1
|
Feng L, Li B, Yong SS, Wu X, Tian Z. Exercise and nutrition benefit skeletal muscle: From influence factor and intervention strategy to molecular mechanism. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:302-314. [PMID: 39309454 PMCID: PMC11411340 DOI: 10.1016/j.smhs.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 09/25/2024] Open
Abstract
Sarcopenia is a progressive systemic skeletal muscle disease induced by various physiological and pathological factors, including aging, malnutrition, denervation, and cardiovascular diseases, manifesting as the decline of skeletal muscle mass and function. Both exercise and nutrition produce beneficial effects on skeletal muscle growth and are viewed as feasible strategies to prevent sarcopenia. Mechanisms involve regulating blood flow, oxidative stress, inflammation, apoptosis, protein synthesis and degradation, and satellite cell activation through exerkines and gut microbiomes. In this review, we summarized and discussed the latest progress and future development of the above mechanisms for providing a theoretical basis and ideas for the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Lili Feng
- College of Education, Physical Education Department, Zhejiang University, Hangzhou, 310058, China
| | - Bowen Li
- College of Education, Physical Education Department, Zhejiang University, Hangzhou, 310058, China
| | - Su Sean Yong
- College of Education, Physical Education Department, Zhejiang University, Hangzhou, 310058, China
| | - Xiaonan Wu
- The Information and Communication College, National University of Defense Technology, Xi'an, 710106, China
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
2
|
Clemente-Suárez VJ, Rubio-Zarapuz A, Belinchón-deMiguel P, Beltrán-Velasco AI, Martín-Rodríguez A, Tornero-Aguilera JF. Impact of Physical Activity on Cellular Metabolism Across Both Neurodegenerative and General Neurological Conditions: A Narrative Review. Cells 2024; 13:1940. [PMID: 39682689 DOI: 10.3390/cells13231940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Regular physical activity plays a crucial role in modulating cellular metabolism and mitigating the progression of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis. OBJECTIVE The objective of this review is to evaluate the molecular mechanisms by which exercise influences cellular metabolism, with a focus on its potential as a therapeutic intervention for neurological disorders. METHODS A comprehensive literature review was conducted using peer-reviewed scientific articles, with a focus on the period between 2015 and 2024, to analyze the effects of exercise on mitochondrial function, oxidative stress, and metabolic health. RESULTS The findings indicate that exercise promotes mitochondrial biogenesis, enhances oxidative phosphorylation, and reduces reactive oxygen species, contributing to improved energy production and cellular resilience. These metabolic adaptations are associated with delayed disease progression and reduced symptoms in patients with neurodegenerative conditions. Additionally, integrating exercise with nutritional strategies may further enhance therapeutic outcomes by addressing metabolic disturbances comprehensively. CONCLUSIONS This review concludes that personalized exercise protocols should be developed to optimize metabolic benefits for patients with neurological diseases, while future research should focus on biomarker development for individualized treatment approaches. These findings highlight the importance of non-pharmacological interventions in managing neurodegenerative diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain
| | | | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain
- Faculty of Applied Social Sciences and Communications, Universidad Internacional de la Empresa (UNIE), 28015 Madrid, Spain
| | | |
Collapse
|
3
|
Hola V, Polanska H, Jandova T, Jaklová Dytrtová J, Weinerova J, Steffl M, Kramperova V, Dadova K, Durkalec-Michalski K, Bartos A. The Effect of Two Somatic-Based Practices Dance and Martial Arts on Irisin, BDNF Levels and Cognitive and Physical Fitness in Older Adults: A Randomized Control Trial. Clin Interv Aging 2024; 19:1829-1842. [PMID: 39525874 PMCID: PMC11550684 DOI: 10.2147/cia.s482479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background Maintaining healthy brain function during ageing is of great importance, especially for the self-sufficiency of older adults. The main aim of this study was to determine the effects of dance and martial arts on exerkines Brain Derived Neurotrophic Factor (BDNF) and irisin blood serum levels. Methods This randomized controlled trial examined the effects of dance and martial arts on serum Brain-Derived Neurotrophic Factor (BDNF) and irisin levels, as well as cognitive function, mood, and physical measures in older adults. Seventy-seven independently living older adults (mean age 70.3±3.8 years) were randomized into three groups: dance (DG), martial arts (MaG), and control (CG), followed over 12 weeks. Generalized linear models were used to assess the interventions' effects. Results There was a significant increase in BDNF levels in both the DG (1.8 ± 4.9, p < 0.05) and MaG (3.5 ± 6.3, p < 0.05), while CG experienced a decrease (-4.9 ± 8.2, p < 0.05). Between-group effects were significant for BDNF, with DG and MaG showing higher levels than CG (p < 0.05). No significant changes in irisin levels were found. Cognitive performance, particularly attention and mental flexibility (measured by the Trail Making Test A and B), significantly improved in the DG compared to CG (p < 0.05). Additionally, participants in DG showed improved mood based on the Geriatric Depression Scale (p < 0.05) compared to CG. Anthropometric T-scores were significantly associated with changes in irisin levels (p < 0.05) after intervention. Conclusion The study found that dance and martial arts upregulated BDNF levels, with dance showing notable improvements in cognitive function and mood in older adults. Changes in anthropometric measures were linked to increased irisin levels. These findings suggest that both dance and martial arts may promote healthy brain function in aging populations. Trial Registration NCT05363228.
Collapse
Affiliation(s)
- Veronika Hola
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Hana Polanska
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Tereza Jandova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | | | - Josefina Weinerova
- University Hospital Kralovske Vinohrady, Department of Neurology, Prague, Czech Republic
| | - Michal Steffl
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Veronika Kramperova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Klara Dadova
- Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | | | - Ales Bartos
- University Hospital Kralovske Vinohrady, Department of Neurology, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Department of Neurology, Prague, Czech Republic
| |
Collapse
|
4
|
Feng L, Li B, Yong SS, Wen X, Tian Z. The emerging role of exercise in Alzheimer's disease: Focus on mitochondrial function. Ageing Res Rev 2024; 101:102486. [PMID: 39243893 DOI: 10.1016/j.arr.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory impairment and cognitive dysfunction, which eventually leads to the disability and mortality of older adults. Although the precise mechanisms by which age promotes the development of AD remains poorly understood, mitochondrial dysfunction plays a central role in the development of AD. Currently, there is no effective treatment for this debilitating disease. It is well accepted that exercise exerts neuroprotective effects by ameliorating mitochondrial dysfunction in the neurons of AD, which involves multiple mechanisms, including mitochondrial dynamics, biogenesis, mitophagy, transport, and signal transduction. In addition, exercise promotes mitochondria communication with other organelles in AD neurons, which should receive more attentions in the future.
Collapse
Affiliation(s)
- Lili Feng
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Bowen Li
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Su Sean Yong
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Xu Wen
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
5
|
Li D, Jia J, Zeng H, Zhong X, Chen H, Yi C. Efficacy of exercise rehabilitation for managing patients with Alzheimer's disease. Neural Regen Res 2024; 19:2175-2188. [PMID: 38488551 PMCID: PMC11034587 DOI: 10.4103/1673-5374.391308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 11/25/2023] [Indexed: 04/24/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and degenerative neurological disease characterized by the deterioration of cognitive functions. While a definitive cure and optimal medication to impede disease progression are currently unavailable, a plethora of studies have highlighted the potential advantages of exercise rehabilitation for managing this condition. Those studies show that exercise rehabilitation can enhance cognitive function and improve the quality of life for individuals affected by AD. Therefore, exercise rehabilitation has been regarded as one of the most important strategies for managing patients with AD. Herein, we provide a comprehensive analysis of the currently available findings on exercise rehabilitation in patients with AD, with a focus on the exercise types which have shown efficacy when implemented alone or combined with other treatment methods, as well as the potential mechanisms underlying these positive effects. Specifically, we explain how exercise may improve the brain microenvironment and neuronal plasticity. In conclusion, exercise is a cost-effective intervention to enhance cognitive performance and improve quality of life in patients with mild to moderate cognitive dysfunction. Therefore, it can potentially become both a physical activity and a tailored intervention. This review may aid the development of more effective and individualized treatment strategies to address the challenges imposed by this debilitating disease, especially in low- and middle-income countries.
Collapse
Affiliation(s)
- Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Jinning Jia
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Haibo Zeng
- Department of Pathology, Huichang County People’s Hospital, Ganzhou, Jiangxi Province, China
| | - Xiaoyan Zhong
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Chenju Yi
- Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Szilágyi A, Takács B, Szekeres R, Tarjányi V, Nagy D, Priksz D, Bombicz M, Kiss R, Szabó AM, Lehoczki A, Gesztelyi R, Juhász B, Szilvássy Z, Varga B. Effects of voluntary and forced physical exercise on the retinal health of aging Wistar rats. GeroScience 2024; 46:4707-4728. [PMID: 38795184 PMCID: PMC11336036 DOI: 10.1007/s11357-024-01208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
Aging is accompanied by an increased prevalence of degenerative conditions, including those affecting ocular health, which significantly impact quality of life and increase the burden on healthcare systems. Among these, retinal aging is of particular concern due to its direct link to vision impairment, a leading cause of disability in the elderly. Vision loss in the aging population is associated with heightened risks of cognitive decline, social isolation, and morbidity. This study addresses the critical gap in our understanding of modifiable lifestyle factors, such as physical exercise, that may mitigate retinal aging and its related pathologies. We investigated the effects of different exercise regimens-voluntary (recreational-type) and forced (high-intensity)-on the retinal health of aging Wistar rats (18-month-old), serving as a model for studying the translational potential of exercise interventions in humans. Male Wistar rats were divided into four groups: a young control (3-month-old) for baseline comparison, an aged sedentary control, an aged group engaging in voluntary exercise via a running wheel in their cage, and an aged group subjected to forced exercise on a treadmill for six sessions of 20 min each per week. After a 6-month experimental period, we assessed retinal function via electroretinography (ERG), measured retinal thickness histologically, and analyzed protein expression changes relevant to oxidative stress, inflammation, and anti-aging mechanisms. Our findings reveal that voluntary exercise positively impacts retinal function and morphology, reducing oxidative stress and inflammation markers while enhancing anti-aging protein expression. In contrast, forced exercise showed diminished benefits. These insights underscore the importance of exercise intensity and preference in preserving retinal health during aging. The study highlights the potential of recreational physical activity as a non-invasive strategy to counteract retinal aging, advocating for further research into exercise regimens as preventative therapies for age-related ocular degenerations.
Collapse
Affiliation(s)
- Anna Szilágyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Barbara Takács
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Réka Szekeres
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Vera Tarjányi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Dávid Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Rita Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Adrienn Mónika Szabó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Andrea Lehoczki
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Balázs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary.
| |
Collapse
|
7
|
Yan L, Wang WJ, Cheng T, Yang DR, Wang YJ, Wang YZ, Yang FZ, So KF, Zhang L. Hepatic kynurenic acid mediates phosphorylation of Nogo-A in the medial prefrontal cortex to regulate chronic stress-induced anxiety-like behaviors in mice. Acta Pharmacol Sin 2024; 45:2032-2044. [PMID: 38811774 PMCID: PMC11420350 DOI: 10.1038/s41401-024-01302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Exercise training effectively relieves anxiety disorders via modulating specific brain networks. The role of post-translational modification of proteins in this process, however, has been underappreciated. Here we performed a mouse study in which chronic restraint stress-induced anxiety-like behaviors can be attenuated by 14-day persistent treadmill exercise, in association with dramatic changes of protein phosphorylation patterns in the medial prefrontal cortex (mPFC). In particular, exercise was proposed to modulate the phosphorylation of Nogo-A protein, which drives the ras homolog family member A (RhoA)/ Rho-associated coiled-coil-containing protein kinases 1(ROCK1) signaling cascade. Further mechanistic studies found that liver-derived kynurenic acid (KYNA) can affect the kynurenine metabolism within the mPFC, to modulate this RhoA/ROCK1 pathway for conferring stress resilience. In sum, we proposed that circulating KYNA might mediate stress-induced anxiety-like behaviors via protein phosphorylation modification within the mPFC, and these findings shed more insights for the liver-brain communications in responding to both stress and physical exercise.
Collapse
Affiliation(s)
- Lan Yan
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Wen-Jing Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Tong Cheng
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Di-Ran Yang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Ya-Jie Wang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Yang-Ze Wang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Feng-Zhen Yang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Kwok-Fai So
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266114, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| | - Li Zhang
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266114, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
8
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Watkins BA, Smith BJ, Volpe SL, Shen CL. Exerkines, Nutrition, and Systemic Metabolism. Nutrients 2024; 16:410. [PMID: 38337694 PMCID: PMC10857119 DOI: 10.3390/nu16030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The cornerstones of good health are exercise, proper food, and sound nutrition. Physical exercise should be a lifelong routine, supported by proper food selections to satisfy nutrient requirements based on energy needs, energy management, and variety to achieve optimal metabolism and physiology. The human body is sustained by intermediary and systemic metabolism integrating the physiologic processes for cells, tissues, organs, and systems. Recently, interest in specific metabolites, growth factors, cytokines, and hormones called exerkines has emerged to explain cooperation between nutrient supply organs and the brain during exercise. Exerkines consist of different compounds described as signaling moiety released during and after exercise. Examples of exerkines include oxylipin 12, 13 diHOME, lipid hormone adiponectin, growth factor BDNF, metabolite lactate, reactive oxygen species (ROS), including products of fatty acid oxidation, and cytokines such as interleukin-6. At this point, it is believed that exerkines are immediate, fast, and long-lasting factors resulting from exercise to support body energy needs with an emphasis on the brain. Although exerkines that are directly a product of macronutrient metabolism such as lactate, and result from catabolism is not surprising. Furthermore, other metabolites of macronutrient metabolism seem to be candidate exerkines. The exerkines originate from muscle, adipose, and liver and support brain metabolism, energy, and physiology. The purpose of this review is to integrate the actions of exerkines with respect to metabolism that occurs during exercise and propose other participating factors of exercise and brain physiology. The role of diet and macronutrients that influence metabolism and, consequently, the impact of exercise will be discussed. This review will also describe the evidence for PUFA, their metabolic and physiologic derivatives endocannabinoids, and oxylipins that validate them being exerkines. The intent is to present additional insights to better understand exerkines with respect to systemic metabolism.
Collapse
Affiliation(s)
- Bruce A. Watkins
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Brenda J. Smith
- Department of Obstetrics and Gynecology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - Stella Lucia Volpe
- Department of Human Nutrition, Foods, and Exercise, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA 24061, USA;
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
10
|
Norweg A, Yao L, Barbuto S, Nordvig AS, Tarpey T, Collins E, Whiteson J, Sweeney G, Haas F, Leddy J. Exercise Intolerance Associated with Impaired Oxygen Extraction in Patients with Long COVID. Respir Physiol Neurobiol 2023; 313:104062. [PMID: 37076024 PMCID: PMC10108551 DOI: 10.1016/j.resp.2023.104062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/08/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVE Chronic mental and physical fatigue and post-exertional malaise are the more debilitating symptoms of long COVID-19. The study objective was to explore factors contributing to exercise intolerance in long COVID-19 to guide development of new therapies. Exercise capacity data of patients referred for a cardiopulmonary exercise test (CPET) and included in a COVID-19 Survivorship Registry at one urban health center were retrospectively analyzed. RESULTS Most subjects did not meet normative criteria for a maximal test, consistent with suboptimal effort and early exercise termination. Mean O2 pulse peak % predicted (of 79 ± 12.9) was reduced, supporting impaired energy metabolism as a mechanism of exercise intolerance in long COVID, n=59. We further identified blunted rise in heart rate peak during maximal CPET. Our preliminary analyses support therapies that optimize bioenergetics and improve oxygen utilization for treating long COVID-19.
Collapse
Affiliation(s)
- Anna Norweg
- Department of Rehabilitation and Regenerative Medicine, Columbia University College of Physicians and Surgeons.
| | - Lanqiu Yao
- Department of Population Health, New York University Grossman School of Medicine
| | - Scott Barbuto
- Department of Rehabilitation and Regenerative Medicine, Columbia University College of Physicians and Surgeons
| | | | - Thaddeus Tarpey
- Department of Population Health, New York University Grossman School of Medicine
| | - Eileen Collins
- College of Nursing, University of Illinois At Chicago, Chicago
| | - Jonathan Whiteson
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine
| | - Greg Sweeney
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine
| | - Francois Haas
- Department of Rehabilitation Medicine, New York University Grossman School of Medicine
| | - John Leddy
- UBMD Depart of Orthopaedics and Sports Medicine, SUNY Buffalo Jacobs School of Medicine and Biomedical Science
| |
Collapse
|