1
|
Zhao HH, Du H, Cai Y, Liu C, Xie Z, Chen KC. Time-resolved quantification of the dynamic extracellular space in the brain: study of cortical spreading depression. J Neurophysiol 2019; 121:1735-1747. [PMID: 30786223 DOI: 10.1152/jn.00348.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular diffusion in the brain is customarily characterized by two parameters, the extracellular space (ECS) volume fraction α and the diffusion tortuosity λ. How these two parameters are temporarily modified and correlated in a physiological/pathological event remains unclear to date. Using tetramethylammonium (TMA+) as an ECS ion tracer in a newly updated iontophoretic sinusoidal method, we studied in this work the dynamic α(t) and λ(t) in rat somatosensory cortex during spreading depression (SD). Temporal variations of α(t) and λ(t), as evoked by SD, were obtained through analyses of the extracellular TMA+ diffusion waveform resulting from a sinusoidally modulated point source. Most of the time, cortical SD induced coordinated α(t) decreases and λ(t) increases. In rare occasions, SD induced sole decreases of α(t) with no changes in λ(t). The independent modulation of α(t) and λ(t) was neither associated with cortical anatomy nor with the specific shape of the SD field potential wave. Changes of α(t) and λ(t) often took place acutely at the onset of SD, followed by a more transient modulation. Compared with the prior iontophoretic methods of TMA+, the sinusoidal method provides time-resolved quantification of α(t) and λ(t) in relative terms but also raises a higher property requirement on the TMA+-selective microelectrode. The sinusoidal method could become a valuable tool in the studies of the dynamic ECS response in various brain events. NEW & NOTEWORTHY An iontophoretic sinusoidal method was applied to study the dynamic changes of two extracellular space parameters, the extracellular volume fraction α(t) and tortuosity λ(t), in the brain during cortical spreading depression. Both parameters showed coordinated (most often) and independent (rarely) modulations in spreading depression. The sinusoidal method is equally applicable to other acute pathological events and a valuable tool to study the functional role of extracellular space in brain events.
Collapse
Affiliation(s)
- Hui-Hui Zhao
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Hong Du
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Yujie Cai
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Chao Liu
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China
| | - Zeyu Xie
- Neurosurgery Division, Second Affiliated Hospital of the School of Medicine, Shantou University , Shantou, Guangdong , China
| | - Kevin C Chen
- Multidisciplinary Research Center, Shantou University , Shantou, Guangdong , China.,Department of Biomedical Engineering, Shantou University , Shantou, Guangdong , China
| |
Collapse
|
2
|
Hinzman JM, Andaluz N, Shutter LA, Okonkwo DO, Pahl C, Strong AJ, Dreier JP, Hartings JA. Inverse neurovascular coupling to cortical spreading depolarizations in severe brain trauma. ACTA ACUST UNITED AC 2014; 137:2960-72. [PMID: 25154387 DOI: 10.1093/brain/awu241] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cortical spreading depolarization causes a breakdown of electrochemical gradients following acute brain injury, and also elicits dynamic changes in regional cerebral blood flow that range from physiological neurovascular coupling (hyperaemia) to pathological inverse coupling (hypoperfusion). In this study, we determined whether pathological inverse neurovascular coupling occurred as a mechanism of secondary brain injury in 24 patients who underwent craniotomy for severe traumatic brain injury. After surgery, spreading depolarizations were monitored with subdural electrode strips and regional cerebral blood flow was measured with a parenchymal thermal diffusion probe. The status of cerebrovascular autoregulation was monitored as a correlation between blood pressure and regional cerebral blood flow. A total of 876 spreading depolarizations were recorded in 17 of 24 patients, but blood flow measurements were obtained for only 196 events because of technical limitations. Transient haemodynamic responses were observed in time-locked association with 82 of 196 (42%) spreading depolarizations in five patients. Spreading depolarizations induced only hyperaemic responses (794% increase) in one patient with intact cerebrovascular autoregulation; and only inverse responses (-24% decrease) in another patient with impaired autoregulation. In contrast, three patients exhibited dynamic changes in neurovascular coupling to depolarizations throughout the course of recordings. Severity of the pathological inverse response progressively increased (-14%, -29%, -79% decrease, P < 0.05) during progressive worsening of cerebrovascular autoregulation in one patient (Pearson coefficient 0.04, 0.14, 0.28, P < 0.05). A second patient showed transformation from physiological hyperaemic coupling (44% increase) to pathological inverse coupling (-30% decrease) (P < 0.05) coinciding with loss of autoregulation (Pearson coefficient 0.19 → 0.32, P < 0.05). The third patient exhibited a similar transformation in brain tissue oxygenation, a surrogate of blood flow, from physiologic hyperoxic responses (20% increase) to pathological hypoxic responses (-14% decrease, P < 0.05). Pathological inverse coupling was only observed with electrodes placed in or adjacent to evolving lesions. Overall, 31% of the pathological inverse responses occurred during ischaemia (<18 ml/100 g/min) thus exacerbating perfusion deficits. Average perfusion was significantly higher in patients with good 6-month outcomes (46.8 ± 6.5 ml/100 g/min) than those with poor outcomes (32.2 ± 3.7 ml/100 g/min, P < 0.05). These results establish inverse neurovascular coupling to spreading depolarization as a novel mechanism of secondary brain injury and suggest that cortical spreading depolarization, the neurovascular response, cerebrovascular autoregulation, and ischaemia are critical processes to monitor and target therapeutically in the management of acute brain injury.
Collapse
Affiliation(s)
- Jason M Hinzman
- 1 Department of Neurosurgery, University of Cincinnati (UC), Neurotrauma Centre at UC Neuroscience Institute, UC College of Medicine, and Mayfield Clinic, Cincinnati, OH, USA
| | - Norberto Andaluz
- 1 Department of Neurosurgery, University of Cincinnati (UC), Neurotrauma Centre at UC Neuroscience Institute, UC College of Medicine, and Mayfield Clinic, Cincinnati, OH, USA
| | - Lori A Shutter
- 2 Department of Neurosurgery, University of Pittsburgh, PA, USA
| | - David O Okonkwo
- 2 Department of Neurosurgery, University of Pittsburgh, PA, USA
| | - Clemens Pahl
- 3 Department of Clinical Neuroscience, King's College, London, UK
| | - Anthony J Strong
- 3 Department of Clinical Neuroscience, King's College, London, UK
| | - Jens P Dreier
- 4 Department of Neurology, Charité University Medicine, Berlin, Germany
| | - Jed A Hartings
- 1 Department of Neurosurgery, University of Cincinnati (UC), Neurotrauma Centre at UC Neuroscience Institute, UC College of Medicine, and Mayfield Clinic, Cincinnati, OH, USA
| |
Collapse
|
3
|
Costa C, Tozzi A, Rainero I, Cupini LM, Calabresi P, Ayata C, Sarchielli P. Cortical spreading depression as a target for anti-migraine agents. J Headache Pain 2013; 14:62. [PMID: 23879550 PMCID: PMC3728002 DOI: 10.1186/1129-2377-14-62] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/08/2013] [Indexed: 12/18/2022] Open
Abstract
Spreading depression (SD) is a slowly propagating wave of neuronal and glial depolarization lasting a few minutes, that can develop within the cerebral cortex or other brain areas after electrical, mechanical or chemical depolarizing stimulations. Cortical SD (CSD) is considered the neurophysiological correlate of migraine aura. It is characterized by massive increases in both extracellular K⁺ and glutamate, as well as rises in intracellular Na⁺ and Ca²⁺. These ionic shifts produce slow direct current (DC) potential shifts that can be recorded extracellularly. Moreover, CSD is associated with changes in cortical parenchymal blood flow. CSD has been shown to be a common therapeutic target for currently prescribed migraine prophylactic drugs. Yet, no effects have been observed for the antiepileptic drugs carbamazepine and oxcarbazepine, consistent with their lack of efficacy on migraine. Some molecules of interest for migraine have been tested for their effect on CSD. Specifically, blocking CSD may play an enabling role for novel benzopyran derivative tonabersat in preventing migraine with aura. Additionally, calcitonin gene-related peptide (CGRP) antagonists have been recently reported to inhibit CSD, suggesting the contribution of CGRP receptor activation to the initiation and maintenance of CSD not only at the classic vascular sites, but also at a central neuronal level. Understanding what may be lying behind this contribution, would add further insights into the mechanisms of actions for "gepants", which may be pivotal for the effectiveness of these drugs as anti-migraine agents. CSD models are useful tools for testing current and novel prophylactic drugs, providing knowledge on mechanisms of action relevant for migraine.
Collapse
Affiliation(s)
- Cinzia Costa
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Alessandro Tozzi
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Innocenzo Rainero
- Neurology II, Department of Neuroscience, University of Torino, Ospedale Molinette, Via Cherasco 15, 10126, Turin, Italy
| | | | - Paolo Calabresi
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via del Fosso di Fiorano, 00143, Rome, Italy
| | - Cenk Ayata
- Neurovascular Research Lab., Department of Radiology, Stroke Service and Neuroscience Intensive Unit Department of Neurology Massachusetts Hospital, Harvard Medical School, 02115, Boston, MA, USA
| | - Paola Sarchielli
- Neurologic Clinic, Department of Public Health and Medical and Surgical Specialties, University of Perugia, Ospedale Santa Maria della Misericordia, Sant'Andrea delle Fratte, 06132, Perugia, Italy
| |
Collapse
|
4
|
Schneider FM, Schöll E, Dahlem MA. Controlling the onset of traveling pulses in excitable media by nonlocal spatial coupling and time-delayed feedback. CHAOS (WOODBURY, N.Y.) 2009; 19:015110. [PMID: 19335014 DOI: 10.1063/1.3096411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The onset of pulse propagation is studied in a reaction-diffusion (RD) model with control by augmented transmission capability that is provided either along nonlocal spatial coupling or by time-delayed feedback. We show that traveling pulses occur primarily as solutions to the RD equations, while augmented transmission changes excitability. For certain ranges of the parameter settings, defined as weak susceptibility and moderate control, respectively, the hybrid model can be mapped to the original RD model. This results in an effective change in RD parameters controlled by augmented transmission. Outside moderate control parameter settings new patterns are obtained, for example, stepwise propagation due to delay-induced oscillations. Augmented transmission constitutes a signaling system complementary to the classical RD mechanism of pattern formation. Our hybrid model combines the two major signaling systems in the brain, namely, volume transmission and synaptic transmission. Our results provide insights into the spread and control of pathological pulses in the brain.
Collapse
Affiliation(s)
- Felix M Schneider
- Institut fur Theoretische Physik, Technische Universitat Berlin, Berlin, Germany
| | | | | |
Collapse
|
5
|
Smith JM, James MF, Fraser JA, Huang CLH. Translational imaging studies of cortical spreading depression in experimental models for migraine aura. Expert Rev Neurother 2008; 8:759-68. [PMID: 18457533 DOI: 10.1586/14737175.8.5.759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This perspective discusses cortical spreading depression (CSD) phenomena and their translational significance for human migraine aura and the peri-infarct events following cerebral ischemia and injury. They begin with interstitial K(+) release and accumulation following neuronal stimulation, and a buffering astrocytic K(+) influx and remote liberation propagating waves of neuronal hyperexcitability and depression. Diffusion-weighted echoplanar MRI demonstrates CSD features in gyrencephalic brains recapitulating human migraine aura, spatial and temporal features of single primary events and multiple secondary events, their stimulus dependence, pharmacological properties, and their relationship to blood oxygenation level-dependent signals and late cerebrovascular changes. The article finally explores prospects for physiological studies of CSD gaining fuller insights both into mechanisms underlying the pathology of the corresponding human condition and possible approaches to management.
Collapse
Affiliation(s)
- Justin M Smith
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK.
| | | | | | | |
Collapse
|
6
|
Smith JM, Bradley DP, James MF, Huang CLH. Physiological studies of cortical spreading depression. Biol Rev Camb Philos Soc 2007. [DOI: 10.1111/j.1469-185x.2006.tb00214.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Herreras O. Electrical prodromals of spreading depression void Grafstein’s potassium hypothesis. J Neurophysiol 2005; 94:3656; author reply 3656-7. [PMID: 16222078 DOI: 10.1152/jn.00709.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|