1
|
Jantarasaengaram S, Jaisamut P, Yanaranop M, Sriswasdi S. Spectral Doppler Parameters of Fetal Main Branch Pulmonary Artery at 20 to 40 Weeks of Gestation: Reference Ranges and Percentile Calculators. J Am Soc Echocardiogr 2024; 37:439-448. [PMID: 38040062 DOI: 10.1016/j.echo.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND The published reference ranges for Doppler parameters of the fetal pulmonary artery (PA) are usually derived from small sample sizes with no practical standard score or percentile ranking, which hinders systematic comparisons of Doppler figures across different gestational ages (GAs). This study aimed to establish comprehensive reference ranges and provide a percentile ranking solution for key spectral Doppler parameters. METHODS This is a cross-sectional study of 465 uncomplicated singleton pregnancies during 20 to 40 weeks of gestation. Spectral waveforms of the fetal main branch PA were obtained with a pulsed-wave Doppler interrogation site within 5 mm from the vascular origin. Fifteen spectral Doppler parameters were identified. Associations between these parameters with GA and fetal heart rate were assessed and used to develop percentile calculators via different statistical models. The root mean squared error of each model was calculated to determine the best performance solution. RESULTS Acceptable spectral waveforms were obtained for 94.1% (438/465) of the fetuses. All Doppler parameters except pulsatility index, manually traced pulsatility index, peak systolic velocity, and time to systolic notch/acceleration time ratio were significantly correlated with GA, while acceleration time, ejection time, time to systolic notch, peak early-diastolic reversal flow, and peak early-diastolic reversal flow/peak systolic velocity ratio were additionally significantly correlated with fetal heart rate. Support vector machine models with radial basis kernel yield the best percentile estimation (root mean squared error of 2.17-4.08 and R2 of >0.98). Furthermore, the top 5% and bottom 5% outliers could be identified with positive predictive values of 0.71 to 0.97. An online user interface of percentile calculators is available at https://github.com/cmb-chula/fetoPAD. CONCLUSIONS This study presents normal reference ranges and percentile calculators for 15 spectral Doppler parameters of the fetal main branch PA, some of which have not been published. The estimated percentiles enhance comparison and outlier detection of the spectral Doppler figures among fetuses at different GAs.
Collapse
Affiliation(s)
- Surasak Jantarasaengaram
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok, Thailand.
| | - Pemika Jaisamut
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok, Thailand
| | - Marut Yanaranop
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Rajavithi Hospital, College of Medicine, Rangsit University, Bangkok, Thailand
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Center for Artificial Intelligence in Medicine, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Cardiovascular fetal-to-neonatal transition: an in silico model. Pediatr Res 2022; 91:116-128. [PMID: 33731808 DOI: 10.1038/s41390-021-01401-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Previous models describing the fetal-to-neonatal transition often lack oxygen saturation levels, homeostatic control mechanisms, phasic hemodynamic signals, or describe the heart with a time-varying elastance model. METHODS We incorporated these elements in the adapted CircAdapt model with the one-fiber model for myocardial contraction, to simulate the hemodynamics of the healthy term human fetal circulation and its transition during the first 24 h after birth. The fetal-to-neonatal model was controlled by a time- and event-based script of changes occurring at birth, such as lung aeration and umbilical cord clamping. Model parameters were based on and validated with human and animal data. RESULTS The fetal circulation showed low pulmonary blood flow, right ventricular dominance, and inverted mitral and tricuspid flow velocity patterns, as well as high mean ductus venosus flow velocity. The neonatal circulation showed oxygen saturation levels to gradually increase to 98% in the first 15 min after birth as well as temporary left ventricular volume overload. CONCLUSIONS Hemodynamics of the term fetus and 24-h-old neonate, as well as the events occurring directly after birth and the transition during the first 24 h after birth, were realistically represented, allowing the model to be used for educational purposes and future research. IMPACT With the addition of oxygen saturation levels, homeostatic pressure-flow control mechanisms, and the one-fiber model for myocardial contraction, a new closed-loop cardiovascular model was constructed to give more insight into the healthy term human fetal circulation and its cardiovascular transition during the first 24 h after birth. Extensive validation confirmed that the hemodynamics of the term fetus and the fetal-to-neonatal transition were realistically represented with the model. This well-validated and versatile model can serve as an education as well as a research platform for in silico investigation of fetal-to-neonatal hemodynamic changes under a wide range of physiological and pathophysiological conditions.
Collapse
|
3
|
Su J, Hilberg O, Howard L, Simonsen U, Hughes AD. A review of wave mechanics in the pulmonary artery with an emphasis on wave intensity analysis. Acta Physiol (Oxf) 2016; 218:239-249. [PMID: 27636734 PMCID: PMC5120692 DOI: 10.1111/apha.12803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 01/10/2023]
Abstract
Mean pulmonary arterial pressure and pulmonary vascular resistance (PVR) remain the most common haemodynamic measures to evaluate the severity and prognosis of pulmonary hypertension. However, PVR only captures the non-oscillatory component of the right ventricular hydraulic load and neglects the dynamic compliance of the pulmonary arteries and the contribution of wave transmission. Wave intensity analysis offers an alternative way to assess the pulmonary vasculature in health and disease. Wave speed is a measure of arterial stiffness, and the magnitude and timing of wave reflection provide information on the degree of impedance mismatch between the proximal and distal circulation. Studies in the pulmonary artery have demonstrated distinct differences in arterial wave propagation between individuals with and without pulmonary vascular disease. Notably, greater wave speed and greater wave reflection are observed in patients with pulmonary hypertension and in animal models exposed to hypoxia. Studying wave propagation makes a valuable contribution to the assessment of the arterial system in pulmonary hypertension, and here, we briefly review the current state of knowledge of the methods used to evaluate arterial waves in the pulmonary artery.
Collapse
Affiliation(s)
- Junjing Su
- Department of Biomedicine – Pharmacology, Aarhus University
- National Heart and Lung Institute, Imperial College London
| | - Ole Hilberg
- Department of Respiratory Medicine, Aarhus University Hospital
| | - Luke Howard
- National Heart and Lung Institute, Imperial College London
| | - Ulf Simonsen
- Department of Biomedicine – Pharmacology, Aarhus University
| | - Alun D Hughes
- National Heart and Lung Institute, Imperial College London
- Institute of Cardiovascular Science, University College London
| |
Collapse
|
4
|
Smolich JJ, Kenna KR, Mynard JP. Retrograde lower body arterial reservoir discharge underlies rapid reversal of ductus arteriosus shunting after early cord clamping at birth in preterm lambs. J Appl Physiol (1985) 2016; 120:399-407. [DOI: 10.1152/japplphysiol.00794.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/25/2015] [Indexed: 11/22/2022] Open
Abstract
Arterial reservoir (“windkessel”) function, whereby a part of left ventricular (LV) output is stored in elastic arteries during systole and discharged in diastole, is a well-established physiological phenomenon. However, its role in rapid reversal (to left-to-right) and a systolic-to-diastolic shift of shunting across the ductus arteriosus after birth is unknown. To address this question, ductal and aortic isthmus flows were measured with high-fidelity transit-time probes in six anesthetized preterm fetal lambs before and after cord clamping and subsequent early mechanical ventilation and for 30 min postbirth. Descending aortic flow was calculated as the sum of isthmus and ductal flows. Left-to-right ductal flow profiles were related to those of the isthmus and descending aorta, with upper body arterial reservoir discharge indicated by forward diastolic isthmus flow, and retrograde lower body arterial reservoir discharge by negative diastolic descending aortic flow. Left-to-right ductal shunting appeared immediately after cord clamping ( P < 0.001), due entirely to newly emergent retrograde lower body reservoir discharge, and rose with ventilation via increased lower body reservoir discharge ( P < 0.005), supplemented by upper body reservoir discharge after 45 s ( P < 0.025) and LV systolic flow after 3 min ( P = 0.025). The contribution of lower body reservoir discharge to left-to-right ductal shunting fell to 55 ± 8% at ≥15 min ( P < 0.001) but remained higher ( P < 0.002) than LV systolic flow (33 ± 8%) or upper body reservoir discharge (12 ± 5%). These results suggest that retrograde lower body arterial reservoir discharge plays a key role in rapid reversal and a systolic-to-diastolic shift of ductal shunting after cord clamping and early ventilation at birth.
Collapse
Affiliation(s)
- Joseph J. Smolich
- Heart Research Group, Murdoch Childrens Research Institute, Victoria, Australia; and
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Kelly R. Kenna
- Heart Research Group, Murdoch Childrens Research Institute, Victoria, Australia; and
| | - Jonathan P. Mynard
- Heart Research Group, Murdoch Childrens Research Institute, Victoria, Australia; and
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Cardiovascular transition at birth: a physiological sequence. Pediatr Res 2015; 77:608-14. [PMID: 25671807 DOI: 10.1038/pr.2015.21] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/27/2014] [Indexed: 11/08/2022]
Abstract
The transition to newborn life at birth involves major cardiovascular changes that are triggered by lung aeration. These include a large increase in pulmonary blood flow (PBF), which is required for pulmonary gas exchange and to replace umbilical venous return as the source of preload for the left heart. Clamping the umbilical cord before PBF increases reduces venous return and preload for the left heart and thereby reduces cardiac output. Thus, if ventilation onset is delayed following cord clamping, the infant is at risk of superimposing an ischemic insult, due to low cardiac output, on top of an asphyxic insult. Much debate has centered on the timing of cord clamping at birth, focusing mainly on the potential for a time-dependent placental to infant blood transfusion. This has prompted recommendations for delayed cord clamping for a set time after birth in infants not requiring resuscitation. However, recent evidence indicates that ventilation onset before cord clamping mitigates the adverse cardiovascular consequences caused by immediate cord clamping. This indicates that the timing of cord clamping should be based on the infant's physiology rather than an arbitrary period of time and that delayed cord clamping may be of greatest benefit to apneic infants.
Collapse
|
6
|
Mynard JP, Smolich JJ. Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics. Am J Physiol Heart Circ Physiol 2014; 307:H307-18. [PMID: 24878775 DOI: 10.1152/ajpheart.00293.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Controversy exists about whether one-dimensional wave theory can explain the "self-canceling" waves that accompany the diastolic pressure decay and discharge of the arterial reservoir. Although it has been proposed that reservoir and wave effects be treated as separate phenomena, thus avoiding the issue of self-canceling waves, we have argued that reservoir effects are a phenomenological and mathematical subset of wave effects. However, a complete wave-based explanation of self-canceling diastolic expansion (pressure-decreasing) waves has not yet been advanced. These waves are present in the forward and backward components of arterial pressure and flow (P ± and Q ±, respectively), which are calculated by integrating incremental pressure and flow changes (dP ± and dQ ±, respectively). While the integration constants for this calculation have previously been considered arbitrary, we showed that physiologically meaningful constants can be obtained by identifying "undisturbed pressure" as mean circulatory pressure. Using a series of numeric experiments, absolute P ± and Q ± values were shown to represent "wave potential," gradients of which produce propagating wavefronts. With the aid of a "one-dimensional windkessel," we showed how wave theory predicts discharge of the arterial reservoir. Simulated data, along with hemodynamic recordings in seven sheep, suggested that self-canceling diastolic waves arise from repeated and diffuse reflection of the late systolic forward expansion wave throughout the arterial system and at the closed aortic valve, along with progressive leakage of wave potential from the conduit arteries. The combination of wave and wave potential concepts leads to a comprehensive one-dimensional (i.e., wave-based) explanation of arterial hemodynamics, including the diastolic pressure decay.
Collapse
Affiliation(s)
- Jonathan P Mynard
- Heart Research, Clinical Sciences, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; and Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Joseph J Smolich
- Heart Research, Clinical Sciences, Murdoch Childrens Research Institute, Parkville, Victoria, Australia; and Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Galinsky R, Hooper SB, Wallace MJ, Westover AJ, Black MJ, Moss TJM, Polglase GR. Intrauterine inflammation alters cardiopulmonary and cerebral haemodynamics at birth in preterm lambs. J Physiol 2013; 591:2127-37. [PMID: 23420658 DOI: 10.1113/jphysiol.2012.249680] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Intrauterine inflammation is associated with preterm birth and poor long-term cardiopulmonary outcomes. We aimed to determine the effect of intrauterine inflammation on the cardiopulmonary and cerebral haemodynamic transition at birth, and the response to subsequent haemodynamic challenge. Fetal instrumentation was performed at ∼112 days gestation (term is 147 days) for measurement of cardiopulmonary and cerebral haemodynamics. At 118 days, inflammation was induced by intra-amniotic administration of lipopolysaccharide (LPS; n = 7); controls (n = 5) received intra-amniotic saline. At 125 days lambs were delivered and mechanically ventilated. Arterial blood gases, pulmonary and systemic arterial blood pressures and flows were measured during the perinatal period. At 10 min a haemodynamic challenge was administered by increasing positive end-expiratory pressure. During the first 10 min after birth, LPS-exposed lambs had higher pulmonary vascular resistance and lower pulmonary blood flow and left ventricular output than controls. Carotid arterial blood flow was higher in LPS-exposed lambs than controls between 3 and 7 min after delivery, and cerebral oxygen delivery was higher at 5 min. During the haemodynamic challenge, pulmonary blood flow and left ventricular output were reduced in controls but not in LPS-exposed lambs; a transient reduction in brachiocephalic arterial pressure occurred in LPS-exposed lambs but not in controls. Intrauterine inflammation altered the cardiopulmonary and cerebral haemodynamic transition at birth and reduced the cardiopulmonary response to a haemodynamic challenge after birth. The transient reduction in brachiocephalic arterial pressure suggests intrauterine inflammation may alter cerebrovascular control following an increase in positive end-expiratory pressure.
Collapse
Affiliation(s)
- Robert Galinsky
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Iyer NR, Lau EM, Ilsar R, Celermajer DS. Treatment responsiveness in pulmonary arterial hypertension—Preliminary report on serial intra-arterial Doppler flow velocity waveform measurements. Int J Cardiol 2011; 153:219-21. [DOI: 10.1016/j.ijcard.2011.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 09/17/2011] [Indexed: 10/16/2022]
|
9
|
Smolich JJ, Mynard JP, Penny DJ. Pulmonary trunk, ductus arteriosus, and pulmonary arterial phasic blood flow interactions during systole and diastole in the fetus. J Appl Physiol (1985) 2011; 110:1362-73. [PMID: 21393465 DOI: 10.1152/japplphysiol.00038.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although the distribution of average fetal pulmonary trunk (PT) blood flow favors the ductus arteriosus (DA) over the lungs, the phasic aspects of this distribution during systole and diastole are not well understood. Accordingly, flow profile and wave intensity (WI) analyses were performed at baseline and during brief flow increases accompanying an extrasystole (ES) in 10 anesthetized late-gestation fetal sheep instrumented with PT, DA, and left pulmonary artery (PA) micromanometer catheters and transit-time flow probes. At baseline, 83% of mean PT flow crossed the DA and 17% entered the lungs. However, early systolic flow associated with a forward-running compression wave (FCW(is)) was higher in the PA and predominant DA flow only emerged in midsystole when a large PA backward-running compression wave (BCW(ms)), which reduced PA flow, was transmitted into the DA as a forward-running compression wave (FCW(ms)) that increased flow. Subsequent protodiastolic forward DA flow occurring during pulmonary valve closure was associated with substantial retrograde PA flow, but insignificant PT flow. Conversely, forward DA flow in the remainder of diastole occurred with forward PT but near-zero PA flow. These flow and WI patterns, in conjunction with the results of mathematical modeling, suggest that 1) fetal PT flow preferentially passes into the PA during early systole due to a lower PA-than-DA characteristic impedance, while DA flow predominates in mid- and late systole due to flow effects arising from the PA BCW(ms), and 2) forward DA flow is mainly sustained by reversal of PA flow in protodiastole but discharge of a more central reservoir in diastole.
Collapse
Affiliation(s)
- Joseph J Smolich
- Heart Research Group, Murdoch Children's Research Institute, Melbourne, Australia.
| | | | | |
Collapse
|
10
|
Smolich JJ, Mynard JP, Penny DJ. Wave intensity analysis of right ventricular and pulmonary vascular contributions to higher pulmonary than aortic blood pressure in fetal lambs. Am J Physiol Heart Circ Physiol 2010; 299:H890-7. [PMID: 20562335 DOI: 10.1152/ajpheart.00292.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Although fetal pulmonary trunk (PT) blood pressure may exceed aortic trunk (AoT) pressure, the specific mechanism(s) underlying this pressure difference remain undefined. To evaluate the potential role of ventricular and vascular factors in the generation of a fetal PT-AoT pressure difference, nine anesthetized late-gestation fetal sheep were instrumented with PT and AoT micromanometer catheters to measure high-fidelity pressure and transit-time flow probes to obtain blood velocity. The PT-AoT instantaneous pressure difference (IPD(PT-AoT)) was calculated from PT and AoT pressure profiles. PT and AoT wave intensity (WI) was derived from the product of the appropriate pressure and velocity rates of change. While diastolic pressures were near identical, systolic PT pressure exceeded AoT pressure (P < 0.001), with a maximal IPD(PT-AoT) of 6.5 +/- 2.5 mmHg. The comparison of IPD(PT-AoT) with wave-related PT and AoT pressure changes indicated that 1) a greater pressure-generating effect of the PT forward-running compression wave arising from impulsive right ventricular contraction in early and midsystole accounted for 2.3 +/- 2.3 mmHg (35%) of the maximal IPD(PT-AoT) and 2) a larger pressure-generating effect of a large midsystolic backward-running compression wave transmitted into the PT from the pulmonary vasculature contributed 4.0 +/- 1.5 mmHg ( approximately 60%) of the maximal IPD(PT-AoT). These results indicate that the higher PT than AoT blood pressure observed in fetal lambs is a systolic phenomenon principally related to the combination of a relatively higher level of right ventricular pump function manifest in early and midsystole and a pressure-increasing energy wave arising from the fetal pulmonary vasculature in midsystole.
Collapse
Affiliation(s)
- Joseph J Smolich
- Heart Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
11
|
Mizuno M, Takeba Y, Matsumoto N, Tsuzuki Y, Asoh K, Takagi M, Kobayashi S, Yamamoto H. Antenatal glucocorticoid therapy accelerates ATP production with creatine kinase increase in the growth-enhanced fetal rat heart. Circ J 2009; 74:171-80. [PMID: 19952437 DOI: 10.1253/circj.cj-09-0311] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Previous study has demonstrated the increase of several cardiac function-related proteins, including creatine kinase (CK) as an important enzyme in the process of ATP synthesis in the fetal heart of rats administered glucocorticoid (GC) antenatally. In the present study the effect of antenatal GC administration on the CK expression in fetal and neonatal hearts was demonstrated. METHODS AND RESULTS Dexamethasone was administered to pregnant rats on days 19 and 20 of gestation. The mRNA levels of the CK isoforms, CK-M and Mi-CK, in 21-day-old fetal and 1-day-old neonatal hearts were significantly increased after antenatal GC administration. CK protein levels were also increased in both cultured cardiomyocytes and the mitochondria of the hearts. Uptake of 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethyl-benzimidazolocarbocyanine iodide by mitochondria was significantly increased. An increased ATP level accompanied the CK increase in the neonatal hearts. Furthermore, in vitro these effects were mediated though the GC receptor of cardiomyocytes. Peroxisome proliferator-activated receptor gamma as the upstream transcription factor of CK was significantly increased in fetal hearts. CONCLUSIONS These results suggest that antenatal GC administration accelerates ATP synthesis through increased CK and may contribute to maturation of the premature heart so that it is ready for preterm delivery. (Circ J 2010; 74: 171 - 180).
Collapse
Affiliation(s)
- Masanori Mizuno
- Department of Pediatrics, St Marianna University School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Smolich JJ, Mynard JP, Penny DJ. Ductus arteriosus wave intensity analysis in fetal lambs: midsystolic ductal flow augmentation is due to antegrade pulmonary arterial wave transmission. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1171-9. [PMID: 19692659 DOI: 10.1152/ajpregu.00384.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In midsystole, fetal pulmonary trunk (PT) and arterial (PA) blood flows characteristically fall, despite pulmonary blood pressure increasing, while ductus arteriosus (DA) flow continues to rise to a delayed peak. Wave intensity (WI) analysis indicates that midsystolic fetal PT and PA flow reductions are related to a very large midsystolic PA backward-running compression wave (BCW(ms)), which originates in the pulmonary microvasculature and is partially transmitted into the PT. This study tested the hypothesis that midsystolic augmentation of DA blood flow was related to transmission of the PA BCW(ms) into the DA. DA, PT, and PA WI analysis was performed in eight anesthetized late-gestation fetal sheep instrumented with DA, PT, and left PA micromanometer catheters to measure pressure (P) and transit-time flow probes to obtain blood velocity (U). In a subgroup (n = 5), the main PA was briefly occluded to abolish wave transmission from the lungs. WI was calculated as the product of P and U rates of change. PA and PT WI profiles both contained a prominent BCW(ms), approximately 5-fold larger in the PA (P < 0.005), which increased P but decreased U. By contrast, the DA WI profile demonstrated a large midsystolic forward-running compression wave (FCW(ms)), which increased DA P and U, and occurred 5 ms after PA BCW(ms). Furthermore, both DA FCW(ms) and PT BCW(ms) were abolished by main PA occlusion. These results suggest that the fetal PA BCW(ms) undergoes retrograde transmission into the PT as a BCW(ms), but antegrade transmission into the DA as a FCW(ms) that augments midsystolic DA flow.
Collapse
Affiliation(s)
- Joseph J Smolich
- Department of Paediatrics, Heart Research Group, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Australia.
| | | | | |
Collapse
|
13
|
Crossley KJ, Allison BJ, Polglase GR, Morley CJ, Davis PG, Hooper SB. Dynamic changes in the direction of blood flow through the ductus arteriosus at birth. J Physiol 2009; 587:4695-704. [PMID: 19675069 DOI: 10.1113/jphysiol.2009.174870] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Major cardiovascular changes occur at birth, including increased pulmonary blood flow (PBF) and closure of the ductus arteriosus (DA), which acts as a low resistance shunt between the fetal pulmonary and systemic circulations. Although the pressure gradient between these circulations reverses after birth, little is known about DA blood flow changes and whether reverse DA flow contributes to PBF after birth. Our aim was to describe the changes in PBF and DA flow before, during and after the onset of pulmonary ventilation at birth. Flow probes were implanted on the left pulmonary artery (LPA) and DA in preterm fetal sheep (n = 8) approximately 3 days before they were delivered and ventilated. Blood flow was measured in the LPA and DA, before and after umbilical cord occlusion (UCO) and for 2 h after ventilation onset. Following UCO, DA flow decreased from 534 +/- 57 ml min(1) to 237 +/- 29 ml min(1) which reflected a similar reduction in right ventricular output. Within 5 min of ventilation onset, PBF increased from 11 +/- 6 ml min(1) to 230 +/- 13 ml min(1) whereas DA flow decreased to 172 +/- 54 ml min(1); negative values indicate reverse DA flow (left-to-right shunting). Reverse flow through the DA contributed up to 50% of total PBF at 30 min and a decrease in this contribution accounted for 71 +/- 13% of the time-related decrease in PBF after birth. DA blood flow is very dynamic after birth and depends upon the pressure gradient between the pulmonary and systemic circulations. Following ventilation, reverse DA flow provided a significant contribution to total PBF after birth.
Collapse
Affiliation(s)
- Kelly J Crossley
- Department of Physiology, PO Box 13F, Monash University, Vic. 3800, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Smolich JJ, Mynard JP, Penny DJ. Dynamic characterization and hemodynamic effects of pulmonary waves in fetal lambs using cardiac extrasystoles and beat-by-beat wave intensity analysis. Am J Physiol Regul Integr Comp Physiol 2009; 297:R428-36. [DOI: 10.1152/ajpregu.00174.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Steady-state wave intensity ( WI) analysis indicates that characteristic midsystolic falls in fetal pulmonary trunk (PT) and artery (PA) blood flow are due to an extremely large backward-running compression wave (BCWms) that 1) originates from the pulmonary microvasculature by a combination of cyclical pulmonary vasoconstriction and vascular reflection of the forward-running compression wave (FCWis) associated with impulsive right ventricular ejection, and 2) is transmitted into the PT. However, no information is available about the dynamic properties of PA BCWms and its contribution to beat-to-beat regulation of pulmonary hemodynamics. Accordingly, beat-by-beat WI analysis was performed during brief increases in ventricular contractility accompanying an extrasystole (ES) in nine anesthetized late-gestation fetal sheep instrumented with PT and left PA micromanometer catheters to measure pressure (P) and transit-time flow probes to obtain blood velocity ( U). WI was calculated as the product of P and U rates of change. At steady state, the magnitude of PA BCWms, and its associated P and U changes (ΔP and Δ U, respectively), were similar to those of FCWis. The PA FCWis and BCWms, and their accompanying ΔP and Δ U, were all transiently potentiated after an ES. Beat-by-beat PA FCWis-BCWms wave area, ΔP and Δ U relationships were highly linear ( R2 ≥ 0.91) with slopes of 1.36–1.47 ( P < 0.001), consistent with the presence of a vasoconstrictor component in PA BCWms. PA-PT BCWms area and ΔP and Δ U relationships were also linear ( R2 ≥ 0.77) with slopes of 0.23–0.64 ( P < 0.001). These results indicate that the fetal PA BCWms contributes to beat-to-beat regulation of not only PA but also PT hemodynamics.
Collapse
|
15
|
Tsuzuki Y, Takeba Y, Kumai T, Matsumoto N, Mizuno M, Murano K, Asoh K, Takagi M, Yamamoto H, Kobayashi S. Antenatal glucocorticoid therapy increase cardiac alpha-enolase levels in fetus and neonate rats. Life Sci 2009; 85:609-16. [PMID: 19583970 DOI: 10.1016/j.lfs.2009.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/16/2009] [Accepted: 06/24/2009] [Indexed: 11/15/2022]
Abstract
AIMS Antenatal glucocorticoid therapy has been shown to prevent acute diseases including infant respiratory distress syndrome and reduce mortality, although little is known about the effects on cardiac function-related proteins in the fetus or neonate. We investigated whether cardiac function-related proteins were altered in cardiac tissues of fetuses and neonates born to pregnant rats treated by glucocorticoid. MAIN METHODS Dexamethasone (DEX) was administered to pregnant rats for 2 days on day 17 and 18 or day 19 and 20 of gestation to simulate antenatal DEX therapy, and cardiac tissues of 19- and 21-day fetuses and 1-, 3-, and 5-day neonates were analyzed using a proteomic technique with liquid chromatography-mass spectrometry/mass spectrometry. KEY FINDINGS The identified five proteins; alpha-enolase, creatine kinase-M type, beta-tubulin, troponin T, and ATP synthase beta-chain, were significantly increased in fetal cardiac tissues with DEX administration. We observed that significant increase of alpha-enolase in the 19-day fetuses by DEX using Western blotting and immunohistochemistry. ATP and cAMP levels were also increased in the fetal heart tissue. In addition, pyruvate levels were significantly increased in the fetus groups by DEX. SIGNIFICANCE These results suggest that increased alpha-enolase may contribute to acceleration of glycolysis in the preterm heart.
Collapse
Affiliation(s)
- Yoshimitsu Tsuzuki
- Department of Pharmacology, St. Marianna University School of Medicine 2-16-1 Sugao, Kawasaki, Kanagawa, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rolland PH, de Lagausie P, Stathopoulos E, Leprètre O, Viudes G, Gorincour G, Hery G, de Magnée C, Paut O, Guys JM. Phasic hemodynamics and reverse blood flows in the aortic isthmus and pulmonary arteries of preterm lambs with pulmonary vascular dysfunction. Am J Physiol Heart Circ Physiol 2008; 295:H2231-41. [PMID: 18820030 DOI: 10.1152/ajpheart.00410.2008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Time-domain representations of the fetal aortopulmonary circulation were carried out in lamb fetuses to study hemodynamic consequences of congenital diaphragmatic hernia (CDH) and the effects of endothelin-receptor antagonist tezosentan (3 mg/45 min). From the isthmic aortic and left pulmonary artery (PA) flows (Q) and isthmic aortic, PA, and left auricle pressures (P) on day 135 in 10 controls and 7 CDH fetuses (28 ewes), discrete-triggered P and Q waveforms were modelized as Pt and Qt functions to obtain basic hemodynamic profiles, pulsatile waves [P, Q, and entry impedance (Ze)], and P and Q hysteresis loops. In the controls, blood propelling energy was accounted for by biventricular ejection flow waves (kinetic energy) with low Ze and by flow-driven pressure waves (potential energy) with low Ze. Weak fetal pulmonary perfusion was ensured by reflux (reverse flows) from PA branches to the ductus anteriosus and aortic isthmus as reverse flows. Endothelin-receptor antagonist blockade using tezosentan slightly increased the forward flow but largely increased diastolic backward flow with a diminished left auricle pre- and postloading. In CHD fetuses, the static component overrode phasic flows that were detrimental to reverse flows and the direction of the diastolic isthmic flow changed to forward during the diastole period. Decreased cardiac output, flattened pressure waves, and increased forward Ze promoted backward flow to the detriment of forward flow (especially during diastole). Additionally, the intrapulmonary arteriovenous shunting was ineffective. The slowing of cardiac output, the dampening of energetic pressure waves and pulsatility, and the heightening of phasic impedances contributed to the lowering of aortopulmonary blood flows. We speculate that reverse pulmonary flow is a physiological requirement to protect the fetal pulmonary circulation from the prominent right ventricular stream and to enhance blood flow to the fetal heart and brain.
Collapse
Affiliation(s)
- Pierre-Henri Rolland
- Physiopathology and Vascular Therapeutics, School of Medicine, University of the Mediterranean Sea, 27 Blvd. Jean-Moulin, and Department of Pediatric Surgery, LaTimone-Hospital, Marseilles, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Polglase GR, Moss TJM, Nitsos I, Allison BJ, Pillow JJ, Hooper SB. Differential effect of recruitment maneuvres on pulmonary blood flow and oxygenation during HFOV in preterm lambs. J Appl Physiol (1985) 2008; 105:603-10. [DOI: 10.1152/japplphysiol.00041.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of lung volume recruitment manouvres on pulmonary blood flow (PBF) during high-frequency oscillatory ventilation (HFOV) in preterm neonates are unknown. Since increased airway pressure adversely affects PBF, we compared the effects of two HFOV recruitment strategies on PBF and oxygenation index (OI). Preterm lambs (128 ± 1 day gestation; term ∼150 days) were anesthetized and ventilated using HFOV (10 Hz, 33% tI) with a mean airway pressure (Pao) of 15 cmH2O. Lung volume was recruited by either increasing Pao to 25 cmH2O for 1 min, repeated five times at 5-min intervals (Sigh group; n = 5) or stepwise (5 cmH2O) changes in Pao at 5-min intervals incrementing up to 30 cmH2O then decrementing back to 15 cmH2O (Ramp group; n = 6). Controls ( n = 5) received constant HFOV at 15 cmH2O. PBF progressively decreased (by 45 ± 4%) and OI increased (by 15 ± 6%, indicating reduced oxygenation) in controls during HFOV, which was similar to the changes observed in the Sigh group of lambs. In the Ramp group, PBF fell (by 54 ± 10%) as airway pressure increased ( r2 = 0.99), although the PBF did not increase again as the Pao was subsequently reduced. The OI decreased (by 47 ± 9%), reflecting improved oxygenation at high Pao levels during HFOV in the Ramp group. However, high Pao restored retrograde PBF during diastole in four of six lambs, indicating the restoration of right-to-left shunting through the ductus arteriosus. Thus the choice of volume recruitment maneuvre influences the magnitude of change in OI and PBF that occurs during HFOV. Despite significantly improving OI, the ramp recruitment approach causes sustained changes in PBF.
Collapse
|
18
|
Smolich JJ, Mynard JP, Penny DJ. Simultaneous pulmonary trunk and pulmonary arterial wave intensity analysis in fetal lambs: evidence for cyclical, midsystolic pulmonary vasoconstriction. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1554-62. [PMID: 18287223 DOI: 10.1152/ajpregu.00743.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The physiological basis of a characteristically low blood flow to the fetal lungs is incompletely understood. To determine the potential role of pulmonary vascular interaction in this phenomenon, simultaneous wave intensity analysis (WIA) was performed in the pulmonary trunk (PT) and left pulmonary artery (LPA) of 10 anesthetized late-gestation fetal sheep instrumented with PT and LPA micromanometer catheters to measure pressure (P) and transit-time flow probes to obtain blood velocity (U). Studies were performed at rest and during brief complete occlusion of the ductus arteriosus to augment pulmonary vasoconstriction (n = 4) or main pulmonary artery to abolish wave transmission from the lungs (n = 3). Wave intensity (dI(W)) was calculated as the product of the P and U rates of change. Forward and backward components of dI(W) were determined after calculation of wave speed. PT and LPA WIA displayed an early systolic forward compression wave (FCW(is)) increasing P and U, and a late systolic forward expansion wave decreasing P and U. However, a marked midsystolic fall in LPA U to near-zero was related to an extremely prominent midsystolic backward compression wave (BCW(ms)) that arose approximately 5 cm distal to the LPA, was threefold larger than the PT BCW(ms) (P < 0.001), of similar size to FCW(is) at rest (P > 0.6), larger than FCW(is) following ductal occlusion (P < 0.05) and abolished after main pulmonary artery occlusion. These findings suggest that the absence of pulmonary arterial midsystolic forward flow which accompanies a low fetal lung blood flow is due to a BCW(ms) generated in part by cyclical vasoconstriction within the pulmonary microcirculation.
Collapse
Affiliation(s)
- Joseph J Smolich
- Australia and New Zealand Children's Heart Research Centre, Murdoch Children's Research Institute, Melbourne, Australia.
| | | | | |
Collapse
|
19
|
Polglase GR, Wallace MJ, Morgan DL, Hooper SB. Increases in lung expansion alter pulmonary hemodynamics in fetal sheep. J Appl Physiol (1985) 2006; 101:273-82. [PMID: 16575019 DOI: 10.1152/japplphysiol.01544.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prolonged increases in fetal lung expansion stimulate fetal lung growth and development, but the effects on pulmonary hemodynamics are unknown. Our aim was to determine the effect of increased fetal lung expansion, induced by tracheal obstruction (TO), on pulmonary blood flow (PBF) and vascular resistance (PVR). Chronically catheterized fetal sheep ( n = 6) underwent TO from 120 to 127 days of gestational age (term ∼147 days); tracheas were not obstructed in control fetuses ( n = 6). PBF, PVR, and changes to the PBF waveform were determined. TO significantly increased lung wet weight compared with control (166.3 ± 20.2 vs. 102.0 ± 18.8 g; P < 0.05). Despite the increase in intraluminal pressure caused by TO (5.0 ± 0.9 vs. 2.4 ± 1.0 mmHg; P < 0.001), PBF and PVR were similar between groups after 7 days (TO 28.1 ± 3.2 vs. control 34.1 ± 10.0 ml·min−1·100 g lung wt−1). However, TO markedly altered pulmonary hemodynamics associated with accentuated fetal breathing movements, causing a reduction rather than an increase in PBF at 7 days of TO. To account for the increase in intraluminal pressure, the pressure was equalized by draining the lungs of liquid on day 7 of TO. Pressure equalization increased PBF from 36.8 ± 5.2 to 112.4 ± 22.8 ml/min ( P = 0.01) and markedly altered the PBF waveform. These studies provide further evidence to indicate that intraluminal pressure is an important determinant of PBF and PVR in the fetus. We suggest that the increase in PBF associated with pressure equalization following TO reflects an increase in growth of the pulmonary vascular bed, leading to an increase in its cross-sectional area.
Collapse
Affiliation(s)
- Graeme R Polglase
- Fetal and Neonatal Research Group, Department of Physiology, Monash University, Melbourne, Australia.
| | | | | | | |
Collapse
|
20
|
Polglase GR, Morley CJ, Crossley KJ, Dargaville P, Harding R, Morgan DL, Hooper SB. Positive end-expiratory pressure differentially alters pulmonary hemodynamics and oxygenation in ventilated, very premature lambs. J Appl Physiol (1985) 2005; 99:1453-61. [PMID: 15890759 DOI: 10.1152/japplphysiol.00055.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In mature lungs, elevated positive end-expiratory pressure (PEEP) reduces pulmonary blood flow (PBF) and increases pulmonary vascular resistance (PVR). However, the effect of PEEP on PBF in preterm infants with immature lungs and a patent ductus arteriosus is unknown. Fetal sheep were catheterized at 124 days of gestation (term ∼147 days), and a flow probe was placed around the left pulmonary artery to measure PBF. At 127 days, lambs were delivered and ventilated from birth with a tidal volume of 5 ml/kg and 4-cmH2O PEEP; PEEP was changed to 0, 8, and 12 cmH2O in random order, returning to 4 cmH2O between each change. Increasing PEEP from 4 to 8 cmH2O and from 4 to 12 cmH2O decreased PBF by 20.5 and 41.0%, respectively, and caused corresponding changes in PVR; reducing PEEP from 4 to 0 cmH2O did not affect PBF. Despite decreasing PBF, increasing PEEP from 4 to 8 cmH2O and 12 cmH2O improved oxygenation of lambs. Increasing and decreasing PEEP from 4 cmH2O significantly changed the contour of the PBF waveform; at a PEEP of 12 cmH2O, end-diastolic flow was reduced by 82.8% and retrograde flow was reestablished. Although increasing PEEP improves oxygenation, it adversely affects PBF and PVR shortly after birth, alters the PBF waveform, and reestablishes retrograde flow during diastole.
Collapse
Affiliation(s)
- Graeme R Polglase
- Fetal and Neonatal Research Group, Department of Physiology, Monash University, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Hollander EH, Dobson GM, Wang JJ, Parker KH, Tyberg JV. Direct and series transmission of left atrial pressure perturbations to the pulmonary artery: a study using wave-intensity analysis. Am J Physiol Heart Circ Physiol 2004; 286:H267-75. [PMID: 14512278 DOI: 10.1152/ajpheart.00505.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pressure waves are thought to travel from the left atrium (LA) to the pulmonary artery (PA) only retrogradely, via the vasculature. In seven anesthetized open-chest dogs, a balloon was placed in the LA, which was rapidly inflated and deflated during diastole, early systole, and late systole. High-fidelity pressures were measured within and around the heart. Measurements were made at low volume [LoV; left ventricular end-diastolic pressure (LVEDP) = 5–9 mmHg], high volume (HiV; LVEDP = 16–19 mmHg), and HiV with the pericardium removed. Wave-intensity analysis demonstrated that, except during late systole, balloon inflation created forward-going PA compression waves that were transmitted directly through the heart without measurable delay; backward PA compression waves were transmitted in-series through the pulmonary vasculature and arrived after delays of 90 ± 3 ms (HiV) and 103 ± 5 ms (LoV; P < 0.05). Direct transmission was greater during diastole, and both direct and series transmission increased with volume loading. Pressure waves from the LA arrive in the PA by two distinct routes: rapidly and directly through the heart and delayed and in-series through the pulmonary vasculature.
Collapse
Affiliation(s)
- Ellen H Hollander
- Department of Medicine, 3330 Hospital Dr. NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
22
|
Wang JJ, O'Brien AB, Shrive NG, Parker KH, Tyberg JV. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physiol Heart Circ Physiol 2003; 284:H1358-68. [PMID: 12531729 DOI: 10.1152/ajpheart.00175.2002] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The differences in shape between central aortic pressure (P(Ao)) and flow waveforms have never been explained satisfactorily in that the assumed explanation (substantial reflected waves during diastole) remains controversial. As an alternative to the widely accepted frequency-domain model of arterial hemodynamics, we propose a functional, time-domain, arterial model that combines a blood conducting system and a reservoir (i.e., Frank's hydraulic integrator, the windkessel). In 15 anesthetized dogs, we measured P(Ao), flows, and dimensions and calculated windkessel pressure (P(Wk)) and volume (V(Wk)). We found that P(Wk) is proportional to thoracic aortic volume and that the volume of the thoracic aorta comprises 45.1 +/- 2.0% (mean +/- SE) of the total V(Wk). When we subtracted P(Wk) from P(Ao), we found that the difference (excess pressure) was proportional to aortic flow, thus resolving the differences between P(Ao) and flow waveforms and implying that reflected waves were minimal. We suggest that P(Ao) is the instantaneous summation of a time-varying reservoir pressure (i.e., P(Wk)) and the effects of (primarily) forward-traveling waves in this animal model.
Collapse
Affiliation(s)
- Jiun-Jr Wang
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
23
|
Grant DA, Fauchère JC, Eede KJ, Tyberg JV, Walker AM. Left ventricular stroke volume in the fetal sheep is limited by extracardiac constraint and arterial pressure. J Physiol 2001; 535:231-9. [PMID: 11507172 PMCID: PMC2278767 DOI: 10.1111/j.1469-7793.2001.t01-1-00231.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Extracardiac constraint and sensitivity to arterial pressure may be critical factors that limit the functional reserves of the developing fetal heart in utero. We hypothesise that extracardiac constraint is the predominant factor that limits fetal stroke volume (SV). To test this hypothesis we studied six chronically instrumented fetal sheep to determine the relative roles that extracardiac constraint and arterial pressure play in determining left ventricular (LV) function. 2. Pregnant ewes (128-131 days gestation, term = 147 days) were anaesthetised (5 mg kg(-1) Propofol I.V., then 1.5 % halothane, 50 % O(2), balance N(2)O by inhalation) and instrumented using sterile surgical techniques to record LV end-diastolic pressure (P(lved)), aortic pressure (P(ao)), pericardial pressure (P(per)), and LV SV. 3. After a minimum of 72 h recovery, LV function was assessed by altering fetal blood volume to vary P(lved). Ventricular function curves were generated using two measures of ventricular function, SV and stroke work index (SWI = SV x P(ao)), and two measures of ventricular filling, P(lved) and LV end-diastolic transmural pressure (P(lved,tm) = P(lved) - P(per)). 4. Although decreasing P(lved) from the resting level decreased SV, increasing P(lved) from the resting level did not increase SV because the ventricular function curve plateaued. This plateau was not explained solely by an increase in aortic pressure, as the plateau remained present in the SWI versus P(lved) curve. When extracardiac constraint was accounted for (SV against P(lved,tm)), the plateau was largely eliminated (approximately 80 %). The remaining portion of the plateau (approximately 20 %) was eliminated when both extracardiac constraint and arterial pressure were accounted for (SWI versus P(lved,tm)). 5. Thus, the major limitation upon LV function in the near-term fetus results from extracardiac constraint limiting ventricular filling while, at the same time, a much smaller limitation arises from increasing arterial pressure.
Collapse
Affiliation(s)
- D A Grant
- Ritchie Centre for Baby Health Research, Monash Institute of Reproduction and Development, Monash University, Monash Medical Centre, Clayton, Melbourne, Victoria 3168, Australia.
| | | | | | | | | |
Collapse
|
24
|
Sun YH, Anderson TJ, Parker KH, Tyberg JV. Wave-intensity analysis: a new approach to coronary hemodynamics. J Appl Physiol (1985) 2000; 89:1636-44. [PMID: 11007606 DOI: 10.1152/jappl.2000.89.4.1636] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In 10 anesthetized dogs, we measured high-fidelity left circumflex coronary (P(LCx)), aortic (P(Ao)), and left ventricular (P(LV)) pressures and left circumflex velocity (U(LCx); Doppler) and used wave-intensity analysis (WIA) to identify the determinants of P(LCx) and U(LCx). Dogs were paced from the right atrium (control 1) or right ventricle by use of single (control 2) and then paired pacing to evaluate the effects of left ventricular contraction on P(LCx) and U(LCx). During left ventricular isovolumic contraction, P(LCx) exceeded P(Ao), paired pacing increasing the difference. Paired pacing increased DeltaP(X) (the P(LCx)-P(Ao) difference at the P(Ao)-P(LV) crossover) and average dP(LCx)/dt (P < 0.0001 for both). During this time, WIA identified a backward-going compression wave (BCW) that increased P(LCx) and decreased U(LCx); the BCW increased during paired pacing (P < 0.0001). After the aortic valve opened, the increase in P(Ao) caused a forward-going compression wave that, when it exceeded the BCW, caused U(LCx) to increase, despite P(LV) and (presumably) elastance continuing to increase. Thus WIA identifies the contributions of upstream (aortic) and downstream (microcirculatory) effects on P(LCx) and U(LCx).
Collapse
Affiliation(s)
- Y H Sun
- Departments of Medicine and Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|