1
|
Buchheim JI, Hoskyns S, Moser D, Han B, Deindl E, Hörl M, Biere K, Feuerecker M, Schelling G, Choukèr A. Oxidative burst and Dectin-1-triggered phagocytosis affected by norepinephrine and endocannabinoids: implications for fungal clearance under stress. Int Immunol 2019; 30:79-89. [PMID: 29329391 DOI: 10.1093/intimm/dxy001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/06/2018] [Indexed: 12/12/2022] Open
Abstract
A prolonged stress burden is known to hamper the efficiency of both the innate and the adaptive immune systems and to attenuate the stress responses by the catecholaminergic and endocannabinoid (EC) systems. Key mechanisms of innate immunity are the eradication of pathogens through phagocytosis and the respiratory burst. We tested the concentration-dependent, spontaneous and stimulated (via TNFα and N-formylmethionine-leucyl-phenylalanine) release of reactive oxygen species (ROS) by human polymorphonuclear leukocytes (PMNs) in vitro in response to norepinephrine (NE) and AM1241, a pharmacological ligand for the EC receptor CB2. We evaluated phagocytosis of Dectin-1 ligating zymosan particles and tested the cytokine response against Candida antigen in an in vitro cytokine release assay. Increasing concentrations of NE did not affect phagocytosis, yet stimulated ROS release was attenuated gradually reaching maximum suppression at 500 nM. Adrenergic receptor (AR) mechanisms using non-AR-selective (labetalol) as well as specific α-(prazosin) and β-(propranolol) receptor antagonists were tested. Results show that only labetalol and propranolol were able to recuperate cytotoxicity in the presence of NE, evidencing a β-receptor-mediated effect. The CB2 agonist, AM1241, inhibited phagocytosis at 10 µM and spontaneous peroxide release by PMNs. Use of the inverse CB2 receptor agonist SR144528 led to partial recuperation of ROS production, confirming the functional role of CB2. Additionally, AM1241 delayed early activation of monocytes and induced suppression of IL-2 and IL-6 levels in response to Candida via lower activity of mammalian target of rapamycin (mTOR). These findings provide new insights into key mechanisms of innate immunity under stressful conditions where ligands to the sympatho-adrenergic and EC system are released.
Collapse
Affiliation(s)
- Judith-Irina Buchheim
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Spencer Hoskyns
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany.,Centre of Human and Aerospace Physiological Sciences, Kings College London, UK
| | - Dominique Moser
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Bing Han
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | | | - Marion Hörl
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Katharina Biere
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Matthias Feuerecker
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Gustav Schelling
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Alexander Choukèr
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany.,Centre of Human and Aerospace Physiological Sciences, Kings College London, UK
| |
Collapse
|
2
|
Passmore MR, Byrne L, Obonyo NG, See Hoe LE, Boon AC, Diab SD, Dunster KR, Bisht K, Tung JP, Fauzi MH, Narula M, Pedersen SE, Esguerra-Lallen A, Simonova G, Sultana A, Anstey CM, Shekar K, Maitland K, Suen JY, Fraser JF. Inflammation and lung injury in an ovine model of fluid resuscitated endotoxemic shock. Respir Res 2018; 19:231. [PMID: 30466423 PMCID: PMC6249903 DOI: 10.1186/s12931-018-0935-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022] Open
Abstract
Background Sepsis is a multi-system syndrome that remains the leading cause of mortality and critical illness worldwide, with hemodynamic support being one of the cornerstones of the acute management of sepsis. We used an ovine model of endotoxemic shock to determine if 0.9% saline resuscitation contributes to lung inflammation and injury in acute respiratory distress syndrome, which is a common complication of sepsis, and investigated the potential role of matrix metalloproteinases in this process. Methods Endotoxemic shock was induced in sheep by administration of an escalating dose of lipopolysaccharide, after which they subsequently received either no fluid bolus resuscitation or a 0.9% saline bolus. Lung tissue, bronchoalveolar fluid (BAL) and plasma were analysed by real-time PCR, ELISA, flow cytometry and immunohistochemical staining to assess inflammatory cells, cytokines, hyaluronan and matrix metalloproteinases. Results Endotoxemia was associated with decreased serum albumin and total protein levels, with activated neutrophils, while the glycocalyx glycosaminoglycan hyaluronan was significantly increased in BAL. Quantitative real-time PCR studies showed higher expression of IL-6 and IL-8 with saline resuscitation but no difference in matrix metalloproteinase expression. BAL and tissue homogenate levels of IL-6, IL-8 and IL-1β were elevated. Conclusions This data shows that the inflammatory response is enhanced when a host with endotoxemia is resuscitated with saline, with a comparatively higher release of inflammatory cytokines and endothelial/glycocalyx damage, but no change in matrix metalloproteinase levels.
Collapse
Affiliation(s)
- Margaret R Passmore
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia. .,University of Queensland, Brisbane, Australia.
| | - Liam Byrne
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,Australian National University, Canberra, Australia
| | - Nchafatso G Obonyo
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Louise E See Hoe
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Ai-Ching Boon
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Sara D Diab
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia
| | - Kimble R Dunster
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,Queensland University of Technology, Brisbane, Australia
| | - Kavita Bisht
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia
| | - John-Paul Tung
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,Research and Development, Australian Red Cross Blood Service, Brisbane, Australia
| | - Mohd H Fauzi
- Department of Emergency Medicine, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Monica Narula
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Sanne E Pedersen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia
| | - Arlanna Esguerra-Lallen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia
| | - Gabriela Simonova
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,University of Queensland, Brisbane, Australia.,Research and Development, Australian Red Cross Blood Service, Brisbane, Australia
| | - Annette Sultana
- Research and Development, Australian Red Cross Blood Service, Brisbane, Australia
| | - Chris M Anstey
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,Sunshine Coast University Hospital Intensive Care, Birtinya, Australia
| | - Kiran Shekar
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Wellcome Trust Centre for Clinical Tropical Medicine and Department of Paediatrics, Faculty of Medicine, Imperial College, London, UK
| | - Jacky Y Suen
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - John F Fraser
- Critical Care Research Group, Level 3, Clinical Sciences Building, The Prince Charles Hospital, Rode Rd, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Strewe C, Muckenthaler F, Feuerecker M, Yi B, Rykova M, Kaufmann I, Nichiporuk I, Vassilieva G, Hörl M, Matzel S, Schelling G, Thiel M, Morukov B, Choukèr A. Functional changes in neutrophils and psychoneuroendocrine responses during 105 days of confinement. J Appl Physiol (1985) 2015; 118:1122-7. [DOI: 10.1152/japplphysiol.00755.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/08/2015] [Indexed: 12/24/2022] Open
Abstract
The innate immune system as one key element of immunity and a prerequisite for an adequate host defense is of emerging interest in space research to ensure crew health and thus mission success. In ground-based studies, spaceflight-associated specifics such as confinement caused altered immune functions paralleled by changes in stress hormone levels. In this study, six men were confined for 105 days to a space module of ∼500 m3mimicking conditions of a long-term space mission. Psychic stress was surveyed by different questionnaires. Blood, saliva, and urine samples were taken before, during, and after confinement to determine quantitative and qualitative immune responses by analyzing enumerative assays and quantifying microbicide and phagocytic functions. Additionally, expression and shedding of L-selectin (CD62L) on granulocytes and different plasma cytokine levels were measured. Cortisol and catecholamine levels were analyzed in saliva and urine. Psychic stress or an activation of the psychoneuroendocrine system could not be testified. White blood cell counts were not significantly altered, but innate immune functions showed increased cytotoxic and reduced microbicide capabilities. Furthermore, a significantly enhanced shedding of CD62L might be a hint at increased migratory capabilities. However, this was observed in the absence of any acute inflammatory state, and no rise in plasma cytokine levels was detected. In summary, confinement for 105 days caused changes in innate immune functions. Whether these changes result from an alert immune state in preparation for further immune challenges or from a normal adaptive process during confinement remains to be clarified in future research.
Collapse
Affiliation(s)
- C. Strewe
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - F. Muckenthaler
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - M. Feuerecker
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - B. Yi
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - M. Rykova
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - I. Kaufmann
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
- Department of Anesthesiology and Intensive Care Medicine, Neuperlach Hospital, Municipal Hospital Group, Munich, Germany; and
| | - I. Nichiporuk
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - G. Vassilieva
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - M. Hörl
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - S. Matzel
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - G. Schelling
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| | - M. Thiel
- Clinic of Anesthesiology and Intensive Care, Klinikum Mannheim, University of Mannheim, Mannheim, Germany
| | - B. Morukov
- Institute for Biomedical Problems, Moscow, Russian Federation
| | - A. Choukèr
- Department of Anesthesiology, Klinikum Groβhadern, University of Munich, Munich, Germany
| |
Collapse
|
4
|
Hurley JC. Towards clinical applications of anti-endotoxin antibodies; a re-appraisal of the disconnect. Toxins (Basel) 2013; 5:2589-620. [PMID: 24351718 PMCID: PMC3873702 DOI: 10.3390/toxins5122589] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/09/2013] [Accepted: 12/13/2013] [Indexed: 12/21/2022] Open
Abstract
Endotoxin is a potent mediator of a broad range of patho-physiological effects in humans. It is present in all Gram negative (GN) bacteria. It would be expected that anti-endotoxin therapies, whether antibody based or not, would have an important adjuvant therapeutic role along with antibiotics and other supportive therapies for GN infections. Indeed there is an extensive literature relating to both pre-clinical and clinical studies of anti-endotoxin antibodies. However, the extent of disconnect between the generally successful pre-clinical studies versus the failures of the numerous large clinical trials of antibody based and other anti-endotoxin therapies is under-appreciated and unexplained. Seeking a reconciliation of this disconnect is not an abstract academic question as clinical trials of interventions to reduce levels of endotoxemia levels are ongoing. The aim of this review is to examine new insights into the complex relationship between endotoxemia and sepsis in an attempt to bridge this disconnect. Several new factors to consider in this reappraisal include the frequency and types of GN bacteremia and the underlying mortality risk in the various study populations. For a range of reasons, endotoxemia can no longer be considered as a single entity. There are old clinical trials which warrant a re-appraisal in light of these recent advances in the understanding of the structure-function relationship of endotoxin. Fundamentally however, the disconnect not only remains, it has enlarged.
Collapse
Affiliation(s)
- James C Hurley
- Rural Health Academic Center, Melbourne Medical School, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
5
|
Kaufmann I, Hoelzl A, Schliephake F, Hummel T, Chouker A, Peter K, Thiel M. POLYMORPHONUCLEAR LEUKOCYTE DYSFUNCTION SYNDROME IN PATIENTS WITH INCREASING SEPSIS SEVERITY. Shock 2006; 26:254-61. [PMID: 16912650 DOI: 10.1097/01.shk.0000223131.64512.7a] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Production of oxygen radicals is required for both microbicidal and tissue-toxic effector functions of granulocytes. Inasmuch as an ambivalent role of polymorphonuclear leukocytes (PMNs) may become apparent during sepsis, we studied levels of hydrogen peroxide (H2O2) production by PMNs depending upon the nature of different particulate and soluble stimuli in patients with increasing sepsis severity. Patients with sepsis (n = 15), severe sepsis (n = 12), or septic shock (n = 33) were prospectively enrolled in the study. Healthy volunteers of comparable age and sex served as controls (n = 50). Unopsonized and opsonized zymosan particles were used to assess adhesion, phagocytosis, and the associated H2O2 production. Zymosan particles are rich in beta-glucans and lectin structures that are known to trigger H2O2 production via two major non-toll-like receptor pathogen recognition receptors, comprising the lectin-binding site in the alpha-chain (CD11b) of the complement receptor type 3 and the more recently identified nonclassical C-type lectin, dectin-1. To determine H2O2 production upon cell activation by soluble stimuli, PMNs were activated by the chemotactic tripeptide (N-formyl-methionyl-leucyl-phenylalanine [fMLP]) alone or after priming of cells by preincubation with tumor necrosis factor alpha. To get insight into the changes of fMLP receptor classical intracellular signaling pathways, PMNs were also incubated with the calcium ionophore A23187 and the phorbol ester phorbol myristate acetate, bypassing receptor-dependent signal transduction to directly activate calcium/calmodulin kinase- and protein kinase C-dependent pathways, respectively. As compared with healthy volunteers, levels of H2O2 production by PMNs from septic patients varied depending upon the nature of the activating signal: reduced (zymosan), unchanged (phorbol myristate acetate, opsonized zymosan), and enhanced (spontaneous, fMLP, fMLP + tumor necrosis factor alpha, A23187), with the changes most pronounced in patients with septic shock. Specifically, phagocytosis of zymosan and the associated H2O2 production were significantly decreased whereas spontaneous and stimulated H2O2 production elicited by soluble stimuli strongly increased. Thus, these findings suggest the development of a PMN dysfunction syndrome in patients with increasing sepsis severity. Moreover, as binding of zymosan particles to the PMNs' surface remained unchanged despite increasingly suppressed phagocytosis and associated H2O2 production, observed effects are likely to reflect defects in signaling by the lectin-binding site of CD11b and/or the beta-glucan receptor dectin-1, respectively.
Collapse
Affiliation(s)
- Ines Kaufmann
- Department of Anaesthesiology, Klinikum Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Suwa T, Hogg JC, Quinlan KB, Van Eeden SF. The effect of interleukin-6 on L-selectin levels on polymorphonuclear leukocytes. Am J Physiol Heart Circ Physiol 2002; 283:H879-84. [PMID: 12181114 DOI: 10.1152/ajpheart.00185.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-6 (IL-6) shortens the transit time of polymorphonuclear leukocytes (PMN) through the marrow and accelerates their release into the circulation. In contrast to other inflammatory stimuli, this response is associated with a decrease in L-selectin levels on circulating PMN. The present study was designed to determine the effect of IL-6 on L-selectin levels of PMN in rabbits. Recombinant human IL-6 (2 microg/kg) caused a decrease in L-selectin levels on circulating PMN 3 to 12 h after treatment (P < 0.05). L-selectin levels decreased on PMN already in the circulation for up to 4 h (P < 0.05), on PMN released from the marrow posttreatment for up to 12 h (P < 0.01) and on PMN in the marrow for up to 6 h (P < 0.05) after IL-6 treatment. We conclude that IL-6 decreases L-selectin levels on circulating PMN by demarginating PMN with low levels of L-selectin and by releasing PMN from the marrow with low levels of L-selectin. We postulate that this prolonged downregulation of L-selectin on circulating PMN could influence their recruitment into inflammatory sites.
Collapse
Affiliation(s)
- Tatsushi Suwa
- McDonald Research Laboratory and iCAPTURE Centre, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada V6Z 1Y6
| | | | | | | |
Collapse
|
7
|
Sabatier F, Bretelle F, D'ercole C, Boubli L, Sampol J, Dignat-George F. Neutrophil activation in preeclampsia and isolated intrauterine growth restriction. Am J Obstet Gynecol 2000; 183:1558-63. [PMID: 11120528 DOI: 10.1067/mob.2000.108082] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Neutrophils have been implicated in the pathogenesis of preeclampsia. Because preeclampsia and intrauterine growth restriction result from similar placental lesions, the aim of this study was to investigate neutrophil activation in isolated intrauterine growth restriction relative to preeclampsia and uncomplicated pregnancy. Polymorphonuclear neutrophil activation was analyzed by measuring cell surface and soluble cell adhesion molecule expressions. STUDY DESIGN L -Selectin (CD62L ) and CD11b surface expressions on polymorphonuclear neutrophils were analyzed in 13 women with preeclampsia, 11 women with isolated intrauterine growth restriction, and 17 age- and gestation-matched control women by means of a standardized quantitative flow cytometry assay. Serum levels of soluble L -selectin were measured by enzyme-linked immunosorbent assay. RESULTS Neutrophils from women with isolated intrauterine growth restriction and women with preeclampsia displayed higher levels of CD11b and lower levels of CD62L than did neutrophils from healthy pregnant women. Soluble L -selectin serum levels were significantly increased in the preeclampsia and intrauterine growth restriction groups relative to normal values. No significant difference in the levels of CD11b, CD62L, and soluble L -selectin were observed between women with isolated intrauterine growth restriction and those with preeclampsia. Leukocyte activation was not correlated with disease severity. CONCLUSION The observed alteration in polymorphonuclear neutrophil adhesion molecule expressions and increased serum soluble L -selectin levels are consistent with activation of peripheral blood neutrophils occurring in isolated intrauterine growth restriction in a manner similar to that seen in preeclampsia. This evidence of neutrophil activation may help to advance our understanding of the disease process in isolated intrauterine growth restriction.
Collapse
Affiliation(s)
- F Sabatier
- Laboratoire d'Hématologie and Service de Gynécologie-Obstétrique, Marseille, France
| | | | | | | | | | | |
Collapse
|
8
|
Rowin ME, Xue V, Irazuzta J. Integrin expression on neutrophils in a rabbit model of Group B Streptococcal meningitis. Inflammation 2000; 24:157-73. [PMID: 10718117 DOI: 10.1023/a:1007085627268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Products released by polymorphonuclear cells (PMNs) during an acute inflammatory response can result in diffuse tissue injury. Integrins are cell surface adhesion proteins that play a pivotal role in inflammation by allowing PMNs to adhere to the endothelium and migrate through the extracellular matrix. We examined the expression of beta1 and beta2 integrins on neutrophils from blood and cerebrospinal fluid (CSF) in an animal model of Group B Streptococcal meningitis. We further evaluated whether integrin expression correlates with pathophysiologic markers of central nervous system inflammation. Our data demonstrate that beta3 and beta2 integrin expression on circulating neutrophils does not significantly increase as a consequence of meningitis. In extravesated CSF neutrophils, a significant increase in expression of both beta1 and beta2 integrins is noted. Furthermore, a majority of the beta1 integrins on extravesated neutrophils have undergone affinity modulation. Using regression analysis, we demonstrated that increasing beta1 integrin expression correlates with decreasing CSF glucose concentration and serum/CSF glucose ratio. Regression analysis approached significance when CSF protein was compared to PMN beta1 integrin expression. Polymorphonuclear leukocytes beta1 integrin expression also showed a direct correlation to myeloperoxidase activity in brain tissue. Beta2 expression on CSF PMNs did not correlate with these markers of inflammation/sequestration. These data demonstrate integrin expression on extravesated neutrophils markedly increases during meningitis and support a role for beta1 integrins on neutrophils in the pathophysiologic consequences of meningitis.
Collapse
Affiliation(s)
- M E Rowin
- Division of Pediatric Critical Care Medicine, Children's Hospital Medical Center, Cincintnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
9
|
Parent C, Eichacker PQ. Neutrophil and endothelial cell interactions in sepsis. The role of adhesion molecules. Infect Dis Clin North Am 1999; 13:427-47, x. [PMID: 10340176 DOI: 10.1016/s0891-5520(05)70084-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although adhesion molecules present on circulating neutrophils and endothelial cells are essential for normal host defense, generalized activation of these molecules has been implicated in the inflammatory tissue injury occurring during sepsis and septic shock. A review of both preclinical and clinical studies suggests, however, that although these molecules mediate tissue injury related to a variety of microbial and host inflammatory mediators, their predominant role during sepsis with infection is a protective one.
Collapse
Affiliation(s)
- C Parent
- Critical Care Medicine Department, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
10
|
Abstract
Abstract
When active bone marrow release is induced by inflammatory stimuli, it is associated with an increase in L-selectin expression on circulating polymorphonuclear leukocyte (PMN). This contrasts sharply with glucocorticoid-induced granulocytosis that is associated with decreased L-selectin expression on PMN. The present study was designed to determine if the reduced L-selectin expression observed after glucocorticoid treatment is the result of suppression of L-selectin synthesis in the bone marrow. New Zealand white rabbits treated with dexamethasone (2.0 mg/kg, a single dose intravenously) were shown to have decreased L-selectin expression on circulating PMN 12 to 24 hours after treatment (P < .01) with a return to baseline levels by 48 hours. When dexamethasone was administered 48 hours after the bone marrow PMN were pulse labeled with the thymidine analogue, 5′-bromo-2′-deoxyuridine (BrdU), L-selectin expression on BrdU-labeled PMN released from the bone marrow was decreased (P< .01). Dexamethasone decreased L-selectin expression on segmented PMN in the bone marrow (P < .05) but not on PMN already in the circulation. We conclude that glucocorticoids decrease L-selectin expression on circulating PMN by downregulating L-selectin expression in the maturation pool of bone marrow and speculate that this is an important glucocorticoid effect that influences the recruitment of PMN into inflammatory sites.
Collapse
|
11
|
Abstract
When active bone marrow release is induced by inflammatory stimuli, it is associated with an increase in L-selectin expression on circulating polymorphonuclear leukocyte (PMN). This contrasts sharply with glucocorticoid-induced granulocytosis that is associated with decreased L-selectin expression on PMN. The present study was designed to determine if the reduced L-selectin expression observed after glucocorticoid treatment is the result of suppression of L-selectin synthesis in the bone marrow. New Zealand white rabbits treated with dexamethasone (2.0 mg/kg, a single dose intravenously) were shown to have decreased L-selectin expression on circulating PMN 12 to 24 hours after treatment (P < .01) with a return to baseline levels by 48 hours. When dexamethasone was administered 48 hours after the bone marrow PMN were pulse labeled with the thymidine analogue, 5′-bromo-2′-deoxyuridine (BrdU), L-selectin expression on BrdU-labeled PMN released from the bone marrow was decreased (P< .01). Dexamethasone decreased L-selectin expression on segmented PMN in the bone marrow (P < .05) but not on PMN already in the circulation. We conclude that glucocorticoids decrease L-selectin expression on circulating PMN by downregulating L-selectin expression in the maturation pool of bone marrow and speculate that this is an important glucocorticoid effect that influences the recruitment of PMN into inflammatory sites.
Collapse
|
12
|
Thiel M, Holzer K, Kreimeier U, Moritz S, Peter K, Messmer K. Effects of adenosine on the functions of circulating polymorphonuclear leukocytes during hyperdynamic endotoxemia. Infect Immun 1997; 65:2136-44. [PMID: 9169743 PMCID: PMC175295 DOI: 10.1128/iai.65.6.2136-2144.1997] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endotoxin-activated polymorphonuclear leukocytes (PMNL) adhere to the vascular endothelium and cause damage by the release of toxic superoxide anions (O2-). Because adenosine is a potent inhibitor of PMNL in vitro, the present study investigates the effects of this nucleoside on the functions of circulating PMNL in a standardized porcine model of hyperdynamic endotoxemia. Ten anesthesized pigs received an intravenous (i.v.) 330-min infusion of endotoxin (5 microg/kg of body weight per h). Another 10 pigs were also infused with endotoxin plus adenosine (150 microg/kg/min [i.v.]); this treatment was begun 30 min prior to the beginning of endotoxin treatment. Control groups (five animals per group) received either adenosine or physiological saline. Infusion of endotoxin caused severe neutropenia, shedding of L-selectin, upregulation of beta2-integrins, increased binding of C3-coated zymosan particles, and subsequent phagocytosis by PMNL. While phagocytosis-induced production of oxygen radicals appeared to decrease, extracellular release of superoxide anions was strongly enhanced. Infusion of adenosine during endotoxemia had no effect on neutropenia, expression of adhesion molecules, C3-induced adhesion, phagocytosis, or intracellular production of oxygen radicals, whereas extracellular release of O2- was strongly inhibited. Thus, i.v. infusion of adenosine during endotoxemia could be useful in protecting from O2(-)-mediated tissue injury without compromising the bactericidal mechanisms of PMNL.
Collapse
Affiliation(s)
- M Thiel
- Institute for Surgical Research and Department of Anesthesiology, Klinikum Grosshadern, Ludwig-Maximilians-University Munich, Germany
| | | | | | | | | | | |
Collapse
|