1
|
Armañac-Julián P, Hernando D, Lázaro J, de Haro C, Magrans R, Morales J, Moeyersons J, Sarlabous L, López-Aguilar J, Subirà C, Fernández R, Orini M, Laguna P, Varon C, Gil E, Bailón R, Blanch L. Cardiopulmonary coupling indices to assess weaning readiness from mechanical ventilation. Sci Rep 2021; 11:16014. [PMID: 34362950 PMCID: PMC8346488 DOI: 10.1038/s41598-021-95282-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/20/2021] [Indexed: 02/07/2023] Open
Abstract
The ideal moment to withdraw respiratory supply of patients under Mechanical Ventilation at Intensive Care Units (ICU), is not easy to be determined for clinicians. Although the Spontaneous Breathing Trial (SBT) provides a measure of the patients' readiness, there is still around 15-20% of predictive failure rate. This work is a proof of concept focused on adding new value to the prediction of the weaning outcome. Heart Rate Variability (HRV) and Cardiopulmonary Coupling (CPC) methods are evaluated as new complementary estimates to assess weaning readiness. The CPC is related to how the mechanisms regulating respiration and cardiac pumping are working simultaneously, and it is defined from HRV in combination with respiratory information. Three different techniques are used to estimate the CPC, including Time-Frequency Coherence, Dynamic Mutual Information and Orthogonal Subspace Projections. The cohort study includes 22 patients in pressure support ventilation, ready to undergo the SBT, analysed in the 24 h previous to the SBT. Of these, 13 had a successful weaning and 9 failed the SBT or needed reintubation -being both considered as failed weaning. Results illustrate that traditional variables such as heart rate, respiratory frequency, and the parameters derived from HRV do not differ in patients with successful or failed weaning. Results revealed that HRV parameters can vary considerably depending on the time at which they are measured. This fact could be attributed to circadian rhythms, having a strong influence on HRV values. On the contrary, significant statistical differences are found in the proposed CPC parameters when comparing the values of the two groups, and throughout the whole recordings. In addition, differences are greater at night, probably because patients with failed weaning might be experiencing more respiratory episodes, e.g. apneas during the night, which is directly related to a reduced respiratory sinus arrhythmia. Therefore, results suggest that the traditional measures could be used in combination with the proposed CPC biomarkers to improve weaning readiness.
Collapse
Affiliation(s)
- Pablo Armañac-Julián
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group at the Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - David Hernando
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group at the Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Lázaro
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group at the Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Candelaria de Haro
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació Parc Taulí I3PT, Universitat Autónoma de Barcelona, Sabadell, Spain
- CIBER de Enfermedades Respiratorias (CIBER-ES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - John Morales
- Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Jonathan Moeyersons
- Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
| | - Leonardo Sarlabous
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació Parc Taulí I3PT, Universitat Autónoma de Barcelona, Sabadell, Spain
| | - Josefina López-Aguilar
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació Parc Taulí I3PT, Universitat Autónoma de Barcelona, Sabadell, Spain
- CIBER de Enfermedades Respiratorias (CIBER-ES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carles Subirà
- Department of Intensive Care, Fundació Althaia, Universitat Internacional de Catalunya, Manresa, Spain
| | - Rafael Fernández
- CIBER de Enfermedades Respiratorias (CIBER-ES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Intensive Care, Fundació Althaia, Universitat Internacional de Catalunya, Manresa, Spain
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, London, UK
- Barts Heart Centre, St Bartholomews Hospital, University College London, London, UK
| | - Pablo Laguna
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group at the Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Varon
- Department of Electrical Engineering-ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium
- Circuits and Systems (CAS) group, Delft University of Technology, Delft, The Netherlands
| | - Eduardo Gil
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group at the Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Bailón
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) group at the Aragón Institute of Engineering Research (I3A), IIS Aragón, University of Zaragoza, Zaragoza, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Lluís Blanch
- Critical Care Center, Hospital Universitari Parc Taulí, Institut d'Investigació Parc Taulí I3PT, Universitat Autónoma de Barcelona, Sabadell, Spain
- CIBER de Enfermedades Respiratorias (CIBER-ES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Silva TMD, Silva CAA, Salgado HC, Fazan R, Silva LEV. The role of the autonomic nervous system in the patterns of heart rate fragmentation. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
3
|
Milagro J, Hernando D, Lazaro J, Casajus JA, Garatachea N, Gil E, Bailon R. Electrocardiogram-Derived Tidal Volume During Treadmill Stress Test. IEEE Trans Biomed Eng 2019; 67:193-202. [PMID: 30990416 DOI: 10.1109/tbme.2019.2911351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Electrocardiogram (ECG) has been regarded as a source of respiratory information with the main focus in the estimation of the respiratory rate. Although little research concerning the estimation of tidal volume (TV) has been conducted, there are several ECG-derived features that have been related with TV in the literature, such as ECG-derived respiration, heart rate variability, and respiratory rate. In this paper, we exploited these features for estimating TV using a linear model. METHODS 25 young (33.4 ± 5.2 years) healthy male volunteers were recruited for performing a maximal (MaxT) and a submaximal (SubT) treadmill stress test, which were conducted on different days. Both tests were automatically segmented in stages attending to the heart rate. Afterwards, a subject-specific TV model was calibrated for each stage, employing features from MaxT, and the model was later used for estimating the TV in SubT. RESULTS During exercise, the different proposed approaches led to relative fitting errors lower than 14% in most of the cases and 6% in some of them. CONCLUSION Low achieved fitting errors suggest that TV can be estimated from ECG during a treadmill stress test. SIGNIFICANCE The results suggest that it is possible to estimate TV during exercise using only ECG-derived features.
Collapse
|
4
|
Elstad M, O’Callaghan EL, Smith AJ, Ben-Tal A, Ramchandra R. Cardiorespiratory interactions in humans and animals: rhythms for life. Am J Physiol Heart Circ Physiol 2018. [DOI: 10.1152/ajpheart.00701.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cardiorespiratory system exhibits oscillations from a range of sources. One of the most studied oscillations is heart rate variability, which is thought to be beneficial and can serve as an index of a healthy cardiovascular system. Heart rate variability is dampened in many diseases including depression, autoimmune diseases, hypertension, and heart failure. Thus, understanding the interactions that lead to heart rate variability, and its physiological role, could help with prevention, diagnosis, and treatment of cardiovascular diseases. In this review, we consider three types of cardiorespiratory interactions: respiratory sinus arrhythmia (variability in heart rate at the frequency of breathing), cardioventilatory coupling (synchronization between the heart beat and the onset of inspiration), and respiratory stroke volume synchronization (the constant phase difference between the right and the left stroke volumes over one respiratory cycle). While the exact physiological role of these oscillations continues to be debated, the redundancies in the mechanisms responsible for its generation and its strong evolutionary conservation point to the importance of cardiorespiratory interactions. The putative mechanisms driving cardiorespiratory oscillations as well as the physiological significance of these oscillations will be reviewed. We suggest that cardiorespiratory interactions have the capacity to both dampen the variability in systemic blood flow as well as improve the efficiency of work done by the heart while maintaining physiological levels of arterial CO2. Given that reduction in variability is a prognostic indicator of disease, we argue that restoration of this variability via pharmaceutical or device-based approaches may be beneficial in prolonging life.
Collapse
Affiliation(s)
- Maja Elstad
- Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Erin L. O’Callaghan
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alex J. Smith
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Alona Ben-Tal
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Rohit Ramchandra
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Bhagat OL, Kharya C, Jaryal A, Deepak KK. Acute effects on cardiovascular oscillations during controlled slow yogic breathing. Indian J Med Res 2018; 145:503-512. [PMID: 28862183 PMCID: PMC5663165 DOI: 10.4103/ijmr.ijmr_830_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background & objectives: Breathing exercises are believed to modulate the cardiovascular oscillations in the body. To assess the validity of the assumption and understand the underlying mechanism, the key autonomic regulatory parameters such as heart rate variability (HRV), blood pressure variability (BPV) and baroreflex sensitivity (BRS) were recorded during controlled slow yogic breathing. Alternate nostril breathing (ANB) was selected as the yogic manoeuvre. Methods: Twelve healthy volunteers (age 30±3.8 yr) participated in the study. ANB was performed at a breathing frequency of 5 breaths per minute (bpm). In each participant, the electrocardiogram, respiratory movements, beat-to-beat BP and end-tidal carbon dioxide were recorded for five minutes each: before, during and after ANB. The records were analyzed for HRV, BPV and BRS. Results: During ANB, HRV analysis showed significant increase in the standard deviation of all NN intervals, low-frequency (LF) component, LF/HF (low frequency/high frequency) ratio and significant decrease in the HF component. BPV analysis showed a significant increase in total power in systolic BPV (SBPV), diastolic BPV (DBPV) and mean BPV. BRS analysis showed a significant increase in the total number of sequences in SBPV and DBPV and significant augmentation of α-LF and reduction in α-HF. The power spectrum showed a dominant peak in HRV at 0.08 Hz (LF component) similar to the respiratory frequency. The acute short-term change in circulatory control system declined immediately after the cessation of slow yogic breathing (ANB) and remained elevated in post-ANB stage as compared to the pre-ANB. Interpretation & conclusions: Significant increase in cardiovascular oscillations and baroreflex recruitments during-ANB suggested a dynamic interaction between respiratory and cardiovascular system. Enhanced phasic relationship with some delay indicated the complexity of the system. It indicated that respiratory and cardiovascular oscillations were coupled through multiple regulatory mechanisms, such as mechanical coupling, baroreflex and central cardiovascular control.
Collapse
Affiliation(s)
- Om Lata Bhagat
- Department of Physiology, All Institute of Medical Sciences, New Delhi, India
| | - Chhaya Kharya
- Department of Physiology, All Institute of Medical Sciences, New Delhi, India
| | - Ashok Jaryal
- Department of Physiology, All Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
6
|
Central regulation of heart rate and the appearance of respiratory sinus arrhythmia: new insights from mathematical modeling. Math Biosci 2014; 255:71-82. [PMID: 25004397 DOI: 10.1016/j.mbs.2014.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/09/2014] [Accepted: 06/26/2014] [Indexed: 11/23/2022]
Abstract
A minimal model for the neural control of heart rate (HR) has been developed with the aim of better understanding respiratory sinus arrhythmia (RSA)--a modulation of HR at the frequency of breathing. This model consists of two differential equations and is integrated into a previously-published model of gas exchange. The heart period is assumed to be affected primarily by the parasympathetic signal, with the sympathetic signal taken as a parameter in the model. We include the baroreflex, mechanical stretch-receptor feedback from the lungs, and central modulation of the cardiac vagal tone by the respiratory drive. Our model mimics a range of experimental observations and provides several new insights. Most notably, the model mimics the growth in the amplitude of RSA with decreasing respiratory frequency up to 7 breaths per minute (for humans). Our model then mimics the decrease in the amplitude of RSA at frequencies below 7 breaths per minute and predicts that this decrease is due to the baroreflex (we show this both numerically and analytically with a linear baroreflex). Another new prediction of the model is that the gating of the baroreflex leads to the dependency of RSA on mean vagal tone. The new model was also used to test two previously-suggested hypotheses regarding the physiological function of RSA and supports the hypothesis that RSA minimizes the work done by the heart while maintaining physiological levels of arterial CO2. These and other new insights the model provides extend our understanding of the integrative nature of vagal control of the heart.
Collapse
|
7
|
Dick TE, Hsieh YH, Dhingra RR, Baekey DM, Galán RF, Wehrwein E, Morris KF. Cardiorespiratory coupling: common rhythms in cardiac, sympathetic, and respiratory activities. PROGRESS IN BRAIN RESEARCH 2014; 209:191-205. [PMID: 24746049 DOI: 10.1016/b978-0-444-63274-6.00010-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cardiorespiratory coupling is an encompassing term describing more than the well-recognized influences of respiration on heart rate and blood pressure. Our data indicate that cardiorespiratory coupling reflects a reciprocal interaction between autonomic and respiratory control systems, and the cardiovascular system modulates the ventilatory pattern as well. For example, cardioventilatory coupling refers to the influence of heart beats and arterial pulse pressure on respiration and is the tendency for the next inspiration to start at a preferred latency after the last heart beat in expiration. Multiple complementary, well-described mechanisms mediate respiration's influence on cardiovascular function, whereas mechanisms mediating the cardiovascular system's influence on respiration may only be through the baroreceptors but are just being identified. Our review will describe a differential effect of conditioning rats with either chronic intermittent or sustained hypoxia on sympathetic nerve activity but also on ventilatory pattern variability. Both intermittent and sustained hypoxia increase sympathetic nerve activity after 2 weeks but affect sympatho-respiratory coupling differentially. Intermittent hypoxia enhances sympatho-respiratory coupling, which is associated with low variability in the ventilatory pattern. In contrast, after constant hypobaric hypoxia, 1-to-1 coupling between bursts of sympathetic and phrenic nerve activity is replaced by 2-to-3 coupling. This change in coupling pattern is associated with increased variability of the ventilatory pattern. After baro-denervating hypobaric hypoxic-conditioned rats, splanchnic sympathetic nerve activity becomes tonic (distinct bursts are absent) with decreases during phrenic nerve bursts and ventilatory pattern becomes regular. Thus, conditioning rats to either intermittent or sustained hypoxia accentuates the reciprocal nature of cardiorespiratory coupling. Finally, identifying a compelling physiologic purpose for cardiorespiratory coupling is the biggest barrier for recognizing its significance. Cardiorespiratory coupling has only a small effect on the efficiency of gas exchange; rather, we propose that cardiorespiratory control system may act as weakly coupled oscillator to maintain rhythms within a bounded variability.
Collapse
Affiliation(s)
- Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA.
| | - Yee-Hsee Hsieh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Rishi R Dhingra
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - David M Baekey
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Roberto F Galán
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Erica Wehrwein
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
8
|
Abstract
Pontine respiratory nuclei provide synaptic input to medullary rhythmogenic circuits to shape and adapt the breathing pattern. An understanding of this statement depends on appreciating breathing as a behavior, rather than a stereotypic rhythm. In this review, we focus on the pontine-mediated inspiratory off-switch (IOS) associated with postinspiratory glottal constriction. Further, IOS is examined in the context of pontine regulation of glottal resistance in response to multimodal sensory inputs and higher commands, which in turn rules timing, duration, and patterning of respiratory airflow. In addition, network plasticity in respiratory control emerges during the development of the pons. Synaptic plasticity is required for dynamic and efficient modulation of the expiratory breathing pattern to cope with rapid changes from eupneic to adaptive breathing linked to exploratory (foraging and sniffing) and expulsive (vocalizing, coughing, sneezing, and retching) behaviors, as well as conveyance of basic emotions. The speed and complexity of changes in the breathing pattern of behaving animals implies that "learning to breathe" is necessary to adjust to changing internal and external states to maintain homeostasis and survival.
Collapse
Affiliation(s)
- Mathias Dutschmann
- Florey Neurosciences Institutes, University of Melbourne, Victoria, Australia.
| | | |
Collapse
|
9
|
Hanson B, Gill J, Western D, Gilbey MP, Bostock J, Boyett MR, Zhang H, Coronel R, Taggart P. Cyclical modulation of human ventricular repolarization by respiration. Front Physiol 2012; 3:379. [PMID: 23055983 PMCID: PMC3457072 DOI: 10.3389/fphys.2012.00379] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/06/2012] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Respiratory modulation of autonomic input to the sinus node results in cyclical modulation of heart rate, known as respiratory sinus arrhythmia (RSA). We hypothesized that the respiratory cycle may also exert cyclical modulation on ventricular repolarization, which may be separately measurable using local endocardial recordings. METHODS AND RESULTS The study included 16 subjects with normal ventricles undergoing routine clinical electrophysiological procedures for supraventricular arrhythmias. Unipolar electrograms were recorded from 10 right and 10 left ventricular endocardial sites. Breathing was voluntarily regulated at 5 fixed frequencies (6, 9, 12, 15, and 30 breaths per min) and heart rate was clamped by RV pacing. Activation-recovery intervals (ARI: a surrogate for APD) exhibited significant (p < 0.025) cyclical variation at the respiratory frequency in all subjects; ARI shortened with inspiration and lengthened with expiration. Peak-to-peak ARI variation ranged from 0-26 ms; the spatial pattern varied with subject. Arterial blood pressure also oscillated at the respiratory frequency (p < 0.025) and lagged behind respiration by between 1.5 s and 0.65 s from slowest to fastest breathing rates respectively. Systolic oscillation amplitude was significantly greater than diastolic (14 ± 5 vs. 8 ± 4 mm Hg ± SD, p < 0.001). CONCLUSIONS Observations in humans with healthy ventricles using multiple left and right ventricular endocardial recordings showed that ARI action potential duration (APD) varied cyclically with respiration.
Collapse
Affiliation(s)
- Ben Hanson
- Department of Mechanical Engineering, University College LondonLondon, UK
| | - Jaswinder Gill
- Department of Cardiology, Guys and St. Thomas's Hospital and Kings College LondonLondon, UK
| | - David Western
- Department of Mechanical Engineering, University College LondonLondon, UK
| | - Michael P. Gilbey
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondon, UK
| | - Julian Bostock
- Department of Cardiology, Guys and St. Thomas's Hospital and Kings College LondonLondon, UK
| | - Mark R. Boyett
- Division of Cardiovascular Medicine, University of ManchesterManchester, UK
| | - Henggui Zhang
- Biological Physics Group, University of ManchesterManchester, UK
| | - Ruben Coronel
- Experimental Cardiology Group, Academic Medical CenterAmsterdam, Netherlands
| | - Peter Taggart
- Neurocardiology Unit, University College London HospitalsLondon, UK
| |
Collapse
|
10
|
Dick TE, Pilowsky PM. Foreword. Respir Physiol Neurobiol 2010; 174:1-3. [DOI: 10.1016/j.resp.2010.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 11/15/2022]
|
11
|
Larsen P, Tzeng Y, Sin P, Galletly D. Respiratory sinus arrhythmia in conscious humans during spontaneous respiration. Respir Physiol Neurobiol 2010; 174:111-8. [DOI: 10.1016/j.resp.2010.04.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/19/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
|
12
|
Gavish B. Device-guided breathing in the home setting: Technology, performance and clinical outcomes. Biol Psychol 2010; 84:150-6. [DOI: 10.1016/j.biopsycho.2010.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 02/20/2010] [Accepted: 02/21/2010] [Indexed: 01/05/2023]
|
13
|
Dick TE, Baekey DM, Paton JF, Lindsey BG, Morris KF. Cardio-respiratory coupling depends on the pons. Respir Physiol Neurobiol 2009; 168:76-85. [DOI: 10.1016/j.resp.2009.07.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
14
|
Karemaker JM. Last word on point:counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol (1985) 2009; 106:1750. [PMID: 19265067 DOI: 10.1152/japplphysiol.00225.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|