1
|
Zhong W, Cheng J, Yang X, Liu W, Li Y. Heliox Preconditioning Exerts Neuroprotective Effects on Neonatal Ischemia/Hypoxia Injury by Inhibiting Necroptosis Induced by Ca 2+ Elevation. Transl Stroke Res 2022; 14:409-424. [PMID: 35445968 DOI: 10.1007/s12975-022-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
Our previous studies have indicated that heliox preconditioning (HePC) may exert neuroprotective effects on neonatal hypoxic-ischemic encephalopathy (HIE). The present study was to investigate whether HePC alleviates neonatal HIE by inhibiting necroptosis and explore the potential mechanism. Seven-day-old rat pups were randomly divided into Sham group, HIE group, HIE + HePC group, HIE + Dantrolene (DAN) group, and HIE + Necrostatin-1 (Nec-1) group. HIE was induced by common carotid artery ligation and subsequent hypoxia exposure. The neurological function, brain injury, and molecular mechanism were evaluated by histological staining, neurobehavioral test, Western blotting, Ca2+, immunofluorescence staining, co-immunoprecipitation (Co-IP), and transmission electron microscopy (TEM). Results supported that the expression of necroptosis markers and p-RyR2 in the brain increased significantly after HIE. HePC, DAN, or Nec-1 was found to improve the neurological deficits after H/I and inhibit neuronal necroptosis. Interestingly, both HePC and DAN inhibited the increases in cytoplasmic Ca2+ and CaMK-II phosphorylation in the brain secondary to HIE, but Nec-1 failed to affect Ca2+. In conclusion, our results suggest HePC may alleviate cytoplasmic Ca2+ overload by regulating p-RyR2, which inhibits the necroptosis in the brain, exerting neuroprotective effects on HIE.
Collapse
Affiliation(s)
- Weijie Zhong
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Juan Cheng
- Department of Ultrasound, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiaosheng Yang
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Wenwu Liu
- Naval Characteristic Medical Center Diving and Hyperbaric Medicine Research Laboratory, Shanghai, 200433, People's Republic of China.
| | - Yi Li
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
2
|
Zhang J, Liu W, Bi M, Xu J, Yang H, Zhang Y. Noble Gases Therapy in Cardiocerebrovascular Diseases: The Novel Stars? Front Cardiovasc Med 2022; 9:802783. [PMID: 35369316 PMCID: PMC8966230 DOI: 10.3389/fcvm.2022.802783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiocerebrovascular diseases (CCVDs) are the leading cause of death worldwide; therefore, to deeply explore the pathogenesis of CCVDs and to find the cheap and efficient strategies to prevent and treat CCVDs, these are of great clinical and social significance. The discovery of nitric oxide (NO), as one of the endothelium-derived relaxing factors and its successful utilization in clinical practice for CCVDs, provides new ideas for us to develop drugs for CCVDs: “gas medicine” or “medical gases.” The endogenous gas molecules such as carbon monoxide (CO), hydrogen sulfide (H2S), sulfur dioxide (SO2), methane (CH4), and hydrogen (H2) have essential biological effects on modulating cardiocerebrovascular homeostasis and CCVDs. Moreover, it has been shown that noble gas atoms such as helium (He), neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe) display strong cytoprotective effects and therefore, act as the exogenous pharmacologic preventive and therapeutic agents for CCVDs. Mechanistically, besides the competitive inhibition of N-methyl-D-aspartate (NMDA) receptor in nervous system by xenon, the key and common mechanisms of noble gases are involved in modulation of cell death and inflammatory or immune signals. Moreover, gases interaction and reduction in oxidative stress are emerging as the novel biological mechanisms of noble gases. Therefore, to investigate the precise actions of noble gases on redox signals, gases interaction, different cell death forms, and the emerging field of gasoimmunology, which focus on the effects of gas atoms/molecules on innate immune signaling or immune cells under both the homeostatic and perturbed conditions, these will help us to uncover the mystery of noble gases in modulating CCVDs.
Collapse
Affiliation(s)
- Jiongshan Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wei Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mingmin Bi
- Department of Otorhinolaryngology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinwen Xu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongzhi Yang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Integrated Traditional Chinese and Western Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaxing Zhang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- Research Centre for Integrative Medicine (Key Laboratory of Chinese Medicine Pathogenesis and Therapy Research), Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Abstract
Improved understanding of post-cardiac arrest syndrome and clinical practices such as targeted temperature management have led to improved mortality in this cohort. Attention has now been placed on development of tools to aid in predicting functional outcome in comatose cardiac arrest survivors. Current practice uses a multimodal approach including physical examination, neuroimaging, and electrophysiologic data, with a primary utility in predicting poor functional outcome. These modalities remain confounded by self-fulfilling prophecy and the withdrawal of life-sustaining therapies. To date, a reliable measure to predict good functional outcome has not been established or validated, but the use of quantitative somatosensory evoked potential (SSEP) shows potential for this use. MEDLINE and EMBASE search using words "Cardiac Arrest" and "SSEP," "Somato sensory evoked potentials," "qSSEP," "quantitative SSEP," "targeted temperature management in cardiac arrest" was conducted. Relevant recent studies on targeted temperature management in cardiac arrest, plus studies on SSEP in cardiac arrest in the setting of hypothermia and without hypothermia, were included. In addition, animal studies evaluating the role of different components of SSEP in cardiac arrest were reviewed. SSEP is a specific indicator of poor outcomes in post-cardiac arrest patients but lacks sensitivity and has not clinically been established to foresee good outcomes. Novel methods of analyzing quantitative SSEP (qSSEP) signals have shown potential to predict good outcomes in animal and human studies. In addition, qSSEP has potential to track cerebral recovery and guide treatment strategy in post-cardiac arrest patients. Lying beyond the current clinical practice of dichotomized absent/present N20 peaks, qSSEP has the potential to emerge as one of the earliest predictors of good outcome in comatose post-cardiac arrest patients. Validation of qSSEP markers in prospective studies to predict good and poor outcomes in the cardiac arrest population in the setting of hypothermia could advance care in cardiac arrest. It has the prospect to guide allocation of health care resources and reduce self-fulfilling prophecy.
Collapse
|
4
|
Weber NC, Preckel B. Gaseous mediators: an updated review on the effects of helium beyond blowing up balloons. Intensive Care Med Exp 2019; 7:73. [PMID: 31858285 PMCID: PMC6923303 DOI: 10.1186/s40635-019-0288-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Noble gases, although supposed to be chemically inert, mediate numerous physiological and cellular effects, leading to protection against ischaemia-reperfusion injury in different organs. Clinically, the noble gas helium is used in treatment of airway obstruction and ventilation disorders in children and adults. In addition, studies from recent years in cells, isolated tissues, animals and finally humans show that helium has profound biological effects: helium applied before, during or after an ischaemic event reduced cellular damage, known as "organ conditioning", in some tissue, e.g. the myocardium. Although extensive research has been performed, the exact molecular mechanisms behind these organ-protective effects of helium are yet not completely understood. In addition, there are significant differences of protective effects in different organs and animal models. A translation of experimental findings to the clinical situation has yet not been shown.
Collapse
Affiliation(s)
- Nina C Weber
- Amsterdam University Medical Centers, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Benedikt Preckel
- Amsterdam University Medical Centers, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Arieli R. An alternative mechanism underlying the protection against decompression illness by helium preconditioning. J Appl Physiol (1985) 2019; 127:1175. [PMID: 31610761 DOI: 10.1152/japplphysiol.00323.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Ran Arieli
- The Israel Naval Medical Institute, Israel Defense Forces Medical Corps, Haifa, Israel.,Eliachar Research Laboratory, Western Galilee Medical Center, Nahariya, Israel
| |
Collapse
|