1
|
Wang H, Wu H, Ji C, Wang M, Xiong H, Huang X, Fan T, Gao S, Huang Y. Mechanical mechanism to induce inspiratory flow limitation in obstructive sleep apnea patients revealed from in-vitro studies. J Biomech 2023; 146:111409. [PMID: 36521227 DOI: 10.1016/j.jbiomech.2022.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Inspiratory flow limitation means that when the flowrate reaches a certain value, it no longer increases, or even decreases, which is called negative effort dependence flow limitation, even if the inspiration effort is increased. This occurs often in obstructive sleep apnea patients, but its mechanism remains unclear. To reveal the mechanism of inspiratory flow limitation, we constructed a unique partially collapsible in-vitro upper airway model of obstructive sleep apnea patients to observe the change of airway resistance with inspiratory driving pressure. The important findings demonstrate that with the increase of inspiratory effort, the driving pressure increases faster than the airway resistance in the early stages, and then the reverse occurs as the airway becomes narrower. The airway collapse caused by the transmural pressure can lead to a rapid increase in downstream resistance with the increase of inspiratory effort, which is the key reason causing the flow reduction and the formation of typical negative effort dependence flow limitation. The mechanical mechanism revealed in this study will lead to fully new insights into the study and treatment of obstructive sleep apnea.
Collapse
Affiliation(s)
- Hui Wang
- School of Biomedical Engineering, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Haijun Wu
- School of Biomedical Engineering, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Changjin Ji
- School of Biomedical Engineering, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Mengmeng Wang
- School of Biomedical Engineering, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Huahui Xiong
- School of Biomedical Engineering, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Xiaoqing Huang
- School of Biomedical Engineering, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Tingting Fan
- School of Biomedical Engineering, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Simiao Gao
- School of Biomedical Engineering, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yaqi Huang
- School of Biomedical Engineering, Capital Medical University, Beijing, China; Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Nokes B, Cooper J, Cao M. Obstructive sleep apnea: personalizing CPAP alternative therapies to individual physiology. Expert Rev Respir Med 2022; 16:917-929. [PMID: 35949101 DOI: 10.1080/17476348.2022.2112669] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction The recent continuous positive airway pressure (CPAP) crisis has highlighted the need for alternative obstructive sleep apnea (OSA) therapies. This article serves to review OSA pathophysiology and how sleep apnea mechanisms may be utilized to individualize alternative treatment options.Areas covered: The research highlighted below focuses on 1) mechanisms of OSA pathogenesis and 2) CPAP alternative therapies based on mechanism of disease. We reviewed PubMed from inception to July 2022 for relevant articles pertaining to OSA pathogenesis, sleep apnea surgery, as well as sleep apnea alternative therapies.Expert opinion: Although the field of individualized OSA treatment is still in its infancy, much has been learned about OSA traits and how they may be targeted based on a patient's physiology and preferences. While CPAP remains the gold-standard for OSA management, several novel alternatives are emerging. CPAP is a universal treatment approach for all severities of OSA. We believe that a personalized approach to OSA treatment beyond CPAP lies ahead. Additional research is needed with respect to implementation and combination of therapies longitudinally, but we are enthusiastic about the future of OSA treatment based on the data presented here.
Collapse
Affiliation(s)
- Brandon Nokes
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA.,Section of Sleep Medicine, Veterans Affairs (VA) San Diego Healthcare System, La Jolla, CA, USA
| | - Jessica Cooper
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michelle Cao
- Division of Pulmonary, Allergy, Critical Care Medicine & Division of Sleep Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
3
|
Zhu K, Farré R, Katz I, Hardy S, Escourrou P. Mimicking a flow-limited human upper airway using a collapsible tube: relationships between flow patterns and pressures in a respiratory model. J Appl Physiol (1985) 2018; 125:605-614. [PMID: 29672227 DOI: 10.1152/japplphysiol.00877.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The upper airway (UA) in humans is commonly modeled as a Starling resistor. However, negative effort dependence (NED) observed in some patients with obstructive sleep apnea (OSA) contradicts predictions based on the Starling resistor model in which inspiratory flow is independent of inspiratory driving pressure when flow is limited. In a respiratory bench model consisting of a collapsible tube and an active lung model (ASL5000), inspiratory flow characteristics were investigated in relation to upstream, downstream, and extra-luminal pressures (denoted as Pus, Pds, and Pout, respectively) by varying inspiratory effort (muscle pressure) from -1 to -20 cmH2O in the active lung. Pus was provided by a constant airway pressure device and varied from 4 to 20 cmH2O, and Pout was set at 10 and 15 cmH2O. Upstream resistance at onset of flow limitation and critical transmural pressure (Ptm) corresponding to opening of the UA were found to be independent of Pus, Pds, and Pout. With fixed Ptm, when Pds fell below a specific value (Pds'), inspiratory peak flow became constant and independent of Pds. NED plateau flow patterns at mid-inspiration (V̇n) were produced within the current bench setting when Pds fell below Pds'. V̇n was proportional to Pds, and the slope (ΔV̇n/ΔPds) increased linearly with Ptm. Ptm and Pds were the two final independent determinants of inspiratory flow. Our bench model closely mimics a flow-limited human UA, and the findings have implications for OSA treatment and research, especially for bench-testing auto-titrating devices in a more physiological way. NEW & NOTEWORTHY A respiratory model consisting of a collapsible tube was used to mimic a flow-limited human upper airway. Flow-limited breathing patterns including negative effort dependence were produced. Transmural and downstream pressures acting on the tube are the two independent determinants of the resulting inspiratory flow during flow limitation. The findings have implications for obstructive sleep apnea treatment and research, especially for bench-testing auto-titrating devices in a more physiological way.
Collapse
Affiliation(s)
- Kaixian Zhu
- Centre Explor, Air Liquide Healthcare, Gentilly, France
| | - Ramon Farré
- Unit of Biophysics and Bioengineering, Faculty of Medicine and Health Sciences, University of Barcelona-Institut Investigacions Biomediques August Pi Sunyer , Barcelona , Spain.,Centro de Investigacion Biomedica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Ira Katz
- Medical Research & Development, Air Liquide Santé International, Centre de Recherche Paris-Saclay, Les Loges-en-Josas, France.,Department of Mechanical Engineering, Lafayette College , Easton, Pennsylvania
| | | | - Pierre Escourrou
- Department of Physiology, Université Paris-Saclay, AP-HP Hôpital Antoine-Béclère, Clamart, France
| |
Collapse
|