1
|
Hashitani H, Mitsui R, Hirai Y, Tanaka H, Miwa-Nishimura K. Nitrergic inhibition of sympathetic arteriolar constrictions in the female rodent urethra. J Physiol 2024; 602:2199-2226. [PMID: 38656747 DOI: 10.1113/jp285583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
During the urine storage phase, tonically contracting urethral musculature would have a higher energy consumption than bladder muscle that develops phasic contractions. However, ischaemic dysfunction is less prevalent in the urethra than in the bladder, suggesting that urethral vasculature has intrinsic properties ensuring an adequate blood supply. Diameter changes in rat or mouse urethral arterioles were measured using a video-tracking system. Intercellular Ca2+ dynamics in arteriolar smooth muscle (SMCs) and endothelial cells were visualised using NG2- and parvalbumin-GCaMP6 mice, respectively. Fluorescence immunohistochemistry was used to visualise the perivascular innervation. In rat urethral arterioles, sympathetic vasoconstrictions were predominantly suppressed by α,β-methylene ATP (10 μM) but not prazosin (1 μM). Tadalafil (100 nM), a PDE5 inhibitor, diminished the vasoconstrictions in a manner reversed by N-ω-propyl-l-arginine hydrochloride (l-NPA, 1 μM), a neuronal NO synthesis (nNOS) inhibitor. Vesicular acetylcholine transporter immunoreactive perivascular nerve fibres co-expressing nNOS were intertwined with tyrosine hydroxylase immunoreactive sympathetic nerve fibres. In phenylephrine (1 μM) pre-constricted rat or mouse urethral arterioles, nerve-evoked vasodilatations or transient SMC Ca2+ reductions were largely diminished by l-nitroarginine (l-NA, 10 μM), a broad-spectrum NOS inhibitor, but not by l-NPA. The CGRP receptor antagonist BIBN-4096 (1 μM) shortened the vasodilatory responses, while atropine (1 μM) abolished the l-NA-resistant transient vasodilatory responses. Nerve-evoked endothelial Ca2+ transients were abolished by atropine plus guanethidine (10 μM), indicating its neurotransmitter origin and absence of non-adrenergic non-cholinergic endothelial NO release. In urethral arterioles, NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions pre- and post-synaptically to restrict arteriolar contractility. KEY POINTS: Despite a higher energy consumption of the urethral musculature than the bladder detrusor muscle, ischaemic dysfunction of the urethra is less prevalent than that of the bladder. In the urethral arterioles, sympathetic vasoconstrictions are predominately mediated by ATP, not noradrenaline. NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions by its pre-synaptic inhibition of sympathetic transmission as well as post-synaptic arteriolar smooth muscle relaxation. Acetylcholine released from parasympathetic nerves contributes to endothelium-dependent, transient vasodilatations, while CGRP released from sensory nerves prolongs NO-mediated vasodilatations. PDE5 inhibitors could be beneficial to maintain and/or improve urethral blood supply and in turn the volume and contractility of urethral musculature.
Collapse
Affiliation(s)
- Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Retsu Mitsui
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuuna Hirai
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Hidekazu Tanaka
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Kyoko Miwa-Nishimura
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
2
|
Nilsson D, Chess-Williams R, Sellers D. Phosphodiesterase-5 inhibitors tadalafil and sildenafil potentiate nitrergic-nerve mediated relaxations in the bladder vasculature. Eur J Pharmacol 2023; 960:176152. [PMID: 37925131 DOI: 10.1016/j.ejphar.2023.176152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Recent studies suggest that lower urinary tract dysfunction may arise due to changes in local perfusion. Phosphodiesterase-5 inhibitors can improve urinary bladder blood flow, although the local mechanisms have not been fully elucidated. The aim was to pharmacologically characterise the vascular supply to the bladder and determine the mechanisms underlying the effects of the phosphodiesterase-5 inhibitors tadalafil and sildenafil. Responses of isolated rings of porcine superior vesical arteries to electrical field stimulation (EFS) were measured in the absence and presence of inhibitors of key neurotransmitter systems. Vasodilation responses to nitric oxide (NO) donors were also recorded, and the effects of phosphodiesterase-5 inhibitors on all responses determined. EFS caused biphasic responses with an initial vasoconstriction and a slower developing vasodilation. Vasoconstriction was mediated by ATP (55%) and noradrenaline (45%) release, whilst vasodilation was reduced by L-NNA (100 μM) (80%) and propranolol (1 μM) (20%). The nitrergic component was inhibited (81%) by L-NPA, a selective inhibitor of neuronal nitric oxide synthase (nNOS). Endothelial removal did not affect vasodilation. Tadalafil and sildenafil depressed noradrenaline-evoked vasoconstriction (by 26.8% and 35.5% respectively, P < 0.01), enhanced vasodilation to EFS (by 27.8% and 51.8% respectively, p < 0.01) and enhanced responses to NO donors nitroprusside, SIN-1, and SNAP, increasing pIC50 values (P < 0.01), without affecting maximal responses. In conclusion, neuronal NOS has a predominant role in regulating vascular tone of the porcine superior vesical artery and potentiation of nNO-mediated vasodilation is the primary mechanism underlying effects of phosphodiesterase-5 inhibitors in the bladder vasculature.
Collapse
Affiliation(s)
- Damian Nilsson
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, 4226, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, 4226, Australia
| | - Donna Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, 4226, Australia.
| |
Collapse
|
3
|
Li C, Yang Y. Advancements in the study of inward rectifying potassium channels on vascular cells. Channels (Austin) 2023; 17:2237303. [PMID: 37463317 PMCID: PMC10355679 DOI: 10.1080/19336950.2023.2237303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/20/2023] Open
Abstract
Inward rectifier potassium channels (Kir channels) exist in a variety of cells and are involved in maintaining resting membrane potential and signal transduction in most cells, as well as connecting metabolism and membrane excitability of body cells. It is closely related to normal physiological functions of body and the occurrence and development of some diseases. Although the functional expression of Kir channels and their role in disease have been studied, they have not been fully elucidated. In this paper, the functional expression of Kir channels in vascular endothelial cells and smooth muscle cells and their changes in disease states were reviewed, especially the recent research progress of Kir channels in stem cells was introduced, in order to have a deeper understanding of Kir channels in vascular tissues and provide new ideas and directions for the treatment of related ion channel diseases.
Collapse
Affiliation(s)
- Chunshu Li
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yan Yang
- Key Lab of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Askari H, Sadeghinejad M, Fancher IS. Mechanotransduction and the endothelial glycocalyx: Interactions with membrane and cytoskeletal proteins to transduce force. CURRENT TOPICS IN MEMBRANES 2023; 91:43-60. [PMID: 37080680 DOI: 10.1016/bs.ctm.2023.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The endothelial glycocalyx is an extracellular matrix that coats the endothelium and extends into the lumen of blood vessels, acting as a barrier between the vascular wall and blood flowing through the vessel. This positioning of the glycocalyx permits a variety of its constituents, including the major endothelial proteoglycans glypican-1 and syndecan-1, as well as the major glycosaminoglycans heparan sulfate and hyaluronic acid, to contribute to the processes of mechanosensation and subsequent mechanotransduction following such stimuli as elevated shear stress. To coordinate the vast array of processes that occur in response to physical force, the glycocalyx interacts with a plethora of membrane and cytoskeletal proteins to carry out specific signaling pathways resulting in a variety of responses of endothelial cells and, ultimately, blood vessels to mechanical force. This review focuses on proposed glycocalyx-protein relationships whereby the endothelial glycocalyx interacts with a variety of membrane and cytoskeletal proteins to transduce force into a myriad of chemical signaling pathways. The established and proposed interactions at the molecular level are discussed in context of how the glycocalyx regulates membrane/cytoskeletal protein function in the many processes of endothelial mechanotransduction.
Collapse
|
5
|
Fancher IS. Cardiovascular mechanosensitive ion channels-Translating physical forces into physiological responses. CURRENT TOPICS IN MEMBRANES 2021; 87:47-95. [PMID: 34696889 DOI: 10.1016/bs.ctm.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells and tissues are constantly exposed to mechanical stress. In order to respond to alterations in mechanical stimuli, specific cellular machinery must be in place to rapidly convert physical force into chemical signaling to achieve the desired physiological responses. Mechanosensitive ion channels respond to such physical stimuli in the order of microseconds and are therefore essential components to mechanotransduction. Our understanding of how these ion channels contribute to cellular and physiological responses to mechanical force has vastly expanded in the last few decades due to engineering ingenuities accompanying patch clamp electrophysiology, as well as sophisticated molecular and genetic approaches. Such investigations have unveiled major implications for mechanosensitive ion channels in cardiovascular health and disease. Therefore, in this chapter I focus on our present understanding of how biophysical activation of various mechanosensitive ion channels promotes distinct cell signaling events with tissue-specific physiological responses in the cardiovascular system. Specifically, I discuss the roles of mechanosensitive ion channels in mediating (i) endothelial and smooth muscle cell control of vascular tone, (ii) mechano-electric feedback and cell signaling pathways in cardiomyocytes and cardiac fibroblasts, and (iii) the baroreflex.
Collapse
Affiliation(s)
- Ibra S Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
6
|
Tanaka H, Mitsui R, Oishi M, Passlick S, Jabs R, Steinhäuser C, Tanaka KF, Hashitani H. NO-mediated signal transmission in bladder vasculature as a therapeutic target of PDE5 inhibitors. Rodent model studies. Br J Pharmacol 2021; 178:1073-1094. [PMID: 33314051 DOI: 10.1111/bph.15342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND AND PURPOSE While the bladder vasculature is considered as a target of PDE5 inhibitors to improve bladder storage dysfunctions, its characteristics are largely unknown. Thus, the functional and morphological properties of arteries/arterioles of the bladder focusing on the NO-mediated signal transmission were explored. EXPERIMENTAL APPROACH Diameter changes in rat bladder arteries/arterioles were measured using a video-tracking system. Intercellular Ca2+ dynamics in pericytes or smooth muscle cells (SMCs) of suburothelial arterioles were visualised using transgenic mice expressing GCaMP6 under control of the NG2- or parvalbumin-promoter. The perivascular innervation was investigated using fluorescence immunohistochemistry. KEY RESULTS In rat suburothelial arterioles and vesical arteries, tadalafil (100 nM) attenuated nerve-evoked sympathetic vasoconstrictions. In both vascular segments, tadalafil-induced inhibition of sympathetic vasoconstriction was prevented by N ω-propyl-l-arginine hydrochloride (l-NPA, 1 μM), an nNOS inhibitor or N ω-nitro-l-arginine (l-NA, 100 μM). Both vascular segments were densely innervated with nNOS-positive nitrergic nerves in close apposition to tyrosine hydroxylase-immunoreactive sympathetic nerves. In pericyte-covered pre-capillary arterioles of the mouse bladder where sympathetic nerves were absent, nerve stimulation evoked transient reductions in pericyte Ca2+ levels that were shortened by l-NPA and abolished by l-NA. In SMC-containing arterioles, tadalafil (10 nM) caused a l-NPA-sensitive suppression of sympathetic Ca2+ transients. In mice, nitrergic perivascular nerves were distributed in the arterioles and the pre-capillary arterioles. CONCLUSION AND IMPLICATIONS Both nitrergic nerve and nerve-evoked endothelial NO release appear to be involved in vasodilatory signal transmission in bladder vasculature. The NO-mediated signal transmission is a potential target for PDE5 inhibitor therapy in bladder dysfunctions.
Collapse
Affiliation(s)
- Hidekazu Tanaka
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Retsu Mitsui
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Mitsuhiro Oishi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Passlick
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ronald Jabs
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
7
|
PIP 2: A critical regulator of vascular ion channels hiding in plain sight. Proc Natl Acad Sci U S A 2020; 117:20378-20389. [PMID: 32764146 PMCID: PMC7456132 DOI: 10.1073/pnas.2006737117] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2), has long been established as a major contributor to intracellular signaling, primarily by virtue of its role as a substrate for phospholipase C (PLC). Signaling by Gq-protein-coupled receptors triggers PLC-mediated hydrolysis of PIP2 into inositol 1,4,5-trisphosphate and diacylglycerol, which are well known to modulate vascular ion channel activity. Often overlooked, however, is the role PIP2 itself plays in this regulation. Although numerous reports have demonstrated that PIP2 is critical for ion channel regulation, how it impacts vascular function has received scant attention. In this review, we focus on PIP2 as a regulator of ion channels in smooth muscle cells and endothelial cells-the two major classes of vascular cells. We further address the concerted effects of such regulation on vascular function and blood flow control. We close with a consideration of current knowledge regarding disruption of PIP2 regulation of vascular ion channels in disease.
Collapse
|
8
|
Tykocki NR, Monson FC. Excitability and contractility in arterioles and venules from the urinary bladder. CURRENT TOPICS IN MEMBRANES 2020; 85:301-326. [DOI: 10.1016/bs.ctm.2020.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Role of Pericytes in the Initiation and Propagation of Spontaneous Activity in the Microvasculature. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:329-356. [PMID: 31183834 DOI: 10.1007/978-981-13-5895-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The microvasculature is composed of arterioles, capillaries and venules. Spontaneous arteriolar constrictions reduce effective vascular resistance to enhance tissue perfusion, while spontaneous venular constrictions facilitate the drainage of tissue metabolites by pumping blood. In the venules of visceral organs, mural cells, i.e. smooth muscle cells (SMCs) or pericytes, periodically generate spontaneous phasic constrictions, Ca2+ transients and transient depolarisations. These events arise from spontaneous Ca2+ release from the sarco-endoplasmic reticulum (SR/ER) and the subsequent opening of Ca2+-activated chloride channels (CaCCs). CaCC-dependent depolarisation further activates L-type voltage-dependent Ca2+ channels (LVDCCs) that play a critical role in maintaining the synchrony amongst mural cells. Mural cells in arterioles or capillaries are also capable of developing spontaneous activity. Non-contractile capillary pericytes generate spontaneous Ca2+ transients primarily relying on SR/ER Ca2+ release. Synchrony amongst capillary pericytes depends on gap junction-mediated spread of depolarisations resulting from the opening of either CaCCs or T-type VDCCs (TVDCCs) in a microvascular bed-dependent manner. The propagation of capillary Ca2+ transients into arterioles requires the opening of either L- or TVDCCs again depending on the microvascular bed. Since the blockade of gap junctions or CaCCs prevents spontaneous Ca2+ transients in arterioles and venules but not capillaries, capillary pericytes appear to play a primary role in generating spontaneous activity of the microvasculature unit. Pericytes in capillaries where the interchange of substances between tissues and the circulation takes place may provide the fundamental drive for upstream arterioles and downstream venules so that the microvasculature network functions as an integrated unit.
Collapse
|
10
|
Lionarons JM, Hoogland G, Hendriksen RGF, Faber CG, Hellebrekers DMJ, Van Koeveringe GA, Schipper S, Vles JSH. Dystrophin is expressed in smooth muscle and afferent nerve fibers in the rat urinary bladder. Muscle Nerve 2019; 60:202-210. [PMID: 31095755 PMCID: PMC6771971 DOI: 10.1002/mus.26518] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 11/10/2022]
Abstract
INTRODUCTION With increasing life expectancy, comorbidities become overt in Duchenne muscular dystrophy (DMD). Although micturition problems are common, bladder function is poorly understood in DMD. We studied dystrophin expression and multiple isoform involvement in the bladder during maturation to gain insights into their roles in micturition. METHODS Dystrophin distribution was evaluated in rat bladders by immunohistochemical colocalization with smooth muscle, interstitial, urothelial, and neuronal markers. Protein levels of Dp140, Dp71, and smooth muscle were quantitated by Western blotting of neonatal to adult rat bladders. RESULTS Dystrophin colocalized with smooth muscle cells and afferent nerve fibers. Dp71 was expressed two- to threefold higher compared with Dp140, independently of age. Age-related muscle mass changes did not influence isoform expression levels. DISCUSSION Dystrophin is expressed in smooth muscle cells and afferent nerve fibers in the urinary bladder, which underscores that micturition problems in DMD may have not solely a myogenic but also a neurogenic origin. Muscle Nerve 60: 202-210, 2019.
Collapse
Affiliation(s)
- Judith M Lionarons
- Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Govert Hoogland
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ruben G F Hendriksen
- Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Danique M J Hellebrekers
- Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Gommert A Van Koeveringe
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Urology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sandra Schipper
- School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Urology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Johan S H Vles
- Department of Neurology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastricht, The Netherlands.,School for Mental Health & Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
Gollasch M, Welsh DG, Schubert R. Perivascular adipose tissue and the dynamic regulation of K v 7 and K ir channels: Implications for resistant hypertension. Microcirculation 2018; 25. [PMID: 29211322 DOI: 10.1111/micc.12434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/30/2017] [Indexed: 12/20/2022]
Abstract
Resistant hypertension is defined as high blood pressure that remains uncontrolled despite treatment with at least three antihypertensive drugs at adequate doses. Resistant hypertension is an increasingly common clinical problem in older age, obesity, diabetes, sleep apnea, and chronic kidney disease. Although the direct vasodilator minoxidil was introduced in the early 1970s, only recently has this drug been shown to be particularly effective in a subgroup of patients with treatment-resistant or uncontrolled hypertension. This pharmacological approach is interesting from a mechanistic perspective as minoxidil is the only clinically used K+ channel opener today, which targets a subclass of K+ channels, namely KATP channels in VSMCs. Beside KATP channels, two other classes of VSMC K+ channels could represent novel effective targets for treatment of resistant hypertension, namely Kv 7 (KCNQ) and inward rectifier potassium (Kir 2.1) channels. Interestingly, these channels are unique among VSMC potassium channels. First, both have been implicated in the control of microvascular tone by perivascular adipose tissue. Second, they exhibit biophysical properties strongly controlled and regulated by membrane voltage, but not intracellular calcium. This review focuses on Kv 7 (Kv 7.1-5) and Kir (Kir 2.1) channels in VSMCs as potential novel drug targets for treatment of resistant hypertension, particularly in comorbid conditions such as obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Maik Gollasch
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, Experimental and Clinical Research Center (ECRC) - a joint cooperation between the Charité - University Medicine Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Donald G Welsh
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Rudolf Schubert
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Anele UA, Ratz PH, Colhoun AF, Roberts S, Musselman R, Vince RA, Speich JE, Klausner AP. Potential vascular mechanisms in an ex vivo functional pig bladder model. Neurourol Urodyn 2018; 37:2425-2433. [PMID: 29777585 DOI: 10.1002/nau.23710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/13/2018] [Indexed: 12/29/2022]
Abstract
AIMS Chronic ischemia is a recognized factor in the pathophysiology of underactive bladder (UAB). Although relative ischemia (ie, low blood flow) is known to occur during filling, little is known regarding the pathophysiology that leads to UAB. Therefore, we developed an ex vivo functional porcine model to investigate the role of transient ischemia and whether autoregulation, a mechanism that maintains tissue oxygenation in certain vital organs, also exists in the bladder. METHODS Using bladders from slaughtered pigs, we prepared an isolated perfused model where we studied the effects of bladder perfusion flow rate on perfusion pressure and tissue oxygenation during the filling phase. Bladders were perfused at an initial flow rate of 20 mL/min and then clamped in a sequentially decreasing stepwise manner down to no flow and back to the initial flow rate. RESULTS We found a linear relationship between flow rate and perfusion pressure until the flow rate decreased below 5 mL/min at which point the vascular resistance decreased; however, tissue pO2 remained stable after an initial decline. CONCLUSIONS These findings suggest that there may be an intrinsic autoregulatory mechanism in the bladder that allows it to undergo cyclic episodes of relative ischemia during its normal function. Factors that overcome this mechanism such as complete or chronic ischemia may be critical in the progression to detrusor underactivity and thereby highlight the importance of intervention during the early phases of this disease process.
Collapse
Affiliation(s)
- Uzoma A Anele
- Division of Urology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Paul H Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Andrew F Colhoun
- Division of Urology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Sydney Roberts
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Ryan Musselman
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Randy A Vince
- Division of Urology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - John E Speich
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Adam P Klausner
- Division of Urology, Department of Surgery, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
13
|
Chai TC, Kudze T. New therapeutic directions to treat underactive bladder. Investig Clin Urol 2017; 58:S99-S106. [PMID: 29279882 PMCID: PMC5740036 DOI: 10.4111/icu.2017.58.s2.s99] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/18/2017] [Indexed: 11/18/2022] Open
Abstract
Underactive bladder (UAB) is a term used to describe a constellation of symptoms that is perceived by patients suggesting bladder hypocontractility. Urodynamic measurement that suggest decreased contractility of the bladder is termed detrusor underactivity (DUA). Regulatory approved specific management options with clinically proven ability to increase bladder contractility do not currently exist. While DUA specific treatments presumably will focus on methods to increase efficiency of bladder emptying capability relying on augmenting the motor pathway in the micturition reflex, other approaches include methods to augment the sensory (afferent) contribution to the micturition reflex which could result in increased detrusor contractility. Another method to induce more efficient bladder emptying could be to induce relaxation of the bladder outlet. Using cellular regenerative techniques, the detrusor smooth muscle can be targeted so the result is to increase detrusor smooth muscle function. In this review, we will cover areas of potential new therapies for DUA including: drug therapy, stem cells and regenerative therapies, neuromodulation, and urethral flow assist device. Paralleling development of new therapies, there also needs to be clinical studies performed that address how DUA relates to UAB.
Collapse
Affiliation(s)
- Toby C Chai
- Department of Urology, Yale University School of Medicine, New Haven, CT, USA
| | - Tambudzai Kudze
- Department of Urology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|