1
|
Canei J, Nonclercq D. Morphological study of the integument and corporal skeletal muscles of two psammophilous members of Scincidae (Scincus scincus and Eumeces schneideri). J Morphol 2020; 282:230-246. [PMID: 33165963 PMCID: PMC7839682 DOI: 10.1002/jmor.21298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Sand deserts are common biotopes on the earth's surface. Numerous morphological and physiological adaptations have appeared to cope with the peculiar conditions imposed by sandy substrates, such as abrasion, mechanical resistance and the potential low oxygen levels. The psammophilous scincids (Lepidosauria) Scincus scincus and Eumeces schneideri are among those. S. scincus is a species frequently used to study displacement inside a sandy substrate. E. schneideri is a species phylogenetically closely related to S. scincus with a similar lifestyle. The aims of this study focus on the morphology of the integument and the muscular system. Briefly, we describe interspecific differences at the superficial architecture of the scales pattern and the thickness of the integument. We highlight a high cellular turnover rate at the level of the basal germinal layer of the epidermis, which, we suggest, corresponds to an adaptation to cutaneous wear caused by abrasion. We demonstrate the presence of numerous cutaneous holocrine glands whose secretion probably plays a role in the flow of sand along the integument. Several strata of osteoderms strengthen the skin. We characterize the corporal (M. longissimus dorsi and M. rectus abdominus) and caudal muscular fibers using immunohistochemistry, and quantify them using morphometry. The musculature exhibits a high proportion of glycolytic fast fibers that allow rapid burying and are well adapted to this mechanically resistant and oxygen‐poor substrate. Oxidative slow fibers are low in abundance, less than 10% in S. scincus, but a little higher in E. schneideri.
Collapse
Affiliation(s)
- Jérôme Canei
- Laboratory of Histology, Biosciences Institute, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| | - Denis Nonclercq
- Laboratory of Histology, Biosciences Institute, Faculty of Medicine and Pharmacy, University of Mons, Mons, Belgium
| |
Collapse
|
2
|
Canei J, Trupia A, Nonclercq D. Cytological analysis of integumentary and muscular adaptations in three sand-dwelling marine teleosts, Ammodytes tobianus (Ammodytidae), Gorgasia preclara (Congridae) and Heteroconger hassi (Congridae) (Teleostei; Actinopterygii). JOURNAL OF FISH BIOLOGY 2020; 97:1097-1112. [PMID: 32705684 PMCID: PMC7590194 DOI: 10.1111/jfb.14472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Sandy bottoms are a ubiquitous environment found from sea bottoms to intertidal and freshwater zones. They are inhabited by many invertebrates and vertebrates which have developed morphological and physiological adaptations to sustain life under these particular conditions. Sandy habitats exhibit three potential constraints: abrasion, hypoxia and mechanical resistance. Here, three teleost species living in sandy environments were investigated: Ammodytes tobianus (Ammodytidae), Gorgasia preclara and Heteroconger hassi (Congridae). These teleost fishes were studied for their integument and muscular systems, which are potentially subject to sand abrasion and hypoxia, respectively. Based on histochemistry and transmission electron microscopy, we found the complex mucus system of G. preclara and H. hassi consists of two types of goblet cells and one type of sacciform cell. The secretions of both species are made of complex polysaccharides. In contrast, the scaly integument of A. tobianus has only a few goblet cells and no sacciform cells. We also highlighted, by immunohistochemistry, that the epidermal cell proliferation was much higher for this latter species, potentially resulting from the high rate of sand abrasion when A. tobianus buries itself quickly in the substrate. For all species, the major muscle fibre type was revealed by histoenzymology and corresponds to fast glycolytic fibres followed by intermediate fibres with slow fibres in the lowest proportion. Ammodytes tobianus possesses the highest fast fibre proportion (about 87% for A. tobianus and 75-78% for both garden eels). Our results provide new insights into the previously poorly studied teleost species, such as G. preclara, and allow us to highlight the complex skin histology of both garden eel species. Furthermore, the previously unknown muscle typing of these three species was determined.
Collapse
Affiliation(s)
- Jérôme Canei
- Laboratory of HistologyBiosciences Institute, Faculty of Medicine and Pharmacy, University of MonsMonsBelgium
| | - Arnaud Trupia
- Laboratory of HistologyBiosciences Institute, Faculty of Medicine and Pharmacy, University of MonsMonsBelgium
| | - Denis Nonclercq
- Laboratory of HistologyBiosciences Institute, Faculty of Medicine and Pharmacy, University of MonsMonsBelgium
| |
Collapse
|
3
|
Pannala VR, Vinnakota KC, Estes SK, Trenary I, OˈBrien TP, Printz RL, Papin JA, Reifman J, Oyama T, Shiota M, Young JD, Wallqvist A. Genome-Scale Model-Based Identification of Metabolite Indicators for Early Detection of Kidney Toxicity. Toxicol Sci 2020; 173:293-312. [PMID: 31722432 PMCID: PMC8000070 DOI: 10.1093/toxsci/kfz228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Identifying early indicators of toxicant-induced organ damage is critical to provide effective treatment. To discover such indicators and the underlying mechanisms of toxicity, we used gentamicin as an exemplar kidney toxicant and performed systematic perturbation studies in Sprague Dawley rats. We obtained high-throughput data 7 and 13 h after administration of a single dose of gentamicin (0.5 g/kg) and identified global changes in genes in the liver and kidneys, metabolites in the plasma and urine, and absolute fluxes in central carbon metabolism. We used these measured changes in genes in the liver and kidney as constraints to a rat multitissue genome-scale metabolic network model to investigate the mechanism of gentamicin-induced kidney toxicity and identify metabolites associated with changes in tissue gene expression. Our experimental analysis revealed that gentamicin-induced metabolic perturbations could be detected as early as 7 h postexposure. Our integrated systems-level analyses suggest that changes in kidney gene expression drive most of the significant metabolite alterations in the urine. The analyses thus allowed us to identify several significantly enriched injury-specific pathways in the kidney underlying gentamicin-induced toxicity, as well as metabolites in these pathways that could serve as potential early indicators of kidney damage.
Collapse
Affiliation(s)
- Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817
| | - Kalyan C Vinnakota
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Irina Trenary
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Tracy P OˈBrien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
| | - Tatsuya Oyama
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland 20817
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, Tennessee
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Maryland 21702
| |
Collapse
|