zamaro
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Yujing Dang
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Yanhui Su
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Peifeng Deng
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Wayne Fitzgibbon
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jessica Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kwon Moo Park
- Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Medicine, Ralph H. Johnson Veterans Affairs Health Care System, Charleston, South Carolina, United States
| |
Collapse
|
3
|
Kong MJ, Han SJ, Seu SY, Han KH, Lipschutz JH, Park KM. High water intake induces primary cilium elongation in renal tubular cells. Kidney Res Clin Pract 2024; 43:313-325. [PMID: 37933114 PMCID: PMC11181044 DOI: 10.23876/j.krcp.23.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The primary cilium protrudes from the cell surface and functions as a mechanosensor. Recently, we found that water intake restriction shortens the primary cilia of renal tubular cells, and a blockage of the shortening disturbs the ability of the kidneys to concentrate urine. Here, we investigate whether high water intake (HWI) alters primary cilia length, and if so, what is its underlying mechanism and its role on kidney urine production. METHODS Experimental mice were given free access to normal water (normal water intake) or 3% sucrose-containing water for HWI for 2 days. Some mice were administered with U0126 (10 mg/kg body weight), an inhibitor of MEK kinase, from 2 days before HWI, daily. The primary cilium length and urine amount and osmolality were investigated. RESULTS HWI-induced diluted urine production and primary cilium elongation in renal tubular cells. HWI increased the expression of α-tubulin acetyltransferase 1 (αTAT1), leading to the acetylation of α-tubulins, a core protein of the primary cilia. HWI also increased phosphorylated ERK1/2 (p-ERK1/2) and exocyst complex component 5 (Exoc5) expression in the kidneys. U0126 blocked HWI-induced increases in αTAT1, p-ERK1/2, and Exoc5 expression. U0126 inhibited HWI-induced α-tubulin acetylation, primary cilium elongation, urine amount increase, and urine osmolality decrease. CONCLUSION These results show that increased water intake elongates the primary cilia via ERK1/2 activation and that ERK inhibition prevents primary cilium elongation and diluted urine production. These data suggest that the elongation of primary cilium length is associated with the production of diluted urine.
Collapse
Affiliation(s)
- Min Jung Kong
- Department of Anatomy, BK21 Plus, and Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Jun Han
- Department of Anatomy, BK21 Plus, and Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Biotechnology, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | - Sung Young Seu
- Department of Anatomy, BK21 Plus, and Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Joshua H. Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Kwon Moo Park
- Department of Anatomy, BK21 Plus, and Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Guo M, Xu J, Zhao S, Shen D, Jiang W, Zhang L, Ding X, Xu X. Suppressing Syndecan-1 Shedding to Protect Against Renal Ischemia/Reperfusion Injury by Maintaining Polarity of Tubular Epithelial Cells. Shock 2022; 57:256-263. [PMID: 34313252 DOI: 10.1097/shk.0000000000001838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Syndecan-1 (SDC-1), a type of heparan sulfate proteoglycan on the surface of epithelial cells, is involved in maintaining cell morphology. Loss of cell polarity constitutes the early stage of ischemic acute kidney injury (AKI). This study investigated the role of SDC-1 shedding in I/R-induced AKI and the underlying mechanisms. Levels of the shed SDC-1 in the serum were measured with ELISA 12 and 24 h after reperfusion in renal I/R model mice. Na+/K+-ATPase-α1 expression was evaluated using western blotting in vivo and immunofluorescence in hypoxia/reoxygenation (H/R) cysts. Renal tubular epithelial cell apoptosis was measured using TUNEL in vivo and flow cytometry in vitro. Furthermore, plasma syndecan-1 (pSDC-1) levels were measured in patients at the time of anesthesia resuscitation after cardiac surgery. We found that shed SDC-1 levels increased and Na+/K+-ATPase-α1 expression decreased after H/R in the three-dimensional (3D) tubular model, and this state was exacerbated with extended period of hypoxia. After the inhibition of SDC-1 shedding by GM6001, SDC-1 and Na+/K+-ATPase-α1 expression was restored, while H/R-induced apoptosis was decreased. In vivo, SDC-1 shedding was induced by renal I/R and was accompanied with a loss of renal tubular epithelial cell polarity and increased apoptosis. GM6001 pretreatment protected against I/R injury by alleviating the disruption of cell polarity and apoptosis. pSDC-1 levels were significantly higher in AKI patients than in non-AKI patients. ROC curve showed that the accuracy of pSDC-1 for AKI prediction was 0.769. In conclusion, inhibition of I/R-induced SDC-1 shedding could contribute to renal protection by restoring the loss of cell polarity and alleviating apoptosis in tubular epithelial cells.
Collapse
Affiliation(s)
- Man Guo
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai 201203, PR China
| | - Jiarui Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Shuan Zhao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Daoqi Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Wuhua Jiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Lin Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
- Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai 201203, PR China
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, PR China
- Shanghai Institute of Kidney Disease and Dialysis (SIKD), Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai Medical Center of Kidney Disease, Shanghai, PR China
| |
Collapse
|
5
|
Han SJ, Kim JI, Lipschutz JH, Park KM. Hydrogen sulfide, a gaseous signaling molecule, elongates primary cilia on kidney tubular epithelial cells by activating extracellular signal-regulated kinase. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:593-601. [PMID: 34697270 PMCID: PMC8552824 DOI: 10.4196/kjpp.2021.25.6.593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/22/2022]
Abstract
Primary cilia on kidney tubular cells play crucial roles in maintaining structure and physiological function. Emerging evidence indicates that the absence of primary cilia, and their length, are associated with kidney diseases. The length of primary cilia in kidney tubular epithelial cells depends, at least in part, on oxidative stress and extracellular signal-regulated kinase 1/2 (ERK) activation. Hydrogen sulfide (H2S) is involved in antioxidant systems and the ERK signaling pathway. Therefore, in this study, we investigated the role of H2S in primary cilia elongation and the downstream pathway. In cultured Madin-Darby Canine Kidney cells, the length of primary cilia gradually increased up to 4 days after the cells were grown to confluent monolayers. In addition, the expression of H2S-producing enzyme increased concomitantly with primary cilia length. Treatment with NaHS, an exogenous H2S donor, accelerated the elongation of primary cilia whereas DL-propargylglycine (a cystathionine γ-lyase inhibitor) and hydroxylamine (a cystathionine-β-synthase inhibitor) delayed their elongation. NaHS treatment increased ERK activation and Sec10 and Arl13b protein expression, both of which are involved in cilia formation and elongation. Treatment with U0126, an ERK inhibitor, delayed elongation of primary cilia and blocked the effect of NaHS-mediated primary cilia elongation and Sec10 and Arl13b upregulation. Finally, we also found that H2S accelerated primary cilia elongation after ischemic kidney injury. These results indicate that H2S lengthens primary cilia through ERK activation and a consequent increase in Sec10 and Arl13b expression, suggesting that H2S and its downstream targets could be novel molecular targets for regulating primary cilia.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Biotechnology, College of Fisheries Sciences, Pukyong National University, Busan 48513, Korea
| | - Jee In Kim
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, SC 29425, USA.,Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29425, USA
| | - Kwon Moo Park
- Department of Anatomy, BK21 Plus, Cardiovascular Research Institute, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
6
|
Lipschutz JH. The role of the exocyst in renal ciliogenesis, cystogenesis, tubulogenesis, and development. Kidney Res Clin Pract 2019; 38:260-266. [PMID: 31284362 PMCID: PMC6727897 DOI: 10.23876/j.krcp.19.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
The exocyst is a highly conserved eight-subunit protein complex (EXOC1–8) involved in the targeting and docking of exocytic vesicles translocating from the trans-Golgi network to various sites in renal cells. EXOC5 is a central exocyst component because it connects EXOC6, bound to the vesicles exiting the trans-Golgi network via the small GTPase RAB8, to the rest of the exocyst complex at the plasma membrane. In the kidney, the exocyst complex is involved in primary ciliognesis, cystogenesis, and tubulogenesis. The exocyst, and its regulators, have also been found in urinary extracellular vesicles, and may be centrally involved in urocrine signaling and repair following acute kidney injury. The exocyst is centrally involved in the development of other organs, including the eye, ear, and heart. The exocyst is regulated by many different small GTPases of the RHO, RAL, RAB, and ARF families. The small GTPases, and their guanine nucleotide exchange factors and GTPase-activating proteins, likely give the exocyst specificity of function. The recent development of a floxed Exoc5 mouse line will aid researchers in studying the role of the exocyst in multiple cells and organ types by allowing for tissue-specific knockout, in conjunction with Cre-driver mouse lines.
Collapse
Affiliation(s)
- Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.,Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| |
Collapse
|
7
|
Zuo X, Lobo G, Fulmer D, Guo L, Dang Y, Su Y, Ilatovskaya DV, Nihalani D, Rohrer B, Body SC, Norris RA, Lipschutz JH. The exocyst acting through the primary cilium is necessary for renal ciliogenesis, cystogenesis, and tubulogenesis. J Biol Chem 2019; 294:6710-6718. [PMID: 30824539 DOI: 10.1074/jbc.ra118.006527] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/25/2019] [Indexed: 11/06/2022] Open
Abstract
The exocyst is a highly conserved protein complex found in most eukaryotic cells and is associated with many functions, including protein translocation in the endoplasmic reticulum, vesicular basolateral targeting, and ciliogenesis in the kidney. To investigate the exocyst functions, here we exchanged proline for alanine in the highly conserved VXPX ciliary targeting motif of EXOC5 (exocyst complex component 5), a central exocyst gene/protein, and generated stable EXOC5 ciliary targeting sequence-mutated (EXOC5CTS-m) Madin-Darby canine kidney (MDCK) cells. The EXOC5CTS-m protein was stable and could bind other members of the exocyst complex. Culturing stable control, EXOC5-overexpressing (OE), Exoc5-knockdown (KD), and EXOC5CTS-m MDCK cells on Transwell filters, we found that primary ciliogenesis is increased in EXOC5 OE cells and inhibited in Exoc5-KD and EXOC5CTS-m cells. Growing cells in collagen gels until the cyst stage, we noted that EXOC5-OE cells form mature cysts with single lumens more rapidly than control cysts, whereas Exoc5-KD and EXOC5CTS-m MDCK cells failed to form mature cysts. Adding hepatocyte growth factor to induce tubulogenesis, we observed that EXOC5-OE cell cysts form tubules more efficiently than control MDCK cell cysts, EXOC5CTS-m MDCK cell cysts form significantly fewer tubules than control cell cysts, and Exoc5-KD cysts did not undergo tubulogenesis. Finally, we show that EXOC5 mRNA almost completely rescues the ciliary phenotypes in exoc5-mutant zebrafish, unlike the EXOC5CTS-m mRNA, which could not efficiently rescue the phenotypes. Taken together, these results indicate that the exocyst, acting through the primary cilium, is necessary for renal ciliogenesis, cystogenesis, and tubulogenesis.
Collapse
Affiliation(s)
| | - Glenn Lobo
- From the Departments of Medicine.,Ophthalmology, and
| | - Diana Fulmer
- From the Departments of Medicine.,Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lilong Guo
- From the Departments of Medicine.,Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | | | | | | | | | | | - Simon C Body
- the Department of Anesthesiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Russell A Norris
- From the Departments of Medicine.,Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Joshua H Lipschutz
- From the Departments of Medicine, .,the Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401, and
| |
Collapse
|
8
|
Polgar N, Fogelgren B. Regulation of Cell Polarity by Exocyst-Mediated Trafficking. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031401. [PMID: 28264817 DOI: 10.1101/cshperspect.a031401] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One requirement for establishing polarity within a cell is the asymmetric trafficking of intracellular vesicles to the plasma membrane. This tightly regulated process creates spatial and temporal differences in both plasma membrane composition and the membrane-associated proteome. Asymmetric membrane trafficking is also a critical mechanism to regulate cell differentiation, signaling, and physiology. Many eukaryotic cell types use the eight-protein exocyst complex to orchestrate polarized vesicle trafficking to certain membrane locales. Members of the exocyst were originally discovered in yeast while screening for proteins required for the delivery of secretory vesicles to the budding daughter cell. The same eight exocyst genes are conserved in mammals, in which the specifics of exocyst-mediated trafficking are highly cell-type-dependent. Some exocyst members bind to certain Rab GTPases on intracellular vesicles, whereas others localize to the plasma membrane at the site of exocytosis. Assembly of the exocyst holocomplex is responsible for tethering these vesicles to the plasma membrane before their soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated exocytosis. In this review, we will focus on the role and regulation of the exocyst complex in targeted vesicular trafficking as related to the establishment and maintenance of cellular polarity. We will contrast exocyst function in apicobasal epithelial polarity versus front-back mesenchymal polarity, and the dynamic regulation of exocyst-mediated trafficking during cell phenotype transitions.
Collapse
Affiliation(s)
- Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813
| |
Collapse
|
9
|
Noh MR, Jang HS, Song DK, Lee SR, Lipschutz JH, Park KM, Kim JI. Downregulation of exocyst Sec10 accelerates kidney tubule cell recovery through enhanced cell migration. Biochem Biophys Res Commun 2018; 496:309-315. [PMID: 29326040 DOI: 10.1016/j.bbrc.2018.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 12/23/2022]
Abstract
Migration of surviving kidney tubule cells after sub-lethal injury, for example ischemia/reperfusion (I/R), plays a critical role in recovery. Exocytosis is known to be involved in cell migration, and a key component in exocytosis is the highly-conserved eight-protein exocyst complex. We investigated the expression of a central exocyst complex member, Sec10, in kidneys following I/R injury, as well as the role of Sec10 in wound healing following scratch injury of cultured Madin-Darby canine kidney (MDCK) cells. Sec10 overexpression and knockdown (KD) in MDCK cells were used to investigate the speed of wound healing and the mechanisms underlying recovery. In mice, Sec10 decreased after I/R injury, and increased during the recovery period. In cell culture, Sec10 OE inhibited ruffle formation and wound healing, while Sec10 KD accelerated it. Sec10 OE cells had higher amounts of diacylglycerol kinase (DGK) gamma at the leading edge than did control cells. A DGK inhibitor reversed the inhibition of wound healing and ruffle formation in Sec10 OE cells. Conclusively, downregulation of Sec10 following I/R injury appears to accelerate recovery of kidney tubule cells through activated ruffle formation and enhanced cell migration.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Anatomy and BK21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hee-Seong Jang
- Department of Anatomy and BK21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Dae-Kyu Song
- Department of Physiology, Keimyung University School of Medicine, Daegu, Republic of Korea; Medical Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Seong-Ryong Lee
- Medical Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea; Department of Pharmacology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA
| | - Kwon Moo Park
- Department of Anatomy and BK21 Plus, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| | - Jee In Kim
- Medical Research Center, Keimyung University School of Medicine, Daegu, Republic of Korea; Department of Molecular Medicine Keimyung University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
10
|
Abstract
The exocyst complex mediates the tethering of secretory vesicles to the plasma membrane before SNARE-mediated membrane fusion. Recent studies have implicated the exocyst in a wide range of cellular processes. Particularly, research on the Exo70 subunit of the complex has linked the function of the exocyst in exocytosis to cell adhesion, migration and invasion. In this review, we will discuss the recent work on how Exo70 regulates these cellular processes, and how small GTPases and kinases interact with Exo70 to orchestrate its function in exocytosis and cytoskeleton organization. The study of Exo70 contributes to the understanding of many pathophysiological processes from organogenesis to cancer metastasis.
Collapse
Affiliation(s)
- Yueyao Zhu
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| | - Bin Wu
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| | - Wei Guo
- a Department of Biology, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
11
|
Tanaka T, Goto K, Iino M. Diverse Functions and Signal Transduction of the Exocyst Complex in Tumor Cells. J Cell Physiol 2016; 232:939-957. [DOI: 10.1002/jcp.25619] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology; School of Medicine; Yamagata University; Yamagata Japan
| | - Mitsuyoshi Iino
- Department of Dentistry, Oral and Maxillofacial Surgery; Plastic and Reconstructive Surgery; School of Medicine; Yamagata University; Yamagata Japan
| |
Collapse
|
12
|
Martin-Urdiroz M, Deeks MJ, Horton CG, Dawe HR, Jourdain I. The Exocyst Complex in Health and Disease. Front Cell Dev Biol 2016; 4:24. [PMID: 27148529 PMCID: PMC4828438 DOI: 10.3389/fcell.2016.00024] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/11/2016] [Indexed: 01/23/2023] Open
Abstract
Exocytosis involves the fusion of intracellular secretory vesicles with the plasma membrane, thereby delivering integral membrane proteins to the cell surface and releasing material into the extracellular space. Importantly, exocytosis also provides a source of lipid moieties for membrane extension. The tethering of the secretory vesicle before docking and fusion with the plasma membrane is mediated by the exocyst complex, an evolutionary conserved octameric complex of proteins. Recent findings indicate that the exocyst complex also takes part in other intra-cellular processes besides secretion. These various functions seem to converge toward defining a direction of membrane growth in a range of systems from fungi to plants and from neurons to cilia. In this review we summarize the current knowledge of exocyst function in cell polarity, signaling and cell-cell communication and discuss implications for plant and animal health and disease.
Collapse
Affiliation(s)
| | - Michael J Deeks
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Connor G Horton
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Helen R Dawe
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Isabelle Jourdain
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
13
|
Urothelial Defects from Targeted Inactivation of Exocyst Sec10 in Mice Cause Ureteropelvic Junction Obstructions. PLoS One 2015; 10:e0129346. [PMID: 26046524 PMCID: PMC4457632 DOI: 10.1371/journal.pone.0129346] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/07/2015] [Indexed: 01/12/2023] Open
Abstract
Most cases of congenital obstructive nephropathy are the result of ureteropelvic junction obstructions, and despite their high prevalence, we have a poor understanding of their etiology and scarcity of genetic models. The eight-protein exocyst complex regulates polarized exocytosis of intracellular vesicles in a large variety of cell types. Here we report generation of a conditional knockout mouse for Sec10, a central component of the exocyst, which is the first conditional allele for any exocyst gene. Inactivation of Sec10 in ureteric bud-derived cells using Ksp1.3-Cre mice resulted in severe bilateral hydronephrosis and complete anuria in newborns, with death occurring 6-14 hours after birth. Sec10 FL/FL;Ksp-Cre embryos developed ureteropelvic junction obstructions between E17.5 and E18.5 as a result of degeneration of the urothelium and subsequent overgrowth by surrounding mesenchymal cells. The urothelial cell layer that lines the urinary tract must maintain a hydrophobic luminal barrier again urine while remaining highly stretchable. This barrier is largely established by production of uroplakin proteins that are transported to the apical surface to establish large plaques. By E16.5, Sec10 FL/FL;Ksp-Cre ureter and pelvic urothelium showed decreased uroplakin-3 protein at the luminal surface, and complete absence of uroplakin-3 by E17.5. Affected urothelium at the UPJ showed irregular barriers that exposed the smooth muscle layer to urine, suggesting this may trigger the surrounding mesenchymal cells to overgrow the lumen. Findings from this novel mouse model show Sec10 is critical for the development of the urothelium in ureters, and provides experimental evidence that failure of this urothelial barrier may contribute to human congenital urinary tract obstructions.
Collapse
|
14
|
Polgar N, Lee AJ, Lui VH, Napoli JA, Fogelgren B. The exocyst gene Sec10 regulates renal epithelial monolayer homeostasis and apoptotic sensitivity. Am J Physiol Cell Physiol 2015; 309:C190-201. [PMID: 26040895 DOI: 10.1152/ajpcell.00011.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/28/2015] [Indexed: 01/07/2023]
Abstract
The highly conserved exocyst protein complex regulates polarized exocytosis of subsets of secretory vesicles. A previous study reported that shRNA knockdown of an exocyst central subunit, Sec10 (Sec10-KD) in Madin-Darby canine kidney (MDCK) cells disrupted primary cilia assembly and 3D cyst formation. We used three-dimensional collagen cultures of MDCK cells to further investigate the mechanisms by which Sec10 and the exocyst regulate epithelial polarity, morphogenesis, and homeostasis. Sec10-KD cysts initially demonstrated undisturbed lumen formation although later displayed significantly fewer and shorter primary cilia than controls. Later in cystogenesis, control cells maintained normal homeostasis, while Sec10-KD cysts displayed numerous apoptotic cells extruded basally into the collagen matrix. Sec10-KD MDCK cells were also more sensitive to apoptotic triggers than controls. These phenotypes were reversed by restoring Sec10 expression with shRNA-resistant human Sec10. Apico-basal polarity appeared normal in Sec10-KD cysts, whereas mitotic spindle angles differed significantly from controls, suggesting a planar cell polarity defect. In addition, analysis of renal tubules in a newly generated kidney-specific Sec10-knockout mouse model revealed significant defects in primary cilia assembly and in the targeted renal tubules; abnormal epithelial cell extrusion was also observed, supporting our in vitro results. We hypothesize that, in Sec10-KD cells, the disrupted exocyst activity results in increased apoptotic sensitivity through defective primary cilia signaling and that, in combination with an increased basal cell extrusion rate, it affects epithelial barrier integrity and homeostasis.
Collapse
Affiliation(s)
- Noemi Polgar
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| | - Amanda J Lee
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| | - Vanessa H Lui
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| | - Josephine A Napoli
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| |
Collapse
|
15
|
Fogelgren B, Zuo X, Buonato JM, Vasilyev A, Baek JI, Choi SY, Chacon-Heszele MF, Palmyre A, Polgar N, Drummond I, Park KM, Lazzara MJ, Lipschutz JH. Exocyst Sec10 protects renal tubule cells from injury by EGFR/MAPK activation and effects on endocytosis. Am J Physiol Renal Physiol 2014; 307:F1334-41. [PMID: 25298525 DOI: 10.1152/ajprenal.00032.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury is common and has a high mortality rate, and no effective treatment exists other than supportive care. Using cell culture models, we previously demonstrated that exocyst Sec10 overexpression reduced damage to renal tubule cells and speeded recovery and that the protective effect was mediated by higher basal levels of mitogen-activated protein kinase (MAPK) signaling. The exocyst, a highly-conserved eight-protein complex, is known for regulating protein trafficking. Here we show that the exocyst biochemically interacts with the epidermal growth factor receptor (EGFR), which is upstream of MAPK, and Sec10-overexpressing cells express greater levels of phosphorylated (active) ERK, the final step in the MAPK pathway, in response to EGF stimulation. EGFR endocytosis, which has been linked to activation of the MAPK pathway, increases in Sec10-overexpressing cells, and gefitinib, a specific EGFR inhibitor, and Dynasore, a dynamin inhibitor, both reduce EGFR endocytosis. In turn, inhibition of the MAPK pathway reduces ligand-mediated EGFR endocytosis, suggesting a potential feedback of elevated ERK activity on EGFR endocytosis. Gefitinib also decreases MAPK signaling in Sec10-overexpressing cells to levels seen in control cells and, demonstrating a causal role for EGFR, reverses the protective effect of Sec10 overexpression following cell injury in vitro. Finally, using an in vivo zebrafish model of acute kidney injury, morpholino-induced knockdown of sec10 increases renal tubule cell susceptibility to injury. Taken together, these results suggest that the exocyst, acting through EGFR, endocytosis, and the MAPK pathway is a candidate therapeutic target for acute kidney injury.
Collapse
Affiliation(s)
- Ben Fogelgren
- Departments of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Xiaofeng Zuo
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Janine M Buonato
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Jeong-In Baek
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Soo Young Choi
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | | | - Aurélien Palmyre
- Department of Pathology, Harvard Medical School, Boston, Massachusetts
| | - Noemi Polgar
- Departments of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Iain Drummond
- Departments of Medicine and Genetics, Harvard Medical School, Boston, Massachusetts
| | - Kwon Moo Park
- Department of Anatomy and BK21 Plus, Kyungpook National University School of Medicine, Junggu, Daegu, Republic of Korea; and
| | - Matthew J Lazzara
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joshua H Lipschutz
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina; Department of Medicine, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|
16
|
Activation of ERK accelerates repair of renal tubular epithelial cells, whereas it inhibits progression of fibrosis following ischemia/reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1998-2008. [DOI: 10.1016/j.bbadis.2013.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/12/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022]
|
17
|
Kim JI, Kim J, Jang HS, Noh MR, Lipschutz JH, Park KM. Reduction of oxidative stress during recovery accelerates normalization of primary cilia length that is altered after ischemic injury in murine kidneys. Am J Physiol Renal Physiol 2013; 304:F1283-94. [DOI: 10.1152/ajprenal.00427.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary cilium is a microtubule-based nonmotile organelle that extends from the surface of cells, including renal tubular cells. Here, we investigated the alteration of primary cilium length during epithelial cell injury and repair, following ischemia/reperfusion (I/R) insult, and the role of reactive oxygen species in this alteration. Thirty minutes of bilateral renal ischemia induced severe renal tubular cell damage and an increase of plasma creatinine (PCr) concentration. Between 8 and 16 days following the ischemia, the increased PCr returned to normal range, although without complete histological restoration. Compared with the primary cilium length in normal kidney tubule cells, the length was shortened 4 h and 1 day following ischemia, increased over normal 8 days after ischemia, and then returned to near normal 16 days following ischemia. In the urine of I/R-subjected mice, acetylated tubulin was detected. The cilium length of proliferating cells was shorter than that in nonproliferating cells. Mature cells had shorter cilia than differentiating cells. Treatment with Mn(III) tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP), an antioxidant, during the recovery of damaged kidneys accelerated normalization of cilia length concomitant with a decrease of oxidative stress and morphological recovery in the kidney. In the Madin-Darby canine kidney (MDCK) cells, H2O2 treatment caused released ciliary fragment into medium, and MnTMPyP inhibited the deciliation. The ERK inhibitor U0126 inhibited elongation of cilia in normal and MDCK cells recovering from H2O2 stress. Taken together, our results suggest that primary cilia length reflects cell proliferation and the length of primary cilium is regulated, at least, in part, by reactive oxygen species through ERK.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea; and
| | - Jinu Kim
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hee-Seong Jang
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea; and
| | - Mi Ra Noh
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Joshua H. Lipschutz
- Department of Medicine, University of Pennsylvania and Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Kwon Moo Park
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea; and
| |
Collapse
|
18
|
Wei Q, Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol 2012; 303:F1487-94. [PMID: 22993069 DOI: 10.1152/ajprenal.00352.2012] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Renal ischemia-reperfusion leads to acute kidney injury (AKI), a major kidney disease associated with an increasing prevalence and high mortality rates. A variety of experimental models, both in vitro and in vivo, have been used to study the pathogenic mechanisms of ischemic AKI and to test renoprotective strategies. Among them, the mouse model of renal clamping is popular, mainly due to the availability of transgenic models and the relatively small animal size for drug testing. However, the mouse model is generally less stable, resulting in notable variations in results. Here, we describe a detailed protocol of the mouse model of bilateral renal ischemia-reperfusion. We share the lessons and experiences gained from our laboratory in the past decade. We further discuss the technical issues that account for the variability of this model and offer relevant solutions, which may help other investigators to establish a well-controlled, reliable animal model of ischemic AKI.
Collapse
Affiliation(s)
- Qingqing Wei
- Dept. of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Health Sciences Univ., Augusta, GA 30912, USA
| | | |
Collapse
|
19
|
Guichard A, Nizet V, Bier E. New insights into the biological effects of anthrax toxins: linking cellular to organismal responses. Microbes Infect 2011; 14:97-118. [PMID: 21930233 DOI: 10.1016/j.micinf.2011.08.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/30/2011] [Accepted: 08/30/2011] [Indexed: 12/15/2022]
Abstract
The anthrax toxins lethal toxin (LT) and edema toxin (ET) are essential virulence factors produced by Bacillus anthracis. These toxins act during two distinct phases of anthrax infection. During the first, prodromal phase, which is often asymptomatic, anthrax toxins act on cells of the immune system to help the pathogen establish infection. Then, during the rapidly progressing (or fulminant) stage of the disease bacteria disseminate via a hematological route to various target tissues and organs, which are typically highly vascularized. As bacteria proliferate in the bloodstream, LT and ET begin to accumulate rapidly reaching a critical threshold level that will cause death even when the bacterial proliferation is curtailed by antibiotics. During this final phase of infection the toxins cause an increase in vascular permeability and a decrease in function of target organs including the heart, spleen, kidney, adrenal gland, and brain. In this review, we examine the various biological effects of anthrax toxins, focusing on the fulminant stage of the disease and on mechanisms by which the two toxins may collaborate to cause cardiovascular collapse. We discuss normal mechanisms involved in maintaining vascular integrity and based on recent studies indicating that LT and ET cooperatively inhibit membrane trafficking to cell-cell junctions we explore several potential mechanisms by which the toxins may achieve their lethal effects. We also summarize the effects of other potential virulence factors secreted by B. anthracis and consider the role of toxic factors in the evolutionarily recent emergence of this devastating disease.
Collapse
Affiliation(s)
- Annabel Guichard
- Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA
| | | | | |
Collapse
|
20
|
Zuo X, Fogelgren B, Lipschutz JH. The small GTPase Cdc42 is necessary for primary ciliogenesis in renal tubular epithelial cells. J Biol Chem 2011; 286:22469-77. [PMID: 21543338 DOI: 10.1074/jbc.m111.238469] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Primary cilia are found on many epithelial cell types, including renal tubular epithelial cells, where they participate in flow sensing. Disruption of cilia function has been linked to the pathogenesis of polycystic kidney disease. We demonstrated previously that the exocyst, a highly conserved eight-protein membrane trafficking complex, localizes to primary cilia of renal tubular epithelial cells, is required for ciliogenesis, biochemically and genetically interacts with polycystin-2 (the protein product of the polycystic kidney disease 2 gene), and, when disrupted, results in MAPK pathway activation both in vitro and in vivo. The small GTPase Cdc42 is a candidate for regulation of the exocyst at the primary cilium. Here, we demonstrate that Cdc42 biochemically interacts with Sec10, a crucial component of the exocyst complex, and that Cdc42 colocalizes with Sec10 at the primary cilium. Expression of dominant negative Cdc42 and shRNA-mediated knockdown of both Cdc42 and Tuba, a Cdc42 guanine nucleotide exchange factor, inhibit ciliogenesis in Madin-Darby canine kidney cells. Furthermore, exocyst Sec8 and polycystin-2 no longer localize to primary cilia or the ciliary region following Cdc42 and Tuba knockdown. We also show that Sec10 directly interacts with Par6, a member of the Par complex that itself directly interacts with Cdc42. Finally, we show that Cdc42 knockdown results in activation of the MAPK pathway, something observed in cells with dysfunctional primary cilia. These data support a model in which Cdc42 localizes the exocyst to the primary cilium, whereupon the exocyst then targets and docks vesicles carrying proteins necessary for ciliogenesis.
Collapse
Affiliation(s)
- Xiaofeng Zuo
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|