1
|
Maceira AM, Guardiola S, Ripoll C, Cosin-Sales J, Belloch V, Salazar J. Detection of subclinical myocardial dysfunction in cocaine addicts with feature tracking cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2020; 22:70. [PMID: 32981526 PMCID: PMC7520970 DOI: 10.1186/s12968-020-00663-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cocaine is an addictive, sympathomimetic drug with potentially lethal effects. We have previously shown with cardiovascular magnetic resonance (CMR) the presence of cardiovascular involvement in a significant percentage of consecutive asymptomatic cocaine addicts. CMR with feature-tracking analysis (CMR-FT) allows for the quantification of myocardial deformation which may detect preclinical involvement. Therefore, we aimed to assess the effects of cocaine on the left ventricular myocardium in a group of asymptomatic cocaine users with CMR-FT. METHODS In a cohort of asymptomatic cocaine addicts (CA) who had been submitted to CMR at 3 T, we used CMR-FT to measure strain, strain rate and dyssynchrony index in CA with mildly decreased left ventricular ejection fraction (CA-LVEFd) and in CA with preserved ejection fraction (CA-LVEFp). We also measured these parameters in 30 age-matched healthy subjects. RESULTS There were no differences according to age. Significant differences were seen in global longitudinal, radial and circumferential strain, in global longitudinal and radial strain rate and in radial and circumferential dyssynchrony index among the groups, with the lowest values in CA-LVEFd and intermediate values in CA-LVEFp. Longitudinal, radial and circumferential strain values were significantly lower in CA-LVEFp with respect to controls. CONCLUSIONS CA-LVEFp show decreased systolic strain and strain rate values, with intermediate values between healthy controls and CA-LVEFd. Signs suggestive of dyssynchrony were also detected. In CA, CMR-FT based strain analysis can detect early subclinical myocardial involvement.
Collapse
Affiliation(s)
- Alicia M. Maceira
- Cardiovascular Unit, Ascires Biomedical Grup, C/ Marques de San Juan Nº6, 46015, Valencia, Spain
- Department of Medicine, Health Sciences School, CEU-Cardenal Herrera University, C/ Santiago Ramón y Cajal, s/n, 46115 Alfara del Patriarca, Moncada-Valencia, Spain
| | - Sara Guardiola
- Cardiovascular Unit, Ascires Biomedical Grup, C/ Marques de San Juan Nº6, 46015, Valencia, Spain
| | - Carmen Ripoll
- Addictions Treatment Unit of Campanar, La Fe Hospital, Valencia, Spain
| | - Juan Cosin-Sales
- Department of Cardiology, Hospital Arnau de Vilanova, Valencia, Spain
| | - Vicente Belloch
- Cardiovascular Unit, Ascires Biomedical Grup, C/ Marques de San Juan Nº6, 46015, Valencia, Spain
| | - Jose Salazar
- Department of Psychiatry, Hospital General Universitario, Valencia, Spain
| |
Collapse
|
2
|
Chung CS, Shmuylovich L, Kovács SJ. What global diastolic function is, what it is not, and how to measure it. Am J Physiol Heart Circ Physiol 2015; 309:H1392-406. [DOI: 10.1152/ajpheart.00436.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/17/2015] [Indexed: 12/17/2022]
Abstract
Despite Leonardo da Vinci's observation (circa 1511) that “the atria or filling chambers contract together while the pumping chambers or ventricles are relaxing and vice versa,” the dynamics of four-chamber heart function, and of diastolic function (DF) in particular, are not generally appreciated. We view DF from a global perspective, while characterizing it in terms of causality and clinical relevance. Our models derive from the insight that global DF is ultimately a result of forces generated by elastic recoil, modulated by cross-bridge relaxation, and load. The interaction between recoil and relaxation results in physical wall motion that generates pressure gradients that drive fluid flow, while epicardial wall motion is constrained by the pericardial sac. Traditional DF indexes (τ, E/E′, etc.) are not derived from causal mechanisms and are interpreted as approximating either stiffness or relaxation, but not both, thereby limiting the accuracy of DF quantification. Our derived kinematic models of isovolumic relaxation and suction-initiated filling are extensively validated, quantify the balance between stiffness and relaxation, and provide novel mechanistic physiological insight. For example, causality-based modeling provides load-independent indexes of DF and reveals that both stiffness and relaxation modify traditional DF indexes. The method has revealed that the in vivo left ventricular equilibrium volume occurs at diastasis, predicted novel relationships between filling and wall motion, and quantified causal relationships between ventricular and atrial function. In summary, by using governing physiological principles as a guide, we define what global DF is, what it is not, and how to measure it.
Collapse
Affiliation(s)
- Charles S. Chung
- Department of Physiology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, and Department of Physiology, Wayne State University, Detroit, Michigan; and
| | - Leonid Shmuylovich
- Cardiovascular Biophysics Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Sándor J. Kovács
- Cardiovascular Biophysics Laboratory, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Ariza J, Casanova MA, Esteban F, Ciudad MM, Trapiello L, Herrera N. Peak early diastolic mitral annulus velocity by tissue Doppler imaging for the assessment of left ventricular relaxation in subjects with mitral annulus calcification. Eur Heart J Cardiovasc Imaging 2015; 17:804-11. [DOI: 10.1093/ehjci/jev219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 08/10/2015] [Indexed: 11/14/2022] Open
|
4
|
Kovács SJ. Diastolic function in heart failure. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 9:49-55. [PMID: 25922587 PMCID: PMC4401253 DOI: 10.4137/cmc.s18743] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/26/2015] [Accepted: 01/31/2015] [Indexed: 01/08/2023]
Abstract
Heart failure has reached epidemic proportions, and diastolic heart failure or heart failure with preserved ejection fraction (HFpEF) constitutes about 50% of all heart failure admissions. Long-term prognosis of both reduced ejection fraction heart failure and HFpEF are similarly dismal. No pharmacologic agent has been developed that actually treats or repairs the physiologic deficit(s) responsible for HFpEF. Because the physiology of diastole is both subtle and counterintuitive, its role in heart failure has received insufficient attention. In this review, the focus is on the physiology of diastole in heart failure, the dominant physiologic laws that govern the process in all hearts, how all hearts work as a suction pump, and, therefore, the elucidation and characterization of what actually is meant by "diastolic function". The intent is for the reader to understand what diastolic function actually is, what it is not, and how to measure it. Proper measurement of diastolic function requires one to go beyond the usual E/A, E/E', etc. phenomenological metrics and employ more rigorous causality (mathematical modeling) based parameters of diastolic function. The method simultaneously provides new physiologic insight into the meaning of in vivo "equilibrium volume" of the left ventricle (LV), longitudinal versus transverse volume accommodation of the chamber, diastatic "ringing" of the mitral annulus, and the mechanism of L-wave generation, as well as availability of a load-independent index of diastolic function (LIIDF). One important consequence of understanding what diastolic function is, is the recognition that all that current therapies can do is basically alter the load, rather than actually "repair" the functional components (chamber stiffness, chamber relaxation). If beneficial (biological/structural/metabolic) remodeling due to therapy does manifest ultimately as improved diastolic function, it is due to resumption of normal physiology (as in alleviation of ischemia) or activation of compensatory pathways already devised by evolution. In summary, meaningful quantitative characterization of diastolic function in any clinical setting, including heart failure, requires metrics based on physiologic mechanisms that quantify the suction pump attribute of the heart. This requires advancing beyond phenomenological global indexes such as E/A, E/E', Vp, etc. and employing causality (mathematical modeling) based parameters of diastolic function easily obtained via the parametrized diastolic function (PDF) formalism.
Collapse
Affiliation(s)
- Sándor J Kovács
- Cardiovascular Biophysics Laboratory, Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, Department of Biomedical Engineering, School of Engineering and Applied Science, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
5
|
Stephensen S, Steding-Ehrenborg K, Munkhammar P, Heiberg E, Arheden H, Carlsson M. The relationship between longitudinal, lateral, and septal contribution to stroke volume in patients with pulmonary regurgitation and healthy volunteers. Am J Physiol Heart Circ Physiol 2014; 306:H895-903. [PMID: 24441546 DOI: 10.1152/ajpheart.00483.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Septal systolic motion is towards the left ventricle (LV) in healthy hearts. Patients with pulmonary regurgitation (PR) and right ventricular (RV) volume overload have systolic septal motion toward the RV. This may affect the longitudinal contribution from atrioventricular plane displacement (AVPD) and septal and lateral contribution to stroke volume (SV). The study aimed to quantify these contributions to SV in patients with PR. Cardiac magnetic resonance imaging was used for assessment of cardiac volumes. Patients (n = 30; age 9-59 yr) with PR due to surgically corrected tetralogy of Fallot and 54 healthy controls (age 10-66 yr) were studied. Longitudinal contribution to RVSV was 47 ± 2% (means ± SE) in patients with PR and 79 ± 1% in controls (P < 0.001). Lateral contribution to RVSV and LVSV was 40 ± 1 and 62 ± 2% in patients and 31 ± 1 and 36 ± 1% in controls (P < 0.001 for both). Septal motion contributed to RVSV by 8 ± 1% in patients and by 7 ± 1% to LVSV in controls (P < 0.001). PR patients have decreased longitudinal contribution to RVSV and increased lateral pumping, resulting in larger outer volume changes and septal motion towards the RV. The changes in RV pumping physiology may be explained by RV remodeling resulting in lower systolic inflow of blood into the right atrium in relation to SV. This avoids the development of pendulum volume between the caval veins and right atrium, which would occur in PR patients if longitudinal contribution to SV was preserved. Decreased AVPD suggests that tricuspid annular excursion, a marker of RV function, is less valid in these patients.
Collapse
Affiliation(s)
- Sigurdur Stephensen
- Department of Clinical Physiology and Nuclear Medicine, Lund University, Lund University Hospital, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Both clinical and experimental findings at the molecular, cellular, tissue, organ and systematic levels have depicted the presence of a contemporary regulatory machinery namely compensation in various forms of cardiovascular diseases. Compensation is believed to be present and regulated within the scope of a biological entity and represents the initiation of dyshomeostasis. Compensation can be identified in multiple categories and organs in cardiovascular diseases at multiple levels. The capacity to reduce the unfavorable pathological compensation may be a criterion to evaluate the therapeutic effectiveness for cardiovascular diseases. This mini-review tries to take compensation into consideration in the understanding of onset and progression of cardiovascular diseases in particular, and thus, better or optimal therapeutic approaches may be achieved for the prevention and management of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiu-Juan Fan
- China Nepstar Chain Drugstore Ltd., Hangzhou 310003, Zhejiang, China.
| | | |
Collapse
|
7
|
Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann Biomed Eng 2013; 41:1049-61. [PMID: 23389556 DOI: 10.1007/s10439-013-0755-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
For the left ventricle (LV) to function as an effective pump it must be able to fill from a low left atrial pressure. However, this ability is lost in patients with heart failure. We investigated LV filling by measuring the cardiac blood flow using 2D phase contrast magnetic resonance imaging and quantified the intraventricular pressure gradients and the strength and location of vortices. In normal subjects, blood flows towards the apex prior to the mitral valve opening, and the mitral annulus moves rapidly away after the valve opens, with both effects enhancing the vortex ring at the mitral valve tips. Instead of being a passive by-product of the process as was previously believed, this ring facilitates filling by reducing convective losses and enhancing the function of the LV as a suction pump. The virtual channel thus created by the vortices may help insure efficient mass transfer for the left atrium to the LV apex. Impairment of this mechanism contributes to diastolic dysfunction, with LV filling becoming dependent on left atrial pressure, which can lead to eventual heart failure. Better understanding of the mechanics of this progression may lead to more accurate diagnosis and treatment of this disease.
Collapse
|
8
|
Ghosh E, Shmuylovich L, Kovács SJ. Vortex formation time-to-left ventricular early rapid filling relation: model-based prediction with echocardiographic validation. J Appl Physiol (1985) 2010; 109:1812-9. [DOI: 10.1152/japplphysiol.00645.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During early rapid filling, blood aspirated by the left ventricle (LV) generates an asymmetric toroidal vortex whose development has been quantified using vortex formation time (VFT), a dimensionless index defined by the length-to-diameter ratio of the aspirated (equivalent cylindrical) fluid column. Since LV wall motion generates the atrioventricular pressure gradient resulting in the early transmitral flow (Doppler E-wave) and associated vortex formation, we hypothesized that the causal relation between VFT and diastolic function (DF), parametrized by stiffness, relaxation, and load, can be elucidated via kinematic modeling. Gharib et al. (Gharib M, Rambod E, Kheradvar A, Sahn DJ, Dabiri JO. Proc Natl Acad Sci USA 103: 6305–6308, 2006) approximated E-wave shape as a triangle and calculated VFTGharib as triangle (E-wave) area (cm) divided by peak (Doppler M-mode derived) mitral orifice diameter (cm). We used a validated kinematic model of filling for the E-wave as a function of time, parametrized by stiffness, viscoelasticity, and load. To calculate VFTkinematic, we computed the curvilinear E-wave area (using the kinematic model) and divided it by peak effective orifice diameter. The derived VFT-to-LV early rapid filling relation predicts VFT to be a function of peak E-wave-to-peak mitral annular tissue velocity (Doppler E′-wave) ratio as (E/E′)3/2. Validation utilized 262 cardiac cycles of simultaneous echocardiographic high-fidelity hemodynamic data from 12 subjects. VFTGharib and VFTkinematic were calculated for each subject and were well-correlated ( R2 = 0.66). In accordance with prediction, VFTkinematic to (E/E′)3/2 relationship was validated ( R 2 = 0.63). We conclude that VFTkinematic is a DF index computable in terms of global kinematic filling parameters of stiffness, viscoelasticity, and load. Validation of the fluid mechanics-to-chamber kinematics relation unites previously unassociated DF assessment methods and elucidates the mechanistic basis of the strong correlation between VFT and (E/E′)3/2.
Collapse
Affiliation(s)
- Erina Ghosh
- Department of Biomedical Engineering, School of Engineering and Applied Science, and
| | - Leonid Shmuylovich
- Department of Physics, College of Arts and Sciences, Washington University, St. Louis, Missouri
| | - Sándor J. Kovács
- Cardiovascular Biophysics Laboratory, Cardiovascular Division, Department of Internal Medicine, School of Medicine,
- Department of Biomedical Engineering, School of Engineering and Applied Science, and
- Department of Physics, College of Arts and Sciences, Washington University, St. Louis, Missouri
| |
Collapse
|
9
|
Ugander M, Carlsson M, Arheden H. Short-axis epicardial volume change is a measure of cardiac left ventricular short-axis function, which is independent of myocardial wall thickness. Am J Physiol Heart Circ Physiol 2009; 298:H530-5. [PMID: 19933422 DOI: 10.1152/ajpheart.00153.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fractional shortening (FS) by echocardiography is considered to represent the short-axis contribution to the stroke volume (SV), also called short-axis function. However, FS is mathematically coupled to the amount of myocardium, since it rearranges during atrioventricular plane displacement (AVPD). The SV is the sum of the volumes generated by 1) reduction in outer volume of the heart, and 2) inner AVPD. The long-axis contribution to the SV is generated by AVPD, and thus the short-axis contribution is the remaining outer volume change of the heart, which should be unrelated to myocardial wall thickness. We hypothesized that both endocardial and midwall shortening indexed to SV are dependent on myocardial wall thickness, whereas epicardial volume change (EVC) indexed to SV is not. Twelve healthy volunteers (normals), 12 athletes, and 12 patients with dilated cardiomyopathy (ejection fraction < 30%) underwent cine cardiac magnetic resonance imaging. Left ventricular long-axis function was measured as the portion of the SV, in milliliters, generated by AVPD. EVC was defined as SV minus long-axis function. Endocardial and midwall shortening were measured in a midventricular short-axis slice. Endocardial shortening/SV and midwall shortening/SV both varied in relation to end-diastolic myocardial wall thickness (R(2) = 0.16, P = 0.008 and R(2) = 0.14, P = 0.012, respectively), whereas EVC/SV did not (R(2) = 0.00, P = 0.37). FS is dependent on myocardial wall thickness, whereas EVC is not and therefore represents true short-axis function. This is not surprising considering that FS is mainly caused by rearrangement of myocardium secondary to long-axis function. FS is therefore not synonymous with short-axis function.
Collapse
Affiliation(s)
- Martin Ugander
- Cardiac MR Group, Department of Clinical Physiology, Lund University Hospital, Lund University, Lund, Sweden
| | | | | |
Collapse
|