1
|
Hackmann MJ, Cairncross A, Elliot JG, Mulrennan S, Nilsen K, Thompson BR, Li Q, Karnowski K, Sampson DD, McLaughlin RA, Cense B, James AL, Noble PB. Quantification of smooth muscle in human airways by polarization-sensitive optical coherence tomography requires correction for perichondrium. Am J Physiol Lung Cell Mol Physiol 2024; 326:L393-L408. [PMID: 38261720 DOI: 10.1152/ajplung.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 01/25/2024] Open
Abstract
Quantifying airway smooth muscle (ASM) in patients with asthma raises the possibility of improved and personalized disease management. Endobronchial polarization-sensitive optical coherence tomography (PS-OCT) is a promising quantitative imaging approach that is in the early stages of clinical translation. To date, only animal tissues have been used to assess the accuracy of PS-OCT to quantify absolute (rather than relative) ASM in cross sections with directly matched histological cross sections as validation. We report the use of whole fresh human and pig airways to perform a detailed side-by-side qualitative and quantitative validation of PS-OCT against gold-standard histology. We matched and quantified 120 sections from five human and seven pig (small and large) airways and linked PS-OCT signatures of ASM to the tissue structural appearance in histology. Notably, we found that human cartilage perichondrium can share with ASM the properties of birefringence and circumferential alignment of fibers, making it a significant confounder for ASM detection. Measurements not corrected for perichondrium overestimated ASM content several-fold (P < 0.001, paired t test). After careful exclusion of perichondrium, we found a strong positive correlation (r = 0.96, P < 0.00001) of ASM area measured by PS-OCT and histology, supporting the method's application in human subjects. Matching human histology further indicated that PS-OCT allows conclusions on the intralayer composition and in turn potential contractile capacity of ASM bands. Together these results form a reliable basis for future clinical studies.NEW & NOTEWORTHY Polarization-sensitive optical coherence tomography (PS-OCT) may facilitate in vivo measurement of airway smooth muscle (ASM). We present a quantitative validation correlating absolute ASM area from PS-OCT to directly matched histological cross sections using human tissue. A major confounder for ASM quantification was observed and resolved: fibrous perichondrium surrounding hyaline cartilage in human airways presents a PS-OCT signature similar to ASM for birefringence and optic axis orientation. Findings impact the development of automated methods for ASM segmentation.
Collapse
Affiliation(s)
- Michael J Hackmann
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Alvenia Cairncross
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Australia
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Australia
| | - Siobhain Mulrennan
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Institute of Respiratory Health, The University of Western Australia, Crawley, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Kris Nilsen
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Bruce R Thompson
- Melbourne School of Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Qingyun Li
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
| | - Karol Karnowski
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- International Centre for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - David D Sampson
- School of Computer Science and Electronic Engineering, University of Surrey, Guildford, United Kingdom
| | - Robert A McLaughlin
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - Barry Cense
- Department of Electrical, Electronic, and Computer Engineering, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Alan L James
- Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
2
|
Hackmann MJ, Elliot JG, Green FHY, Cairncross A, Cense B, McLaughlin RA, Langton D, James AL, Noble PB, Donovan GM. Requirements and limitations of imaging airway smooth muscle throughout the lung in vivo. Respir Physiol Neurobiol 2022; 301:103884. [PMID: 35301143 DOI: 10.1016/j.resp.2022.103884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022]
Abstract
Clinical visualization and quantification of the amount and distribution of airway smooth muscle (ASM) in the lungs of individuals with asthma has major implications for our understanding of airway wall remodeling as well as treatments targeted at the ASM. This paper theoretically investigates the feasibility of quantifying airway wall thickness (focusing on the ASM) throughout the lung in vivo by means of bronchoscopic polarization-sensitive optical coherence tomography (PS-OCT). Using extensive human biobank data from subjects with and without asthma in conjunction with a mathematical model of airway compliance, we define constraints that airways of various sizes pose to any endoscopic imaging technique and how this is impacted by physiologically relevant processes such as constriction, inflation and deflation. We identify critical PS-OCT system parameters and pinpoint parts of the airway tree that are conducive to successful quantification of ASM. We further quantify the impact of breathing and ASM contraction on the measurement error and recommend strategies for standardization and normalization.
Collapse
Affiliation(s)
- Michael J Hackmann
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia; School of Engineering, University of Western Australia, Perth, Western Australia, Australia.
| | - John G Elliot
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia; West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Francis H Y Green
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alvenia Cairncross
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Barry Cense
- School of Engineering, University of Western Australia, Perth, Western Australia, Australia; Department of Mechanical Engineering, Yonsei University, Seoul, South-Korea
| | - Robert A McLaughlin
- School of Engineering, University of Western Australia, Perth, Western Australia, Australia; Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia; Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia, Australia
| | - David Langton
- Faculty of Medicine, Nursing and Allied Health, Monash University, Melbourne, Victoria, Australia
| | - Alan L James
- West Australian Sleep Disorders Research Institute, Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia; Medical School, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Peter B Noble
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Graham M Donovan
- Department of Mathematics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
3
|
Gosens R, Grainge C. Bronchoconstriction and airway biology: potential impact and therapeutic opportunities. Chest 2015; 147:798-803. [PMID: 25732446 DOI: 10.1378/chest.14-1142] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent work has demonstrated that mechanical forces occurring in the airway as a consequence of bronchoconstriction are sufficient to not only induce symptoms but also influence airway biology. Animal and human in vitro and in vivo work demonstrates that the airways are structurally and functionally altered by mechanical stress induced by bronchoconstriction. Compression of the airway epithelium and mechanosensing by the airway smooth muscle trigger the activation and release of growth factors, causing cell proliferation, extracellular matrix protein accumulation, and goblet cell differentiation. These effects of bronchoconstriction are of major importance to asthma pathophysiology and appear sufficient to induce remodeling independent of the inflammatory response. We review these findings in detail and discuss previous studies in light of this new evidence regarding the influence of mechanical forces in the airways. Furthermore, we highlight potential impacts of therapies influencing mechanical forces on airway structure and function in asthma.
Collapse
Affiliation(s)
- Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.
| | - Chris Grainge
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
4
|
Roth M, Zhong J, Zumkeller C, S'ng CT, Goulet S, Tamm M. The role of IgE-receptors in IgE-dependent airway smooth muscle cell remodelling. PLoS One 2013; 8:e56015. [PMID: 23457493 PMCID: PMC3573085 DOI: 10.1371/journal.pone.0056015] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/09/2013] [Indexed: 02/07/2023] Open
Abstract
Background In allergic asthma, IgE increases airway remodelling but the mechanism is incompletely understood. Airway remodelling consists of two independent events increased cell numbers and enhanced extracellular matrix deposition, and the mechanism by which IgE up-regulates cell proliferation and extracellular matrix deposition by human airway smooth muscle cells in asthma is unclear. Objective Characterise the role of the two IgE receptors and associated signalling cascades in airway smooth muscle cell remodelling. Methods Primary human airway smooth muscle cells (8 asthmatics, 8 non-asthmatics) were stimulated with human purified antibody-activated IgE. Proliferation was determined by direct cell counts. Total collagen deposition was determined by Sircol; collagen species deposition by ELISA. IgE receptors were silenced by siRNA and mitogen activated protein kinase (MAPK) signalling was blocked by chemical inhibitors. Results IgE dose-dependently increased extracellular matrix and collagen deposition by airway smooth muscle cells as well as their proliferation. Specifically in cells of asthma patients IgE increased the deposition of collagen-type-I, -III, –VII and fibronectin, but did not affect the deposition of collagens type-IV. IgE stimulated collagen type-I and type-VII deposition through IgE receptor-I and Erk1/2 MAPK. Proliferation and deposition of collagens type-III and fibronectin involved both IgE receptors as well as Erk1/2 and p38 MAPK. Pre-incubation (30 minutes) with Omalizumab prevented all remodelling effects completely. We observed no changes in gelatinase activity or their inhibitors. Conclusion & Clincal Relevance Our study provides the molecular biological mechanism by which IgE increases airway remodelling in asthma through increased airway smooth muscle cell proliferation and deposition of pro-inflammatory collagens and fibronectin. Blocking IgE action prevents several aspects of airway smooth muscle cell remodelling. Our findings may explain the recently described reduction of airway wall thickness in severe asthma patients treated with humanised anti-IgE antibodies.
Collapse
Affiliation(s)
- Michael Roth
- Pulmonary Cell Research, Department Biomedicine, University of Basel, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
5
|
West AR, Zaman N, Cole DJ, Walker MJ, Legant WR, Boudou T, Chen CS, Favreau JT, Gaudette GR, Cowley EA, Maksym GN. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2012; 304:L4-16. [PMID: 23125251 DOI: 10.1152/ajplung.00168.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell "microtissues" capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma.
Collapse
Affiliation(s)
- Adrian R West
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Influence of inspiration level on bronchial lumen measurements with computed tomography. Respir Med 2011; 106:677-86. [PMID: 22154247 DOI: 10.1016/j.rmed.2011.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bronchial dimensions measured in CT images generally do not take inspiration level into consideration. However, some studies showed that the bronchial membrane is distensible with airway inflation. Therefore, re-examination of the elasticity of bronchi is needed. PURPOSE To assess the influence of respiration on bronchial lumen area (defined as distensibility) in different segmental bronchi and to explore the correlations between distensibility and both lung function and emphysema severity. MATERIAL AND METHODS In 44 subjects with COPD related to alpha-1-antitrypsin deficiency (AATD), bronchial lumen area was measured in CT images, acquired at different inspiration levels. Measurements were done at matched locations in one apical and two basal segmental airways (RB1, RB10 and LB10). Airway distensibility was calculated as lumen area difference divided by lung volume difference. RESULTS Bronchial lumen area in the lower lobes (RB10 and LB10) correlated positively with FEV(1)%predicted (p=0.027 for RB10; and p=0.037 for LB10, respectively). Lumen area is influenced by respiration (p=0.006, p=0.045, and, p=0.005 for RB1, RB10 and LB10, respectively). Airway distensibility was different between upper and lower bronchi (p<0.001), but it was not correlated with lung function. CONCLUSION Lumen area of third generation bronchi is dependent on inspiration level and this distensibility is different between bronchi in the upper and lower lobes. Therefore, changes in lumen area over time should be studied whilst accounting for the lung volume changes, in order to estimate the progression of bronchial disease while excluding the effects of hyperinflation.
Collapse
|
7
|
Donovan GM, Tawhai MH. A simplified model of airway narrowing due to bronchial mucosal folding. Respir Physiol Neurobiol 2010; 171:144-50. [PMID: 20193779 DOI: 10.1016/j.resp.2010.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 11/27/2022]
Abstract
Bronchial mucosal folding during bronchoconstriction can be a significant phenomenon, and a number of previous studies have provided models which examine a number of aspects of this important problem. Previous approaches include finite-element analyses, fluid-structure interaction, linear elasticity models, geometrical computer optimisation, and more. These models have focused on changes to the elastic properties of the airways due to mucosal folding, rather than airway narrowing, and suffer from too great a degree of computational complexity for use in multiscale, spatially distributed models of the lung now being developed. We propose a simplified, geometrical model of airway folding under the assumptions of fixed airway wall area, fixed basement membrane perimeter during constriction, specified shape and number of folds, and liquid filling of the mucosal folds, in the context of determining effective airway radius and hence airway impedance. We show that this model generates predictions in good agreement with existing models while being vastly simpler to solve.
Collapse
Affiliation(s)
- Graham M Donovan
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand.
| | | |
Collapse
|
8
|
Noble PB, West AR, McLaughlin RA, Armstrong JJ, Becker S, McFawn PK, Williamson JP, Eastwood PR, Hillman DR, Sampson DD, Mitchell HW. Airway narrowing assessed by anatomical optical coherence tomography in vitro: dynamic airway wall morphology and function. J Appl Physiol (1985) 2010; 108:401-11. [PMID: 19910337 DOI: 10.1152/japplphysiol.00511.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of airway caliber by lung volume or bronchoconstrictor stimulation is dependent on physiological, structural, and mechanical events within the airway wall, including airway smooth muscle (ASM) contraction, deformation of the mucosa and cartilage, and tensioning of elastic matrices linking wall components. Despite close association between events in the airway wall and the resulting airway caliber, these have typically been studied separately: the former primarily using histological approaches, the latter with a range of imaging modalities. We describe a new optical technique, anatomical optical coherence tomography ( aOCT), which allows changes at the luminal surface (airway caliber) to be temporally related to corresponding dynamic movements within the airway wall. A fiber-optic aOCT probe was inserted into the lumen of isolated, liquid-filled porcine airways. It was used to image the response to ASM contraction induced by neural stimulation and to airway inflation and deflation. Comparisons with histology indicated that aOCT provided high-resolution images of the airway lumen including mucosal folds, the entire inner wall (mucosa and ASM), and partially the cartilaginous outer wall. Airway responses assessed by aOCT revealed several phenomena in “live” airways (i.e., not fixed) previously identified by histological investigations of fixed tissue, including a geometric relationship between ASM shortening and luminal narrowing, and sliding and bending of cartilage plates. It also provided direct evidence for distensibility of the epithelial membrane and anisotropic behavior of the airway wall. Findings suggest that aOCT can be used to relate changes in airway caliber to dynamic events in the wall of airways.
Collapse
Affiliation(s)
- Peter B. Noble
- Division of Clinical Sciences, Telethon Institute for Child Health Research
| | - Adrian R. West
- Physiology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia
| | - Robert A. McLaughlin
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, University of Western Australia
| | - Julian J. Armstrong
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, University of Western Australia
| | - Sven Becker
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, University of Western Australia
| | - Peter K. McFawn
- Physiology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia
| | - Jonathan P. Williamson
- School of Anatomy and Human Biology, University of Western Australia
- Department of Pulmonary Physiology, Sir Charles Gairdner Hospital; and
| | - Peter R. Eastwood
- School of Anatomy and Human Biology, University of Western Australia
- Department of Pulmonary Physiology, Sir Charles Gairdner Hospital; and
- West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Perth, Australia
| | - David R. Hillman
- Department of Pulmonary Physiology, Sir Charles Gairdner Hospital; and
- West Australian Sleep Disorders Research Institute, Sir Charles Gairdner Hospital, Perth, Australia
| | - David D. Sampson
- Optical + Biomedical Engineering Laboratory, School of Electrical, Electronic and Computer Engineering, University of Western Australia
| | - Howard W. Mitchell
- Physiology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia
| |
Collapse
|
9
|
James AL, Green FH, Abramson MJ, Bai TR, Dolhnikoff M, Mauad T, McKay KO, Elliot JG. Airway basement membrane perimeter distensibility and airway smooth muscle area in asthma. J Appl Physiol (1985) 2008; 104:1703-8. [PMID: 18369095 DOI: 10.1152/japplphysiol.00169.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perimeter of the basement membrane (Pbm) of an airway viewed in cross section is used as a marker of airway size because in normal lungs it is relatively constant, despite variations in airway smooth muscle (ASM) shortening and airway collapse. In vitro studies (McParland BE, Pare PD, Johnson PR, Armour CL, Black JL. J Appl Physiol 97: 556-563, 2004; Noble PB, Sharma A, McFawn PK, Mitchell HW. J Appl Physiol 99: 2061-2066, 2005) have suggested that differential stretch of the Pbm between asthmatic and nonasthmatic airways fixed in inflation may occur and lead to an overestimation of ASM thickness in asthma. The relationships between the Pbm and the area of ASM were compared in transverse sections of airways from cases of fatal asthma (F) and from nonasthmatic control (C) cases where the lung tissue had been fixed inflated (Fi; Ci) or uninflated (Fu; Cu). When all available airways were used, the regression slopes were increased in Fu and Cu, compared with Fi and Ci, and increased in Fu and Fi, compared with Cu and Ci, suggesting effects of both inflation and asthma group, respectively. When analyses were limited to airway sizes that were available for all groups (Pbm < 15 mm), the slopes of Fi and Fu were similar, but both were greater than Ci and Cu, which were also similar. It was calculated that the effect of asthma group accounted for 80% and inflation for 20% of the differences between Fi and Ci. We conclude that the effects of inflation on the relationship between Pbm and ASM are small and do not account for the differences observed in ASM between cases of asthma and nonasthmatic controls.
Collapse
Affiliation(s)
- Alan L James
- Department of Pulmonary Physiology, West Australian Sleep Disorders Research Institute, Perth, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Slade DJ, Kraft M. Airway remodeling from bench to bedside: current perspectives. Clin Chest Med 2006; 27:71-85, vi. [PMID: 16543053 DOI: 10.1016/j.ccm.2005.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bronchospasm and airway inflammation can lead to a constellation of irreversible changes in airway structure termed remodeling. Remodeling theory offers insight into the permanent biomechanical and pathologic alterations of asthmatic airways. Structural changes seen in asthmatic patients can include thickening of the airway wall reticular basement membrane (RBM), the presence of an abnormal elastic fiber network, and alterations in airway cartilage structure. Although steroid therapy is helpful in symptomatic control, it does not remedy structural alterations or many aspects of the inflammatory milieu. This article discusses several studies and supports the need for further investigation.
Collapse
Affiliation(s)
- David J Slade
- Department of Pediatrics, Division of Pulmonology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
11
|
Abstract
Airways are embedded in the mechanically dynamic environment of the lung. In utero, this mechanical environment is defined largely by fluid secretion into the developing airway lumen. Clinical, whole lung, and cellular studies demonstrate pivotal roles for mechanical distention in airway morphogenesis and cellular behavior during lung development. In the adult lung, the mechanical environment is defined by a dynamic balance of surface, tissue, and muscle forces. Diseases of the airways modulate both the mechanical stresses to which the airways are exposed as well as the structure and mechanical behavior of the airways. For instance, in asthma, activation of airway smooth muscle abruptly changes the airway size and stress state within the airway wall; asthma also results in profound remodeling of the airway wall. Data now demonstrate that airway epithelial cells, smooth muscle cells, and fibroblasts respond to their mechanical environment. A prominent role has been identified for the epithelium in transducing mechanical stresses, and in both the fetal and mature airways, epithelial cells interact with mesenchymal cells to coordinate remodeling of tissue architecture in response to the mechanical environment.
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Physiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
12
|
Maksym GN, Deng L, Fairbank NJ, Lall CA, Connolly SC. Beneficial and harmful effects of oscillatory mechanical strain on airway smooth muscle. Can J Physiol Pharmacol 2006; 83:913-22. [PMID: 16333363 DOI: 10.1139/y05-091] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airway smooth muscle (ASM) cells are constantly under mechanical strain as the lung cyclically expands and deflates, and this stretch is now known to modulate the contractile function of ASM. However, depending on the experimental conditions, stretch is either beneficial or harmful limiting or enhancing contractile force generation, respectively. Stretch caused by a deep inspiration is known to be beneficial in limiting or reversing airway constriction in healthy individuals, and oscillatory stretch lowers contractile force and stiffness or lengthens muscle in excised airway tissue strips. Stretch in ASM culture has generally been reported to cause increased contractile function through increases in proliferation, contractile protein content, and organization of the cell cytoskeleton. Recent evidence indicates the type of stretch is critically important. Growing cells on flexible membranes where stretch is non-uniform and anisotropic leads to pro-contractile changes, whereas uniform biaxial stretch causes the opposite effects. Furthermore, the role of contractile tone might be important in modulating the response to mechanical stretch in cultured cells. This report will review the contrasting evidence for modulation of contractile function of ASM, both in vivo and in vitro, and summarize the recent evidence that mechanical stress applied either acutely within 2 h or chronically over 11 d is a potent stimulus for cytoskeletal remodelling and stiffening. We will also point to new data suggesting that perhaps some of the difference in response to stretch might lie with one of the fundamental differences in the ASM environment in asthma and in culture--the presence of elevated contractile tone.
Collapse
Affiliation(s)
- Geoffrey N Maksym
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 1W2, Canada.
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Noble PB, Sharma A, McFawn PK, Mitchell HW. Elastic properties of the bronchial mucosa: epithelial unfolding and stretch in response to airway inflation. J Appl Physiol (1985) 2005; 99:2061-6. [PMID: 16024520 DOI: 10.1152/japplphysiol.00485.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The bronchial mucosa contributes to elastic properties of the airway wall and may influence the degree of airway expansion during lung inflation. In the deflated lung, folds in the epithelium and associated basement membrane progressively unfold on inflation. Whether the epithelium and basement membrane also distend on lung inflation at physiological pressures is uncertain. We assessed mucosal distensibility from strain-stress curves in mucosal strips and related this to epithelial length and folding. Mucosal strips were prepared from pig bronchi and cycled stepwise from a strain of 0 (their in situ length at 0 transmural pressure) to a strain of 0.5 (50% increase in length). Mucosal stress and epithelial length in situ were calculated from morphometric data in bronchial segments fixed at 5 and 25 cmH(2)O luminal pressure. Mucosal strips showed nonlinear strain-stress properties, but regions at high and low stress were close to linear. Stresses calculated in bronchial segments at 5 and 25 cmH(2)O fell in the low-stress region of the strain-stress curve. The epithelium of mucosal strips was deeply folded at low strains (0-0.15), which in bronchial segments equated to < or =10 cmH(2)O transmural pressure. Morphometric measurements in mucosal strips at greater strains (0.3-0.4) indicated that epithelial length increased by approximately 10%. Measurements in bronchial segments indicated that epithelial length increased approximately 25% between 5 and 25 cmH(2)O. Our findings suggest that, at airway pressures <10 cmH(2)O, airway expansion is due primarily to epithelial unfolding but at higher pressures the epithelium also distends.
Collapse
Affiliation(s)
- P B Noble
- Physiology, School of Biomedical, Biomolecular, and Chemical Sciences, University of Western Australia, Perth, Australia
| | | | | | | |
Collapse
|