1
|
Jain V, Chuva de Sousa Lopes SM, Benotmane MA, Verratti V, Mitchell RT, Stukenborg JB. Human development and reproduction in space-a European perspective. NPJ Microgravity 2023; 9:24. [PMID: 36973260 PMCID: PMC10042989 DOI: 10.1038/s41526-023-00272-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
This review summarises key aspects of the first reproductive and developmental systems Science Community White Paper, supported by the European Space Agency (ESA). Current knowledge regarding human development and reproduction in space is mapped to the roadmap. It acknowledges that sex and gender have implications on all physiological systems, however, gender identity falls outside the scope of the document included in the white paper collection supported by ESA. The ESA SciSpacE white papers on human developmental and reproductive functions in space aim to reflect on the implications of space travel on the male and female reproductive systems, including the hypothalamic-pituitary-gonadal (HPG) reproductive hormone axis, and considerations for conception, gestation and birth. Finally, parallels are drawn as to how this may impact society as a whole on Earth.
Collapse
Affiliation(s)
- Varsha Jain
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | | | | | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University, Chieti-Pescara, Chieti, Italy
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Royal Hospital for Children and Young People, Edinburgh, UK
| | - Jan-Bernd Stukenborg
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, and Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|
2
|
Morita H, Kaji H, Ueta Y, Abe C. Understanding vestibular-related physiological functions could provide clues on adapting to a new gravitational environment. J Physiol Sci 2020; 70:17. [PMID: 32169037 PMCID: PMC7069930 DOI: 10.1186/s12576-020-00744-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
The peripheral vestibular organs are sensors for linear acceleration (gravity and head tilt) and rotation. Further, they regulate various body functions, including body stability, ocular movement, autonomic nerve activity, arterial pressure, body temperature, and muscle and bone metabolism. The gravitational environment influences these functions given the highly plastic responsiveness of the vestibular system. This review demonstrates that hypergravity or microgravity induces changes in vestibular-related physiological functions, including arterial pressure, muscle and bone metabolism, feeding behavior, and body temperature. Hopefully, this review contributes to understanding how human beings can adapt to a new gravitational environment, including the moon and Mars, in future.
Collapse
Affiliation(s)
- Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, Osakasayama, 589-8511, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, 807-8555, Japan
| | - Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| |
Collapse
|
3
|
Abstract
Extended travel in deep space poses potential hazards to the reproductive function of female and male astronauts, including exposure to cosmic radiation, microgravity, increased gravity (hypergravity), psychological stress, physical stress and circadian rhythm disruptions. This Review focuses on the effects of microgravity, hypergravity and cosmic radiation. Cosmic radiation contains protons, helium nuclei and high charge and energy (HZE) particles. Studies performed on Earth in which rodents were exposed to experimentally generated HZE particles have demonstrated a high sensitivity of ovarian follicles and spermatogenic cells to HZE particles. Exposure to microgravity during space flight and to simulated microgravity on Earth disrupts spermatogenesis and testicular testosterone synthesis in rodents, whereas the male reproductive system seems to adapt to exposure to moderate hypergravity. A few studies have investigated the effects of microgravity on female reproduction, with findings of disrupted oestrous cycling and in vitro follicle development being cause for concern. Many remaining data gaps need to be addressed, including the effects of microgravity, hypergravity and space radiation on the male and female reproductive tracts, hypothalamic-pituitary regulation of reproduction and prenatal development of the reproductive system as well as the combined effects of the multiple reproductive hazards encountered in space.
Collapse
Affiliation(s)
- Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ulrike Luderer
- Center for Occupational and Environmental Health, Department of Medicine, Department of Developmental and Cell Biology, Program in Public Health, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
4
|
Sonoda S, Yoshimura M, Abe C, Morita H, Ueno H, Motojima Y, Saito R, Maruyama T, Hashimoto H, Tanaka Y, Ueta Y. Effects of hypergravity on the gene expression of the hypothalamic feeding-related neuropeptides in mice via vestibular inputs. Peptides 2018; 105:14-20. [PMID: 29751050 DOI: 10.1016/j.peptides.2018.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/30/2018] [Accepted: 05/06/2018] [Indexed: 10/17/2022]
Abstract
The effects of hypergravity on the gene expression of the hypothalamic feeding-related neuropeptides in sham-operated (Sham) and vestibular-lesioned (VL) mice were examined by in situ hybridization histochemistry. Corticotrophin-releasing hormone (CRH) in the paraventricular nucleus was increased significantly in Sham but not in VL mice after 3 days of exposure to a 2 g environment compared with a 1 g environment. Significant decreases in pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript and significant increases in neuropeptide Y, agouti-related protein in the arcuate nucleus and orexin in the lateral hypothalamic area were observed in both Sham and VL mice. After 2 weeks of exposure, CRH and POMC were increased significantly in Sham but not in VL mice. After 8 weeks of exposure, the hypothalamic feeding-related neuropeptides were comparable between Sham and VL mice. These results suggest that the hypothalamic feeding-related neuropeptides may be affected during the exposed duration of hypergravity via vestibular inputs.
Collapse
Affiliation(s)
- Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan; First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Hirofumi Hashimoto
- Department of Regulatory Physiology, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan.
| |
Collapse
|
5
|
Casey T, Patel OV, Plaut K. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change. Physiol Genomics 2015; 47:113-28. [PMID: 25649141 DOI: 10.1152/physiolgenomics.00117.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/03/2015] [Indexed: 12/21/2022] Open
Abstract
Few studies have investigated the impact of alterations in gravity on mammalian transcriptomes. Here, we describe the impact of spaceflight on mammary transcriptome of late pregnant rats and the effect of hypergravity exposure on mammary, liver, and adipose transcriptomes in late pregnancy and at the onset of lactation. RNA was isolated from mammary collected on pregnancy day 20 from rats exposed to spaceflight from days 11 to 20 of gestation. To measure the impact of hypergravity on mammary, liver, and adipose transcriptomes we isolated RNA from tissues collected on P20 and lactation day 1 from rats exposed to hypergravity beginning on pregnancy day 9. Gene expression was measured with Affymetrix GeneChips. Microarray analysis of variance revealed alterations in gravity affected the expression of genes that regulate circadian clocks and activate mechanotransduction pathways. Changes in these systems may explain global gene expression changes in immune response, metabolism, and cell proliferation. Expression of genes that modify chromatin structure and methylation was affected, suggesting adaptation to gravity alterations may proceed through epigenetic change. Altered gravity experiments offer insights into the role of forces omnipresent on Earth that shape genomes in heritable ways. Our study is the first to analyze the impact of alterations in gravity on transcriptomes of pregnant and lactating mammals. Findings provide insight into systems that sense gravity and the way in which they affect phenotype, as well as the possibility of sustaining life beyond Earth's orbit.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, Indiana; and
| | - Osman V Patel
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan
| | - Karen Plaut
- Department of Animal Science, Purdue University, West Lafayette, Indiana; and
| |
Collapse
|
6
|
Wade CE, Baer LA, Wu X, Silliman DT, Walters TJ, Wolf SE. Severe burn and disuse in the rat independently adversely impact body composition and adipokines. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R225. [PMID: 24099533 PMCID: PMC4057079 DOI: 10.1186/cc13048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/28/2013] [Indexed: 12/26/2022]
Abstract
Introduction Severe trauma is accompanied by a period of hypermetabolism and disuse. In this study, a rat model was used to determine the effects of burn and disuse independently and in combination on body composition, food intake and adipokines. Methods Male rats were assigned to four groups 1) sham ambulatory (SA), 2) sham hindlimb unloaded (SH), 3) 40% total body surface area full thickness scald burn ambulatory (BA) and 4) burn and hindlimb unloaded (BH). Animals designated to the SH and BH groups were placed in a tail traction system and their hindlimbs unloaded. Animals were followed for 14 days. Plasma, urine, fecal and tissue samples were analyzed. Results SA had a progressive increase in body mass (BM), SH and BA no change and BH a reduction. Compared to SA, BM was reduced by 10% in both SH and BA and by 17% when combined in BH. Compared to SA, all groups had reductions in lean and fat body mass with BH being greater. The decrease in lean mass was associated with the rate of urinary corticosterone excretion. The loss in fat mass was associated with decreases in plasma leptin and adiponectin and an increase in ghrelin. Following the acute response to injury, BH had a greater food intake per 100 g BM. Food intake was associated with the levels of leptin, adiponectin and ghrelin. Conclusions The effects of the combination of burn and disuse in this animal model were additive, therefore in assessing metabolic changes with severe trauma both injury and disuse should be considered. Furthermore, the observed changes in adipokines, corticosterone and ghrelin provide insights for interventions to attenuate the hypermetabolic state following injury, possibly reducing catabolism and muscle loss and subsequent adverse effects on recovery and function.
Collapse
|
7
|
Serradj N, Picquet F, Jamon M. Early postnatal motor experience shapes the motor properties of C57BL/6J adult mice. Eur J Neurosci 2013; 38:3281-91. [PMID: 23869740 DOI: 10.1111/ejn.12311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/13/2013] [Indexed: 01/04/2023]
Abstract
This study aimed to evaluate the long-term consequences of early motor training on the muscle phenotype and motor output of middle-aged C57BL/6J mice. Neonatal mice were subjected to a variety of motor training procedures, for 3 weeks during the period of acquisition of locomotion. These procedures are widely used for motor training in adults; they include enriched environment, forced treadmill, chronic centrifugation, and hindlimb suspension. At 9 months, the mice reared in the enriched environment showed a slower type of fibre in slow muscles and a faster type in fast muscles, improved performance in motor tests, and a modified gait and body posture while walking. The proportion of fibres in the postural muscles of centrifuged mice did not change, but these mice showed improved resistance to fatigue. The suspended mice showed increased persistence of immature hybrid fibres in the tibialis, with a slower shift in the load-bearing soleus, without any behavioural changes. The forced treadmill was very stressful for the mice, but had limited effects on motor output, although a slower profile was observed in the tibialis. These results support the hypothesis that motor experience during a critical period of motor development shapes muscle phenotype and motor output. The different impacts of the various training procedures suggest that motor performance in adults can be optimized by appropriate training during a defined period of motor development.
Collapse
Affiliation(s)
- Nadjet Serradj
- Department of Physiology, Pharmacology & Neuroscience, Sophie Davis School of Biomedical Education, City College of New York/CCNY, New York, NY, USA
| | | | | |
Collapse
|
8
|
Casey TM, Plaut K. Lactation Biology Symposium: circadian clocks as mediators of the homeorhetic response to lactation. J Anim Sci 2012; 90:744-54. [PMID: 22345106 DOI: 10.2527/jas.2011-4590] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transition from pregnancy to lactation is the most stressful period in the life of a cow. During this transition, homeorhetic adaptations are coordinated across almost every organ and are marked by changes in hormones and metabolism to accommodate the increased energetic demands of lactation. Recent data from our laboratory showed that changes in circadian clocks occur in multiple tissues during the transition period in rats and indicate that the circadian system coordinates changes in the physiology of the dam needed to support lactation. Circadian rhythms coordinate the timing of physiological processes and synchronize these processes with the environment of the animal. Circadian rhythms are generated by molecular circadian clocks located in the hypothalamus (the master clock) and peripherally in every organ of the body. The master clock receives environmental and physiological cues and, in turn, synchronizes internal physiology by coordinating endocrine rhythms and metabolism through peripheral clocks. The effect of the circadian clock on lactation may be inferred by the photoperiod effect on milk production, which is accompanied by coordinated changes in the endocrine system and metabolic capacity of the dam to respond to changes in day length. We have shown that bovine mammary epithelial cells possess a functional clock that can be synchronized by external stimuli, and the expression of the aryl hydrocarbon receptor nuclear translocator-like gene, a positive limb of the core clock, is responsive to prolactin in bovine mammary explants. Others showed that 7% of genes expressed in breasts of lactating women had circadian patterns of expression, and we report that the diurnal variation of composition of bovine milk is associated with changes in expression of mammary core clock genes. Together these studies indicate that the circadian system coordinates the metabolic and hormonal changes needed to initiate and sustain lactation, and we believe that the capacity of the dam to produce milk and cope with metabolic stresses in early lactation is related to her ability to set circadian rhythms during the transition period.
Collapse
Affiliation(s)
- T M Casey
- Department of Animal Science, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
9
|
Casey T, Zakrzewska EI, Maple RL, Lintault L, Wade CE, Baer LA, Ronca AE, Plaut K. Hypergravity disruption of homeorhetic adaptations to lactation in rat dams include changes in circadian clocks. Biol Open 2012; 1:570-81. [PMID: 23213450 PMCID: PMC3509447 DOI: 10.1242/bio.2012687] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Altered gravity load induced by spaceflight (microgravity) and centrifugation (hypergravity) is associated with changes in circadian, metabolic, and reproductive systems. Exposure to 2-g hypergravity (HG) during pregnancy and lactation decreased rate of mammary metabolic activity and increased pup mortality. We hypothesize HG disrupted maternal homeorhetic responses to pregnancy and lactation are due to changes in maternal metabolism, hormone concentrations, and maternal behavior related to gravity induced alterations in circadian clocks. Effect of HG exposure on mammary, liver and adipose tissue metabolism, plasma hormones and maternal behavior were analyzed in rat dams from mid-pregnancy (Gestational day [G]11) through early lactation (Postnatal day [P]3); comparisons were made across five time-points: G20, G21, P0 (labor and delivery), P1 and P3. Blood, mammary, liver, and adipose tissue were collected for analyzing plasma hormones, glucose oxidation to CO(2) and incorporation into lipids, or gene expression. Maternal behavioral phenotyping was conducted using time-lapse videographic analyses. Dam and fetal-pup body mass were significantly reduced in HG in all age groups. HG did not affect labor and delivery; however, HG pups experienced a greater rate of mortality. PRL, corticosterone, and insulin levels and receptor genes were altered by HG. Mammary, liver and adipose tissue metabolism and expression of genes that regulate lipid metabolism were altered by HG exposure. Exposure to HG significantly changed expression of core clock genes in mammary and liver and circadian rhythms of maternal behavior. Gravity load alterations in dam's circadian system may have impacted homeorhetic adaptations needed for a successful lactation.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Science, Purdue University , West Lafayette, IN 47907 , USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bojados M, Jamon M. Exposure to hypergravity during specific developmental periods differentially affects metabolism and vestibular reactions in adult C57BL /6j mice. Eur J Neurosci 2011; 34:2024-34. [PMID: 22122506 DOI: 10.1111/j.1460-9568.2011.07919.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The development of the posturo-motor control of movement is conditioned by Earth's gravity. Missing or altered gravity during the critical periods of development delays development and induces durable changes in the vestibular, cerebellar, or muscular structures, but these are not consistently mirrored at a functional level. The differences in the time schedule of vestibular and motor development could contribute to this inconstancy. To investigate the influence of gravity on the development of vestibular and locomotor functions, we analysed the performance of adult mice subjected to hypergravity during the time covering either the vestibular or locomotor development. The mice were centrifuged at 2 g from embryonic day (E) 0 to postnatal day (P) 10 (PRE), from P10 to P30 (POST), from E0 to P30 (FULL), and from E7 to P21. Their muscular force, anxiety level, vestibular reactions, and aerobic capacity during treadmill training were then evaluated at the age of 2 and 6 months. The performance of young adults varied in relation to the period of exposure to hypergravity. The mice that acquired locomotion in hypergravity (POST and FULL) showed a lower forelimb force and delayed vestibular reactions. The mice centrifuged from conception to P10 (PRE) showed a higher aerobic capacity during treadmill training. The differences in muscular force and vestibular reactions regressed with age, but the metabolic changes persisted. These results confirmed that early exposure to hypergravity induces qualitative changes depending on the period of exposure. They validated, at a functional level, the existence of several critical periods for adaptation to gravity.
Collapse
Affiliation(s)
- Mickael Bojados
- Faculté de Médecine de la Timone, Aix-Marseille Université, Marseille Cedex, France.
| | | |
Collapse
|
11
|
Abe C, Tanaka K, Iwata C, Morita H. Vestibular-mediated increase in central serotonin plays an important role in hypergravity-induced hypophagia in rats. J Appl Physiol (1985) 2010; 109:1635-43. [PMID: 20847126 DOI: 10.1152/japplphysiol.00515.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to a hypergravity environment induces acute transient hypophagia, which is partially restored by a vestibular lesion (VL), suggesting that the vestibular system is involved in the afferent pathway of hypergravity-induced hypophagia. When rats were placed in a 3-G environment for 14 days, Fos-containing cells increased in the paraventricular hypothalamic nucleus, the central nucleus of the amygdala, the medial vestibular nucleus, the raphe nucleus, the nucleus of the solitary tract, and the area postrema. The increase in Fos expression was completely abolished or significantly suppressed by VL. Therefore, these regions may be critical for the initiation and integration of hypophagia. Because the vestibular nucleus contains serotonergic neurons and because serotonin (5-HT) is a key neurotransmitter in hypophagia, with possible involvement in motion sickness, we hypothesized that central 5-HT increases during hypergravity and induces hypophagia. To examine this proposition, the 5-HT concentrations in the cerebrospinal fluid were measured when rats were reared in a 3-G environment for 14 days. The 5-HT concentrations increased in the hypergravity environment, and these increases were completely abolished in rats with VL. Furthermore, a 5-HT(2A) antagonist (ketanserin) significantly reduced 3-G (120 min) load-induced Fos expression in the medial vestibular nucleus, and chronically administered ketanserin ameliorated hypergravity-induced hypophagia. These results indicate that hypergravity induces an increase in central 5-HT via the vestibular input and that this increase plays a significant role in hypergravity-induced hypophagia. The 5-HT(2A) receptor is involved in the signal transduction of hypergravity stress in the vestibular nucleus.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | |
Collapse
|
12
|
Casey T, Patel O, Dykema K, Dover H, Furge K, Plaut K. Molecular signatures reveal circadian clocks may orchestrate the homeorhetic response to lactation. PLoS One 2009; 4:e7395. [PMID: 19816599 PMCID: PMC2754660 DOI: 10.1371/journal.pone.0007395] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 09/18/2009] [Indexed: 12/31/2022] Open
Abstract
Genes associated with lactation evolved more slowly than other genes in the mammalian genome. Higher conservation of milk and mammary genes suggest that species variation in milk composition is due in part to the environment and that we must look deeper into the genome for regulation of lactation. At the onset of lactation, metabolic changes are coordinated among multiple tissues through the endocrine system to accommodate the increased demand for nutrients and energy while allowing the animal to remain in homeostasis. This process is known as homeorhesis. Homeorhetic adaptation to lactation has been extensively described; however how these adaptations are orchestrated among multiple tissues remains elusive. To develop a clearer picture of how gene expression is coordinated across multiple tissues during the pregnancy to lactation transition, total RNA was isolated from mammary, liver and adipose tissues collected from rat dams (n = 5) on day 20 of pregnancy and day 1 of lactation, and gene expression was measured using Affymetrix GeneChips. Two types of gene expression analysis were performed. Genes that were differentially expressed between days within a tissue were identified with linear regression, and univariate regression was used to identify genes commonly up-regulated and down-regulated across all tissues. Gene set enrichment analysis showed genes commonly up regulated among the three tissues enriched gene ontologies primary metabolic processes, macromolecular complex assembly and negative regulation of apoptosis ontologies. Genes enriched in transcription regulator activity showed the common up regulation of 2 core molecular clock genes, ARNTL and CLOCK. Commonly down regulated genes enriched Rhythmic process and included: NR1D1, DBP, BHLHB2, OPN4, and HTR7, which regulate intracellular circadian rhythms. Changes in mammary, liver and adipose transcriptomes at the onset of lactation illustrate the complexity of homeorhetic adaptations and suggest that these changes are coordinated through molecular clocks.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Lipogenesis impaired in periparturient rats exposed to altered gravity is independent of prolactin and glucocorticoid secretion. Eur J Appl Physiol 2008; 104:847-58. [DOI: 10.1007/s00421-008-0840-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|