1
|
Khorrami Chokami A, Merletti R. Right-left sEMG burst synchronization of the lumbar erector spinae muscles of seated violin players. Sci Rep 2024; 14:22992. [PMID: 39362919 PMCID: PMC11450191 DOI: 10.1038/s41598-024-69531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/06/2024] [Indexed: 10/05/2024] Open
Abstract
Burst-like activation of postural muscles has been previously described and plays a crucial role in elucidating the strategies for postural control adopted by the central nervous system (CNS). A spatio-temporal descriptor of surface electromyographic (sEMG) bursts (STB) is proposed and applied to statistically quantify the burst-like activity of the right and left (R-L) lumbar erector spinae muscle of nine seated violinists playing for two hours. The STB signal is the number of pixels of the high density sEMG (HDsEMG) maps simultaneously showing sEMG amplitude above a given threshold. Burst activity was present in all nine subjects. Four of them met four stringent criteria allowing analysis of frequency, duration, and synchronization between the R-L bursts after 0, 15, 30, 60, 120 min of playing. Mean square coherence between STBs of the two muscles was > 0.75 within ⁓1 Hz bandwidth between 2.2 Hz and 4.5 Hz depending on subject. Non-parametric statistics was applied to compare, in time and space, the R-L features of the bursts. The mean STB width was significantly associated primarily to side and secondarily to time and ranged from 100 to 250 ms. The right STB signals led the left (p < 0.02) by 0 - 160 ms.The inverted pendulum composed by the upper body of a seated violinist is controlled in an intermittent way. The erector spinae of the selected subjects were active, on average, for less than 50% of the time. These findings demonstrate a CNS strategy of intermittent back muscle activation presumably aimed to reducing fatigue during hours of playing in seated violinists.
Collapse
Affiliation(s)
- Amir Khorrami Chokami
- Department of Mathematics and Computer Science, Università di Cagliari, Italy and Collegio Carlo Alberto, Turin, Italy.
| | - Roberto Merletti
- Dept. of Electronics and Telecommunications, LISiN, Politecnico di Torino, Turin, Italy
| |
Collapse
|
2
|
Wu J, Xian J, He C, Lin H, Li J, Li F. Asymmetric Wettability Hydrogel Surfaces for Enduring Electromyographic Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405372. [PMID: 39135403 DOI: 10.1002/adma.202405372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/04/2024] [Indexed: 10/11/2024]
Abstract
Hydrogel electrode interfaces have shown tremendous promise in the acquisition of surface electromyography (EMG) signals. However, the perspiration or moisture environments will trigger the deadhesion between hydrogel electrodes and human skin. Despite the hydrophobic/hydrophilic surfaces can perform the anti-moisture or adhesion respectively, it remains a challenge to integrally form a Janus hydrogel with homogeneous mechanical elasticity and electronic performance. Herein, a surface induction strategy is proposed to approach the hydrophobic/hydrophilic hydrogel surfaces. The hydrophobic interaction between surfactants and molds regulates the distribution of hydrophobic/hydrophilic monomers on the surface. The hydrophobic molds induce a hydrophilic hydrogel surface, while the hydrophilic molds induce a hydrophobic surface. It presents a new phenomenon of reversal wettability inducing and optional hydrogel surfaces. The integral Janus hydrogel can be easily obtained by the hydrophilic molds. Balance of adhesion, elasticity, and conductivity endows the hydrogel electrode patch with durable conformal adhesion and high-fidelity EMG signals even in the sweaty epidermis due to the asymmetric wettability surfaces. This hydrogel performs the quantitative description of muscle strength and accurate fatigue assessment. It offers a reliable candidate for future practical applications in continuous digital healthcare and intelligent human-machine interaction, even the Metaverse.
Collapse
Affiliation(s)
- Jiahao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, 510632, China
| | - Jiabao Xian
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, 510632, China
| | - Chaofan He
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, 510632, China
| | - Haowen Lin
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, 510632, China
| | - Jianliang Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, 510632, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
3
|
Hojo E, Sui Y, Shan X, Zheng K, Rossman P, Manduca A, Powell GM, An KN, Zhao KD, Bauer BA, Ehman RL, Yin Z. MR elastography-based slip interface imaging (SII) for functional assessment of myofascial interfaces: A feasibility study. Magn Reson Med 2024; 92:676-687. [PMID: 38523575 PMCID: PMC11142878 DOI: 10.1002/mrm.30087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Abnormal adherence at functional myofascial interfaces is hypothesized as an important phenomenon in myofascial pain syndrome. This study aimed to investigate the feasibility of MR elastography (MRE)-based slip interface imaging (SII) to visualize and assess myofascial mobility in healthy volunteers. METHODS SII was used to assess local shear strain at functional myofascial interfaces in the flexor digitorum profundus (FDP) and thighs. In the FDP, MRE was performed at 90 Hz vibration to each index, middle, ring, and little finger. Two thigh MRE scans were performed at 40 Hz with knees flexed and extended. The normalized octahedral shear strain (NOSS) maps were calculated to visualize myofascial slip interfaces. The entropy of the probability distribution of the gradient NOSS was computed for the two knee positions at the intermuscular interface between vastus lateralis and vastus intermedius, around rectus femoris, and between vastus intermedius and vastus medialis. RESULTS NOSS map depicted distinct functional slip interfaces in the FDP for each finger. Compared to knee flexion, clearer slip interfaces and larger gradient NOSS entropy at the vastus lateralis-vastus intermedius interface were observed during knee extension, where the quadriceps are not passively stretched. This suggests the optimal position for using SII to visualize myofascial slip interface in skeletal muscles is when muscles are not subjected to any additional force. CONCLUSION The study demonstrated that MRE-based SII can visualize and assess myofascial interface mobility in extremities. The results provide a foundation for investigating the hypothesis that myofascial pain syndrome is characterized by changes in the mobility of myofascial interfaces.
Collapse
Affiliation(s)
- Emi Hojo
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yi Sui
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Xiang Shan
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Keni Zheng
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Phillip Rossman
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Garret M. Powell
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kai-Nan An
- Orthopedics Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kristin D. Zhao
- Physical Medicine and Rehabilitation, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Brent A. Bauer
- General Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Richard L. Ehman
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Ziying Yin
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
4
|
Mongold SJ, Piitulainen H, Legrand T, Ghinst MV, Naeije G, Jousmäki V, Bourguignon M. Temporally stable beta sensorimotor oscillations and cortico-muscular coupling underlie force steadiness. Neuroimage 2022; 261:119491. [PMID: 35908607 DOI: 10.1016/j.neuroimage.2022.119491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
As humans, we seamlessly hold objects in our hands, and may even lose consciousness of these objects. This phenomenon raises the unsettled question of the involvement of the cerebral cortex, the core area for voluntary motor control, in dynamically maintaining steady muscle force. To address this issue, we measured magnetoencephalographic brain activity from healthy adults who maintained a steady pinch grip. Using a novel analysis approach, we uncovered fine-grained temporal modulations in the beta sensorimotor brain rhythm and its coupling with muscle activity, with respect to several aspects of muscle force (rate of increase/decrease or plateauing high/low). These modulations preceded changes in force features by ∼40 ms and possessed behavioral relevance, as less salient or absent modulation predicted a more stable force output. These findings have consequences for the existing theories regarding the functional role of cortico-muscular coupling, and suggest that steady muscle contractions are characterized by a stable rather than fluttering involvement of the sensorimotor cortex.
Collapse
Affiliation(s)
- Scott J Mongold
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Thomas Legrand
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Vander Ghinst
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Service d'ORL et de chirurgie cervico-faciale, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gilles Naeije
- Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Centre de Référence Neuromusculaire, Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Veikko Jousmäki
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland; Aalto NeuroImaging, Aalto University School of Science, Espoo, Finland
| | - Mathieu Bourguignon
- Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; Laboratoire de Cartographie fonctionnelle du Cerveau, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, 20009 San Sebastian, Spain
| |
Collapse
|
5
|
Cerone GL, Giangrande A, Ghislieri M, Gazzoni M, Piitulainen H, Botter A. Design and validation of a wireless Body Sensor Network for integrated EEG and HD-sEMG acquisitions. IEEE Trans Neural Syst Rehabil Eng 2022; 30:61-71. [PMID: 34982687 DOI: 10.1109/tnsre.2022.3140220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Sensorimotor integration is the process through which the human brain plans the motor program execution according to external sources. Within this context, corticomuscular and corticokinematic coherence analyses are common methods to investigate the mechanism underlying the central control of muscle activation. This requires the synchronous acquisition of several physiological signals, including EEG and sEMG. Nevertheless, physical constraints of the current, mostly wired, technologies limit their application in dynamic and naturalistic contexts. In fact, although many efforts were made in the development of biomedical instrumentation for EEG and HD-sEMG signal acquisition, the need for an integrated wireless system is emerging. We hereby describe the design and validation of a new fully wireless body sensor network for the integrated acquisition of EEG and HD-sEMG signals. This Body Sensor Network is composed of wireless bio-signal acquisition modules, named sensor units, and a set of synchronization modules used as a general-purpose system for time-locked recordings. The system was characterized in terms of accuracy of the synchronization and quality of the collected signals. An in-depth characterization of the entire system and an end-to-end comparison of the wireless EEG sensor unit with a wired benchmark EEG device were performed. The proposed device represents an advancement of the State-of-the-Art technology allowing the integrated acquisition of EEG and HD-sEMG signals for the study of sensorimotor integration.
Collapse
|
6
|
Coupling between human brain activity and body movements: Insights from non-invasive electromagnetic recordings. Neuroimage 2019; 203:116177. [DOI: 10.1016/j.neuroimage.2019.116177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 01/11/2023] Open
|
7
|
Canonical maximization of coherence: A novel tool for investigation of neuronal interactions between two datasets. Neuroimage 2019; 201:116009. [PMID: 31302256 DOI: 10.1016/j.neuroimage.2019.116009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 11/23/2022] Open
Abstract
Synchronization between oscillatory signals is considered to be one of the main mechanisms through which neuronal populations interact with each other. It is conventionally studied with mass-bivariate measures utilizing either sensor-to-sensor or voxel-to-voxel signals. However, none of these approaches aims at maximizing synchronization, especially when two multichannel datasets are present. Examples include cortico-muscular coherence (CMC), cortico-subcortical interactions or hyperscanning (where electroencephalographic EEG/magnetoencephalographic MEG activity is recorded simultaneously from two or more subjects). For all of these cases, a method which could find two spatial projections maximizing the strength of synchronization would be desirable. Here we present such method for the maximization of coherence between two sets of EEG/MEG/EMG (electromyographic)/LFP (local field potential) recordings. We refer to it as canonical Coherence (caCOH). caCOH maximizes the absolute value of the coherence between the two multivariate spaces in the frequency domain. This allows very fast optimization for many frequency bins. Apart from presenting details of the caCOH algorithm, we test its efficacy with simulations using realistic head modelling and focus on the application of caCOH to the detection of cortico-muscular coherence. For this, we used diverse multichannel EEG and EMG recordings and demonstrate the ability of caCOH to extract complex patterns of CMC distributed across spatial and frequency domains. Finally, we indicate other scenarios where caCOH can be used for the extraction of neuronal interactions.
Collapse
|
8
|
Cerone GL, Botter A, Gazzoni M. A Modular, Smart, and Wearable System for High Density sEMG Detection. IEEE Trans Biomed Eng 2019; 66:3371-3380. [PMID: 30869608 DOI: 10.1109/tbme.2019.2904398] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE The use of linear or bi-dimensional electrode arrays for surface EMG detection (HD-sEMG) is gaining attention as it increases the amount and reliability of information extracted from the surface EMG. However, the complexity of the setup and the encumbrance of HD-sEMG hardware currently limits its use in dynamic conditions. The aim of this paper was to develop a miniaturized, wireless, and modular HD-sEMG acquisition system for applications requiring high portability and robustness to movement artifacts. METHODS A system with modular architecture was designed. Its core is a miniaturized 32-channel amplifier (Sensor Unit - SU) sampling at 2048 sps/ch with 16 bit resolution and wirelessly transmitting data to a PC or a mobile device. Each SU is a node of a Body Sensor Network for the synchronous signal acquisition from different muscles. RESULTS A prototype with two SUs was developed and tested. Each SU is small (3.4 cm × 3 cm × 1.5 cm), light (16.7 g), and can be connected directly to the electrodes; thus, avoiding the need for customary, wired setup. It allows to detect HD-sEMG signals with an average noise of 1.8 μVRMS and high performance in terms of rejection of power-line interference and motion artefacts. Tests performed on two SUs showed no data loss in a 22 m range and a ±500 μs maximum synchronization delay. CONCLUSIONS Data collected in a wide spectrum of experimental conditions confirmed the functionality of the designed architecture and the quality of the acquired signals. SIGNIFICANCE By simplifying the experimental setup, reducing the hardware encumbrance, and improving signal quality during dynamic contractions, the developed system opens new perspectives in the use of HD-sEMG in applied and clinical settings.
Collapse
|
9
|
Kerkman JN, Daffertshofer A, Gollo LL, Breakspear M, Boonstra TW. Functional connectivity analysis of multiplex muscle network across frequencies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:1567-1570. [PMID: 29060180 DOI: 10.1109/embc.2017.8037136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Physiological networks reveal information about the interaction between subsystems of the human body. Here we investigated the interaction between the central nervous system and the musculoskeletal system by mapping functional muscle networks. Muscle networks were extracted using coherence analysis of muscle activity assessed using surface electromyography (EMG). Surface EMG was acquired from 36 muscles distributed throughout the body while participants were standing upright and performing a bimanual pointing task. Non-negative matrix factorization revealed functional connectivity in four frequency bands. The spatial arrangement differed considerably across frequencies supporting a multiplex network organisation. Graph-theory analysis of layer-specific network revealed a consistent fat-tail distribution of the edges weights, distinct efficiency values, and core-periphery properties. These frequency bands may be spectral fingerprints of different neural pathways that innervate the spinal motor neurons to control the musculoskeletal system.
Collapse
|
10
|
Watanabe RN, Kohn AF. Nonlinear Frequency-Domain Analysis of the Transformation of Cortical Inputs by a Motoneuron Pool-Muscle Complex. IEEE Trans Neural Syst Rehabil Eng 2017; 25:1930-1939. [PMID: 28489540 DOI: 10.1109/tnsre.2017.2701149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Corticomotor coherence in the beta and/or gamma bands has been described in different motor tasks, but the role of descending brain oscillations on force control has been elusive. Large-scale computational models of a motoneuron pool and the muscle it innervates have been used as tools to advance the knowledge of how neural elements may influence force control. Here, we present a frequency domain analysis of a NARX model fitted to a large-scale neuromuscular model by the means of generalized frequency response functions (GFRF). The results of such procedures indicated that the computational neuromuscular model was capable of transforming an oscillatory synaptic input (e.g., at 20 Hz) into a constant mean muscle force output. The nonlinearity uncovered by the GFRFs of the NARX model was responsible for the demodulation of an oscillatory input (e.g., a beta band oscillation coming from the brain and forming the input to the motoneuron pool). This suggests a manner by which brain rhythms descending as command signals to the spinal cord and acting on a motoneuron pool can regulate a maintained muscle force. In addition to the scientific aspects of these results, they provide new interpretations that may further neural engineering applications associated with quantitative neurological diagnoses and robotic systems for artificial limbs.
Collapse
|
11
|
Age and Sex Effects on the Active Stiffness of Vastus Intermedius under Isometric Contraction. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9469548. [PMID: 28473990 PMCID: PMC5394906 DOI: 10.1155/2017/9469548] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/30/2016] [Accepted: 03/16/2017] [Indexed: 12/03/2022]
Abstract
Previously, a novel technique was proposed to quantify the relationship between the muscle stiffness and its nonfatigue contraction intensity. The method extended the measured range of isometric contraction to 100% maximum voluntary contraction (MVC) using an ultrasonic shear wave measurement setup. Yet, it has not been revealed how this relationship could be affected by factors like age or sex. To clarify these questions, vastus intermedius (VI) stiffness of 40 healthy subjects was assessed under 11 step levels of isometric contraction. The subjects were divided into four groups: young males, young females, elderly males, and elderly females (n = 10 for each). In a relaxed state, no significant difference was observed between the male and female subjects (p = 0.156) nor between the young and elderly subjects (p = 0.221). However, when performing isometric contraction, the VI stiffness of males was found to be significantly higher than that of females at the same level (p < 0.001), and that of the young was higher than the elderly (p < 0.001). Meanwhile, for two knee joint angles used, the stiffness measured at a 90° knee joint angle was always significantly larger than that measured at 60° (p < 0.001). Recognizing the active muscle stiffness of VI contributes to body stability, and these results may provide insight into the age and sex bias in musculoskeletal studies, such as those on fall risks.
Collapse
|
12
|
de Vries IEJ, Daffertshofer A, Stegeman DF, Boonstra TW. Functional connectivity in the neuromuscular system underlying bimanual coordination. J Neurophysiol 2016; 116:2576-2585. [PMID: 27628205 DOI: 10.1152/jn.00460.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/09/2016] [Indexed: 11/22/2022] Open
Abstract
Neural synchrony has been suggested as a mechanism for integrating distributed sensorimotor systems involved in coordinated movement. To test the role of corticomuscular and intermuscular coherence in bimanual coordination, we experimentally manipulated the degree of coordination between hand muscles by varying the sensitivity of the visual feedback to differences in bilateral force. In 16 healthy participants, cortical activity was measured using EEG and muscle activity of the flexor pollicis brevis of both hands using high-density electromyography (HDsEMG). Using the uncontrolled manifold framework, coordination between bilateral forces was quantified by the synergy index RV in the time and frequency domain. Functional connectivity was assessed using corticomuscular coherence between muscle activity and cortical source activity and intermuscular coherence between bilateral EMG activity. The synergy index increased in the high coordination condition. RV was higher in the high coordination condition in frequencies between 0 and 0.5 Hz; for the 0.5- to 2-Hz frequency band, this pattern was inverted. Corticomuscular coherence in the beta band (16-30 Hz) was maximal in the contralateral motor cortex and was reduced in the high coordination condition. In contrast, intermuscular coherence was observed at 5-12 Hz and increased with bimanual coordination. Within-subject comparisons revealed a negative correlation between RV and corticomuscular coherence and a positive correlation between RV and intermuscular coherence. Our findings suggest two distinct neural pathways: 1) corticomuscular coherence reflects direct corticospinal projections involved in controlling individual muscles; and 2) intermuscular coherence reflects diverging pathways involved in the coordination of multiple muscles.
Collapse
Affiliation(s)
- Ingmar E J de Vries
- Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands
| | - Andreas Daffertshofer
- Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands
| | - Dick F Stegeman
- Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Tjeerd W Boonstra
- Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands; .,Black Dog Institute, University of New South Wales, Sydney, Australia; and.,Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
13
|
Heitmann S, Boonstra T, Gong P, Breakspear M, Ermentrout B. The rhythms of steady posture: Motor commands as spatially organized oscillation patterns. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.01.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Piitulainen H, Botter A, Bourguignon M, Jousmäki V, Hari R. Spatial variability in cortex-muscle coherence investigated with magnetoencephalography and high-density surface electromyography. J Neurophysiol 2015; 114:2843-53. [PMID: 26354317 DOI: 10.1152/jn.00574.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022] Open
Abstract
Cortex-muscle coherence (CMC) reflects coupling between magnetoencephalography (MEG) and surface electromyography (sEMG), being strongest during isometric contraction but absent, for unknown reasons, in some individuals. We used a novel nonmagnetic high-density sEMG (HD-sEMG) electrode grid (36 mm × 12 mm; 60 electrodes separated by 3 mm) to study effects of sEMG recording site, electrode derivation, and rectification on the strength of CMC. Monopolar sEMG from right thenar and 306-channel whole-scalp MEG were recorded from 14 subjects during 4-min isometric thumb abduction. CMC was computed for 60 monopolar, 55 bipolar, and 32 Laplacian HD-sEMG derivations, and two derivations were computed to mimic "macroscopic" monopolar and bipolar sEMG (electrode diameter 9 mm; interelectrode distance 21 mm). With unrectified sEMG, 12 subjects showed statistically significant CMC in 91-95% of the HD-sEMG channels, with maximum coherence at ∼25 Hz. CMC was about a fifth stronger for monopolar than bipolar and Laplacian derivations. Monopolar derivations resulted in most uniform CMC distributions across the thenar and in tightest cortical source clusters in the left rolandic hand area. CMC was 19-27% stronger for HD-sEMG than for "macroscopic" monopolar or bipolar derivations. EMG rectification reduced the CMC peak by a quarter, resulted in a more uniformly distributed CMC across the thenar, and provided more tightly clustered cortical sources than unrectifed sEMGs. Moreover, it revealed CMC at ∼12 Hz. We conclude that HD-sEMG, especially with monopolar derivation, can facilitate detection of CMC and that individual muscle anatomy cannot explain the high interindividual CMC variability.
Collapse
Affiliation(s)
- Harri Piitulainen
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, and MEG Core and Advanced Magnetic Imaging (AMI) Centre, Aalto NeuroImaging, Aalto University School of Science, Aalto, Espoo, Finland; and
| | - Alberto Botter
- Laboratory of Engineering of Neuromuscular System and Motor Rehabilitation, Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy
| | - Mathieu Bourguignon
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, and MEG Core and Advanced Magnetic Imaging (AMI) Centre, Aalto NeuroImaging, Aalto University School of Science, Aalto, Espoo, Finland; and
| | - Veikko Jousmäki
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, and MEG Core and Advanced Magnetic Imaging (AMI) Centre, Aalto NeuroImaging, Aalto University School of Science, Aalto, Espoo, Finland; and
| | - Riitta Hari
- Brain Research Unit, Department of Neuroscience and Biomedical Engineering, and MEG Core and Advanced Magnetic Imaging (AMI) Centre, Aalto NeuroImaging, Aalto University School of Science, Aalto, Espoo, Finland; and
| |
Collapse
|