1
|
Farag HI, Murphy BA, Templeman JR, Hanlon C, Joshua J, Koch TG, Niel L, Shoveller AK, Bedecarrats GY, Ellison A, Wilcockson D, Martino TA. One Health: Circadian Medicine Benefits Both Non-human Animals and Humans Alike. J Biol Rhythms 2024; 39:237-269. [PMID: 38379166 PMCID: PMC11141112 DOI: 10.1177/07487304241228021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Circadian biology's impact on human physical health and its role in disease development and progression is widely recognized. The forefront of circadian rhythm research now focuses on translational applications to clinical medicine, aiming to enhance disease diagnosis, prognosis, and treatment responses. However, the field of circadian medicine has predominantly concentrated on human healthcare, neglecting its potential for transformative applications in veterinary medicine, thereby overlooking opportunities to improve non-human animal health and welfare. This review consists of three main sections. The first section focuses on the translational potential of circadian medicine into current industry practices of agricultural animals, with a particular emphasis on horses, broiler chickens, and laying hens. The second section delves into the potential applications of circadian medicine in small animal veterinary care, primarily focusing on our companion animals, namely dogs and cats. The final section explores emerging frontiers in circadian medicine, encompassing aquaculture, veterinary hospital care, and non-human animal welfare and concludes with the integration of One Health principles. In summary, circadian medicine represents a highly promising field of medicine that holds the potential to significantly enhance the clinical care and overall health of all animals, extending its impact beyond human healthcare.
Collapse
Affiliation(s)
- Hesham I. Farag
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| | - Barbara A. Murphy
- School of Agriculture and Food Science, University College, Dublin, Ireland
| | - James R. Templeman
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Charlene Hanlon
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Poultry Science, Auburn University, Auburn, Alabama, USA
| | - Jessica Joshua
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas G. Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Lee Niel
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | | | - Amy Ellison
- School of Natural Sciences, Bangor University, Bangor, UK
| | - David Wilcockson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, UK
| | - Tami A. Martino
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- Centre for Cardiovascular Investigations, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Aragona F, Fazio F, Piccione G, Giannetto C. Chronophysiology of domestic animals. Chronobiol Int 2024; 41:888-903. [PMID: 38832548 DOI: 10.1080/07420528.2024.2360723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/19/2024] [Indexed: 06/05/2024]
Abstract
This review highlights recent findings on biological rhythms and discusses their implications for the management and production of domestic animals. Biological rhythms provide temporal coordination between organs and tissues in order to anticipate environmental changes, orchestrating biochemical, physiological and behavioural processes as the right process may occur at the right time. This allows animals to adapt their internal physiological functions, such as sleep-wake cycles, body temperature, hormone secretion, food intake and regulation of physical performance to environmental stimuli that constantly change. The study and evaluation of biological rhythms of various physiological parameters allows the assessment of the welfare status of animals. Alteration of biological rhythms represents an imbalance of the state of homeostasis that can be found in different management conditions.
Collapse
Affiliation(s)
- Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
3
|
Artman JL, Wesolowski LT, Semanchik PL, Isles JK, Norton SA, White-Springer SH. Local and systemic responses to repeated gluteal muscle microbiopsies in mature sedentary horses. J Equine Vet Sci 2024; 136:105070. [PMID: 38642813 DOI: 10.1016/j.jevs.2024.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
We aimed to test the hypothesis that repeated muscle collections would impact mitochondrial function, antioxidant status, and markers of inflammation and muscle damage. Twenty-six horses (8 geldings, 18 mares; mean ± SD 9.5 ± 3.5 y) had gluteus medius muscle biopsy samples collected at: 0 and 24h (n=7); 0 and 6h (n = 6); 0, 6, and 12h (n=7); or 0, 6, 12, and 24h (n=6). Blood was collected from all horses every 6h for 72h, starting 24h prior to the 0h muscle collection. Data were analyzed using mixed linear models. Muscle integrative (per mg tissue) electron transfer capacity of complex II decreased (P=0.004) and intrinsic (relative to citrate synthase (CS) activity) LEAK increased (P<0.03) from 0 to 6h but both returned to 0h levels by 12h. Activity of CS was greater at 0 than 12 and 24h (P≤0.02). Serum creatine kinase (CK) activity was similar from -24 through 0h but increased in all horses at 6h and remained elevated through 48h (P<0.05) though not above reference ranges. Whole blood superoxide dismutase activity fluctuated throughout the 72-h collection period (P=0.03) and serum cortisol concentration displayed a circadian pattern (P<0.0001) but neither were altered by muscle collections. No other variable, including muscle mitochondrial capacities and function, blood and muscle antioxidant status and concentrations of select cytokines, and serum amyloid A, differed by time or muscle collection. Repeated gluteal collections had limited short-term or no effect on physiological markers in unstressed, mature horses except serum CK activity, which should be interpreted with caution during repeated tissue collections.
Collapse
Affiliation(s)
- Jessica L Artman
- Department of Animal Science, Texas A&M University and AgriLife Research, 2471 TAMU, College Station, TX 77843, USA
| | - Lauren T Wesolowski
- Department of Animal Science, Texas A&M University and AgriLife Research, 2471 TAMU, College Station, TX 77843, USA
| | - Pier L Semanchik
- Department of Animal Science, Texas A&M University and AgriLife Research, 2471 TAMU, College Station, TX 77843, USA
| | - JadaLea K Isles
- Department of Animal Science, Texas A&M University and AgriLife Research, 2471 TAMU, College Station, TX 77843, USA
| | | | - Sarah H White-Springer
- Department of Animal Science, Texas A&M University and AgriLife Research, 2471 TAMU, College Station, TX 77843, USA; Department of Kinesiology and Sport Management, Texas A&M University, 2929 Research Pkwy College Station, TX 77843, USA.
| |
Collapse
|
4
|
Collery A, Browne JA, O'Brien C, Sheridan JT, Murphy BA. Optimised Stable Lighting Strengthens Circadian Clock Gene Rhythmicity in Equine Hair Follicles. Animals (Basel) 2023; 13:2335. [PMID: 37508112 PMCID: PMC10376498 DOI: 10.3390/ani13142335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Hair follicles (HF) represent a useful tissue for monitoring the circadian clock in mammals. Irregular light exposure causes circadian disruption and represents a welfare concern for stabled horses. We aimed to evaluate the impact of two stable lighting regimes on circadian clock gene rhythmicity in HF from racehorses. Two groups of five Thoroughbred racehorses in training at a commercial racehorse yard were exposed to standard incandescent light or a customized LED lighting system. The control group received light from incandescent bulbs used according to standard yard practice. The treatment group received timed, blue-enriched white LED light by day and dim red LED light at night. On weeks 0 and 20, mane hairs were collected at 4 h intervals for 24 h. Samples were stored in RNAlater at -20 °C. RNA was isolated and samples interrogated by quantitative PCR for the core clock genes: ARNTL, CRY1, PER1, PER2, NR1D2, and the clock-controlled gene DBP. Cosinor analyses revealed 24 h rhythmicity for NR1D2 and PER2 and approached significance for CRY1 (p = 0.013, p = 0.013, and p = 0.051, respectively) in week 20 in the treatment group only. No rhythmicity was detected in week 0 or in week 20 in the HF of control horses. Results suggest that lighting practices in racehorse stables may be improved to better stimulate optimum functioning of the circadian system.
Collapse
Affiliation(s)
- Aileen Collery
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| | - John A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| | | | - John T Sheridan
- School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| | - Barbara A Murphy
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Co. Dublin, Ireland
| |
Collapse
|
5
|
Han H, McGivney BA, Allen L, Bai D, Corduff LR, Davaakhuu G, Davaasambuu J, Dorjgotov D, Hall TJ, Hemmings AJ, Holtby AR, Jambal T, Jargalsaikhan B, Jargalsaikhan U, Kadri NK, MacHugh DE, Pausch H, Readhead C, Warburton D, Dugarjaviin M, Hill EW. Common protein-coding variants influence the racing phenotype in galloping racehorse breeds. Commun Biol 2022; 5:1320. [PMID: 36513809 PMCID: PMC9748125 DOI: 10.1038/s42003-022-04206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/01/2022] [Indexed: 12/14/2022] Open
Abstract
Selection for system-wide morphological, physiological, and metabolic adaptations has led to extreme athletic phenotypes among geographically diverse horse breeds. Here, we identify genes contributing to exercise adaptation in racehorses by applying genomics approaches for racing performance, an end-point athletic phenotype. Using an integrative genomics strategy to first combine population genomics results with skeletal muscle exercise and training transcriptomic data, followed by whole-genome resequencing of Asian horses, we identify protein-coding variants in genes of interest in galloping racehorse breeds (Arabian, Mongolian and Thoroughbred). A core set of genes, G6PC2, HDAC9, KTN1, MYLK2, NTM, SLC16A1 and SYNDIG1, with central roles in muscle, metabolism, and neurobiology, are key drivers of the racing phenotype. Although racing potential is a multifactorial trait, the genomic architecture shaping the common athletic phenotype in horse populations bred for racing provides evidence for the influence of protein-coding variants in fundamental exercise-relevant genes. Variation in these genes may therefore be exploited for genetic improvement of horse populations towards specific types of racing.
Collapse
Affiliation(s)
- Haige Han
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Beatrice A. McGivney
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Lucy Allen
- grid.417905.e0000 0001 2186 5933Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS UK
| | - Dongyi Bai
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Leanne R. Corduff
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Gantulga Davaakhuu
- grid.425564.40000 0004 0587 3863Institute of Biology, Mongolian Academy of Sciences, Peace Avenue 54B, Ulaanbaatar, 13330 Mongolia
| | - Jargalsaikhan Davaasambuu
- Ajnai Sharga Horse Racing Team, Encanto Town 210-11, Ikh Mongol State Street, 26th Khoroo, Bayanzurkh district Ulaanbaatar, 13312 Mongolia
| | - Dulguun Dorjgotov
- grid.440461.30000 0001 2191 7895School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, 661 Mongolia
| | - Thomas J. Hall
- grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| | - Andrew J. Hemmings
- grid.417905.e0000 0001 2186 5933Royal Agricultural University, Cirencester, Gloucestershire GL7 6JS UK
| | - Amy R. Holtby
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland
| | - Tuyatsetseg Jambal
- grid.440461.30000 0001 2191 7895School of Industrial Technology, Mongolian University of Science and Technology, Ulaanbaatar, 661 Mongolia
| | - Badarch Jargalsaikhan
- grid.444534.60000 0000 8485 883XDepartment of Obstetrics and Gynecology, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210 Mongolia
| | - Uyasakh Jargalsaikhan
- Ajnai Sharga Horse Racing Team, Encanto Town 210-11, Ikh Mongol State Street, 26th Khoroo, Bayanzurkh district Ulaanbaatar, 13312 Mongolia
| | - Naveen K. Kadri
- grid.5801.c0000 0001 2156 2780Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - David E. MacHugh
- grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland ,grid.7886.10000 0001 0768 2743UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| | - Hubert Pausch
- grid.5801.c0000 0001 2156 2780Animal Genomics, Institute of Agricultural Sciences, ETH Zürich, Universitätstrasse 2, 8092 Zürich, Switzerland
| | - Carol Readhead
- grid.20861.3d0000000107068890Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125 USA
| | - David Warburton
- grid.42505.360000 0001 2156 6853The Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027 USA
| | - Manglai Dugarjaviin
- grid.411638.90000 0004 1756 9607Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, College of Animal Science, Equine Research Center, Inner Mongolia Agricultural University, Hohhot, 010018 China
| | - Emmeline W. Hill
- grid.496984.ePlusvital Ltd, The Highline, Dun Laoghaire Business Park, Dublin, A96 W5T3 Ireland ,grid.7886.10000 0001 0768 2743UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin D04 V1W8 Ireland
| |
Collapse
|
6
|
Greening L, McBride S. A Review of Equine Sleep: Implications for Equine Welfare. Front Vet Sci 2022; 9:916737. [PMID: 36061116 PMCID: PMC9428463 DOI: 10.3389/fvets.2022.916737] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep is a significant biological requirement for all living mammals due to its restorative properties and its cognitive role in memory consolidation. Sleep is ubiquitous amongst all mammals but sleep profiles differ between species dependent upon a range of biological and environmental factors. Given the functional importance of sleep, it is important to understand these differences in order to ensure good physical and psychological wellbeing for domesticated animals. This review focuses specifically on the domestic horse and aims to consolidate current information on equine sleep, in relation to other species, in order to (a) identify both quantitatively and qualitatively what constitutes normal sleep in the horse, (b) identify optimal methods to measure equine sleep (logistically and in terms of accuracy), (c) determine whether changes in equine sleep quantity and quality reflect changes in the animal's welfare, and (d) recognize the primary factors that affect the quantity and quality of equine sleep. The review then discusses gaps in current knowledge and uses this information to identify and set the direction of future equine sleep research with the ultimate aim of improving equine performance and welfare. The conclusions from this review are also contextualized within the current discussions around the “social license” of horse use from a welfare perspective.
Collapse
Affiliation(s)
- Linda Greening
- Hartpury University and Hartpury College, Gloucester, United Kingdom
- *Correspondence: Linda Greening
| | - Sebastian McBride
- Institute of Biological, Environmental and Rural Science, Aberystwyth University, Aberystwyth, United Kingdom
| |
Collapse
|
7
|
Recumbency as an Equine Welfare Indicator in Geriatric Horses and Horses with Chronic Orthopaedic Disease. Animals (Basel) 2021; 11:ani11113189. [PMID: 34827921 PMCID: PMC8614510 DOI: 10.3390/ani11113189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023] Open
Abstract
Recumbency is a prerequisite for horses achieving rapid eye movement (REM) sleep and completing a full sleep cycle. An inability to lie down due to environmental insecurities or pain results in REM sleep deficiency, which can cause substantial impairment of welfare and health. Therefore, the present study used wearable automated sensor technology on 83 horses housed in an animal sanctuary to measure and compare the recumbency, locomotion, and standing time budgets of geriatric horses with and without chronic lameness to younger adult sound and lame horses. Recumbency times ranged from 0 to 319 min per day with an overall mean of 67.4 (±61.9) minutes; the time budget for locomotion was 19.1% (±11.2% s.d.) and for standing 75.6% (±13.1 s.d.). Interestingly, neither age nor lameness due to chronic orthopedic disease had a significant influence on recumbency times in this study. Eight horses showed symptoms of REM deficit. These horses had significantly shorter lying times (7.99 ± 11.4 min) and smaller locomotion time budgets than the other horses enrolled in this study (73.8 ± 61.8 min), indicating a general compromise of well-being. Thus, wearable sensor technology can be used to identify horses with low recumbency times at risk for REM sleep deficiency and to assess and monitor equine welfare objectively.
Collapse
|
8
|
Esaki S, Nakayama M, Arima S, Sato S. Use of Actigraphy for a Rat Behavioural Sleep Study. Clocks Sleep 2021; 3:409-414. [PMID: 34449568 PMCID: PMC8395400 DOI: 10.3390/clockssleep3030028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Previous studies of animal behavioural sleep is mainly divided into two study types, observation by video recording or counts by sensor, both of which require a complex environment and procedure. An actigraph unit is a commercially available product which can provide non-invasive monitoring human rest/activity cycles. The goal of this study was to evaluate whether actigraphy can be applied for analysing behavioural sleep in rats, since no reports have described utilization of the actigraphy unit for monitoring sleep of small animals. The actigraph unit was held on the chest of eight male rats by a loose elastic belt. The rats spent two days in a normal condition, followed by two days of sleep deprivation. Total counts measured by the actigraph could be clearly divided into two phases, sleep phase and awake phase, when the rats were kept in the normal cage. Next, the rats were moved into the sleep-deviation cage, and the total counts were significantly higher during daytime, indicating the successful induction of sleep deprivation. These results showed that the actigraphy unit monitored rest/activity cycles of rats, which will contribute to making sleep behaviour experiments easier.
Collapse
Affiliation(s)
- Shinichi Esaki
- Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya 467-8601, Japan; (S.E.); (M.N.); (S.A.)
- Good Sleep Center, Nagoya City University Hospital, Nagoya 467-8602, Japan
- Department of Virology, Graduate School of Medicine, Nagoya University, Nagoya 464-8550, Japan
| | - Meiho Nakayama
- Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya 467-8601, Japan; (S.E.); (M.N.); (S.A.)
- Good Sleep Center, Nagoya City University Hospital, Nagoya 467-8602, Japan
- Meiho Sleep & Balance Clinic, Nagoya 450-0002, Japan
| | - Sachie Arima
- Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya 467-8601, Japan; (S.E.); (M.N.); (S.A.)
- Good Sleep Center, Nagoya City University Hospital, Nagoya 467-8602, Japan
| | - Shintaro Sato
- Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya 467-8601, Japan; (S.E.); (M.N.); (S.A.)
- Good Sleep Center, Nagoya City University Hospital, Nagoya 467-8602, Japan
- Correspondence: ; Tel.: +81-52-853-8256
| |
Collapse
|
9
|
Auer U, Kelemen Z, Engl V, Jenner F. Activity Time Budgets-A Potential Tool to Monitor Equine Welfare? Animals (Basel) 2021; 11:ani11030850. [PMID: 33802908 PMCID: PMC8002676 DOI: 10.3390/ani11030850] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Horses’ behavior is a good indicator of their welfare status. However, its complexity requires objective, quantifiable, and unambiguous evidence-based assessment criteria. As healthy, stress-free horses exhibit a highly repetitive daily routine, horses’ time budget (amount of time in a 24 h period spent on specific activities) can assist in equine welfare assessment. A systematic review of the literature yielded 12 papers that assessed equine time budgets for eating, resting and movement for a minimum of 24 continuous hours. A total of 144 horses (1–27 years old), 59 semi-feral and 85 domesticated horses, are included in this review. The reported 24 h time budgets for eating ranged from 10% to 66.6%, for resting from 8.1% to 66%, for lying from 2.7% to 27.3%, and for movement from 0.015% to 19.1%. The large variance in time budgets between studies can largely be attributed to differences in age and environmental conditions. Management interventions (free access to food, increased space, decreased population density) in domesticated horses yielded time budgets similar to semi-feral horses. The data support the importance of environmental conditions for horses’ well-being and the ability of time budgets to assist in monitoring horses’ welfare. Abstract Horses’ behavior can provide valuable insight into their subjective state and is thus a good indicator of welfare. However, its complexity requires objective, quantifiable, and unambiguous evidence-based assessment criteria. As healthy, stress-free horses exhibit a highly repetitive daily routine, temporal quantification of their behavioral activities (time budget analysis) can assist in equine welfare assessment. Therefore, the present systematic review aimed to provide an up-to-date analysis of equine time budget studies. A review of the literature yielded 12 papers that fulfilled the inclusion criteria: assessment of equine time budgets for eating, resting and movement for a minimum of 24 continuous hours. A total of 144 horses (1–27 years old), 59 semi-feral and 85 domesticated horses, are included in this review. The 24 h time budgets for foraging or eating (10–6.6%), resting (8.1–66%), lying (2.7–27.3%), and locomotion (0.015–19.1%) showed large variance between studies, which can largely be attributed to differences in age and environmental conditions. Management interventions in domesticated horses (ad libitum access to food, increased space, decreased population density) resulted in time budgets similar to their (semi-)feral conspecifics, emphasizing the importance of environmental conditions and the ability of time budgets to assist in monitoring horses’ welfare.
Collapse
Affiliation(s)
- Ulrike Auer
- Anaesthesiology and Perioperative Intensive Care Medicine Unit, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria;
- Correspondence: (U.A.); (F.J.)
| | - Zsofia Kelemen
- Equine Surgery Unit, University Equine Hospital, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Veronika Engl
- Anaesthesiology and Perioperative Intensive Care Medicine Unit, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Florien Jenner
- Equine Surgery Unit, University Equine Hospital, Department of Companion Animals and Horses, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria;
- Correspondence: (U.A.); (F.J.)
| |
Collapse
|
10
|
Rørvang MV, Nielsen BL, McLean AN. Sensory Abilities of Horses and Their Importance for Equitation Science. Front Vet Sci 2020; 7:633. [PMID: 33033724 PMCID: PMC7509108 DOI: 10.3389/fvets.2020.00633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 11/13/2022] Open
Abstract
Vision, hearing, olfaction, taste, and touch comprise the sensory modalities of most vertebrates. With these senses, the animal receives information about its environment. How this information is organized, interpreted, and experienced is known as perception. The study of the sensory abilities of animals and their implications for behavior is central not only to ethology but also to animal welfare. Sensory ability, perception, and behavior are closely linked. Horses and humans share the five most common sensory modalities, however, their ranges and capacities differ, so that horses are unlikely to perceive their surroundings in a similar manner to humans. Understanding equine perceptual abilities and their differences is important when horses and human interact, as these abilities are pivotal for the response of the horse to any changes in its surroundings. This review aims to provide an overview of the current knowledge on the sensory abilities of horses. The information is discussed within an evolutionary context and also includes a practical perspective, outlining potential ways to mitigate risks of injuries and enhance positive horse-human interactions. The equine sensory apparatus includes panoramic visual capacities with acuities similar to those of red-green color-blind humans as well as aural abilities that, in some respects exceed human hearing and a highly developed sense of smell, all of which influence how horses react in various situations. Equine sensitivity to touch has been studied surprisingly sparingly despite tactile stimulation being the major interface of horse training. We discuss the potential use of sensory enrichment/positive sensory stimulation to improve the welfare of horses in various situations e.g. using odors, touch or sound to enrich the environment or to appease horses. In addition, equine perception is affected by factors such as breed, individuality, age, and in some cases even color, emphasizing that different horses may need different types of management. Understanding the sensory abilities of horses is central to the emerging discipline of equitation science, which comprises the gamut of horse-human interactions. Therefore, sensory abilities continue to warrant scientific focus, with more research to enable us to understand different horses and their various needs.
Collapse
Affiliation(s)
- Maria Vilain Rørvang
- Swedish University of Agricultural Sciences, Department of Biosystems and Technology, Alnarp, Sweden
| | - Birte L Nielsen
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, Paris, France
| | | |
Collapse
|
11
|
Abstract
Behavior is a valuable quantitative trait in the horse because of its impact on performance, work, recreation, and prerequisite close interactions with humans. This article reviews what is known about the genetics of behavior in horses with an emphasis on the genetic basis for temperament traits, neuroendocrine function, and stereotypic behavior. The importance of using modern molecular genetic techniques to the study of equine behavior and recommendations for future research are also discussed. Ultimately, these studies enhance the understanding of the biology of behavior in the horse, improve handler and rider safety, and benefit horse welfare.
Collapse
|
12
|
Weinert JR, Werner J, Williams CA. Validation and Implementation of an Automated Chew Sensor-Based Remote Monitoring Device as Tool for Equine Grazing Research. J Equine Vet Sci 2020; 88:102971. [PMID: 32303328 DOI: 10.1016/j.jevs.2020.102971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/15/2022]
Abstract
Field studies characterizing equine grazing activity primarily rely on observational protocols, limiting the quantity and accuracy of collected data. The objectives of this study were to validate an automated chew sensor technology, the EquiWatch System (EWS), for detecting grazing behaviors and to demonstrate potential applications of the EWS in equine grazing research. Eight mature standardbred mares were used in this study. EquiWatch System validation was completed in two phases: grazing time was evaluated in experiment 1 and chew counts in experiment 2. The correlation between visual observations and system-recorded grazing time was high (concordance correlation coefficient [CCC] = 0.997). There was also a high agreement between the sum of manually counted bites and chews and total chew counts reported by the EWS (CCC = 0.979). Following validation, a pilot study was conducted using the EWS to assess feeding behaviors of horses with unrestricted pasture access (PAS) versus horses offered ad libitum hay (HAY). Horses spent more time engaged in feeding behavior on PAS (14.79 ± 0.48 hr/d) than HAY (11.98 ± 0.48 hr/d; P < .0001). Chewing rate also differed by forage (PAS 83.92 ± 1.61; HAY 68.50 ± 1.61 chews/min; P < .0001). However, although the magnitude of these behavioral parameters was influenced by treatment, the underlying 24-hour patterns were largely preserved regardless of forage type. These results demonstrate that the EWS can generate data necessary for characterizing feeding behavior in horses. Future studies implementing this tool could provide a greater understanding of biological, environmental, and nutritive factors driving grazing behavior in horses.
Collapse
Affiliation(s)
- Jennifer R Weinert
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ.
| | - Jessica Werner
- Animal Nutrition and Rangeland Management in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany
| | - Carey A Williams
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ
| |
Collapse
|
13
|
Murphy BA. Circadian and Circannual Regulation in the Horse: Internal Timing in an Elite Athlete. J Equine Vet Sci 2019; 76:14-24. [PMID: 31084748 DOI: 10.1016/j.jevs.2019.02.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Biological rhythms evolved to provide temporal coordination across all tissues and organs and allow synchronization of physiology with predictable environmental cycles. Most important of these are circadian and circannual rhythms, primarily regulated via photoperiod signals from the retina. Understanding the nature of physiological rhythms in horses is crucially important for equine management. Predominantly, they have been removed from exposure to their natural environmental stimuli; the seasonally changing photoperiod, continuous foraging and feeding activity, social herd interactions, and the continuous low-intensity exercise of a grassland dweller. These have been replaced in many cases with confined indoor housing, regimental feeding and exercise times, social isolation, and exposure to lighting that is often erratic and does not come close to mimicking the spectral composition of sunlight. Man has further altered seasonal timing cues through the use of artificial lighting programs that impact reproductive behavior, breeding efficiency, and the development of youngstock. Understanding how these new environmental cues (some stronger and some weaker) impact the internal physiology of the horse in the context of the natural endogenous rhythms that evolved over millennia is key to helping to improve equine health, welfare, and performance, now and into the future. This review provides an overview of the field, highlights the recent discoveries related to biological timing in horses, and discusses the implications that these findings may have for the production and management of the elite equine athlete.
Collapse
Affiliation(s)
- Barbara A Murphy
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
14
|
Suzuki M, Nakayama M, Ando KB, Arima S, Nakamura Y, Yokota M, Murakami S. Sleep Disturbance and Hyperactivity Detected by Actigraphy in Rats with Allergic Rhinitis or Attention-Deficit Hyperactivity Disorder. TOHOKU J EXP MED 2018; 246:65-71. [PMID: 30282844 DOI: 10.1620/tjem.246.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Actigraphy is an easy and noninvasive method used to monitor human ultradian cycles. However, to our knowledge, it has been not applied to experiments with rodents. Therefore, using actigraphy, we assessed the ultradian cycles and behavior of rats. Rats with or without allergic rhinitis wore an actigraphy device, and triaxial acceleration was recorded. The counts that represent physical activity were lower from 8:00 to 20:00 than those from 20:00 to 8:00 in control rats, suggesting that their sleep phase was from 8:00 to 20:00 and their awake phase from 20:00 to 8:00. The counts from 8:00 to 10:00 were significantly higher in allergic rhinitis rats than in control rats (p < 0.01), suggesting the presence of difficulty with sleep induction in rats with allergic rhinitis. The counts from 18:00 to 20:00 were also significantly higher in allergic rhinitis rats than in control rats (p < 0.05), suggesting the presence of early awakening in rats with allergic rhinitis. Moreover, the counts were significantly higher in allergic rhinitis rats than in control rats from 20:00 to 8:00. These results suggest that rats with allergic rhinitis experienced hyperactivity disorder during the daytime. Additionally, hyperreactivity and difficulty with sleep induction were observed in 6-hydroxydopamine-lesioned rats, an animal model of attention-deficit hyperactivity disorder. This study shows for the first time that actigraphy can be successfully used for behavioral analysis in rodents. These rat models could be useful for analyzing the mechanisms involved in sleep disturbances and hyperactivity disorder.
Collapse
Affiliation(s)
| | - Meiho Nakayama
- Department of Otorhinolaryngology, Nagoya City University.,Good Sleep Center, Nagoya City University Hospital
| | | | - Sachie Arima
- Department of Otorhinolaryngology, Nagoya City University.,Good Sleep Center, Nagoya City University Hospital
| | | | - Makoto Yokota
- Department of Otorhinolaryngology, Nagoya City University
| | | |
Collapse
|
15
|
Wada T, Ichihashi Y, Suzuki E, Kosuge Y, Ishige K, Uchiyama T, Makishima M, Nakao R, Oishi K, Shimba S. Deletion of Bmal1 Prevents Diet-Induced Ectopic Fat Accumulation by Controlling Oxidative Capacity in the Skeletal Muscle. Int J Mol Sci 2018; 19:E2813. [PMID: 30231537 PMCID: PMC6164026 DOI: 10.3390/ijms19092813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 01/05/2023] Open
Abstract
Brain and muscle arnt-like protein 1 (BMAL1), is a transcription factor known to regulate circadian rhythm. BMAL1 was originally characterized by its high expression in the skeletal muscle. Since the skeletal muscle is the dominant organ system in energy metabolism, the possible functions of BMAL1 in the skeletal muscle include the control of metabolism. Here, we established that its involvement in the regulation of oxidative capacity in the skeletal muscle. Muscle-specific Bmal1 KO mice (MKO mice) displayed several physiological hallmarks for the increase of oxidative capacity. This included increased energy expenditure and oxygen consumption, high running endurance and resistance to obesity with improved metabolic profiles. Also, the phosphorylation status of AMP-activated protein kinase and its downstream signaling substrate acetyl-CoA carboxylase in the MKO mice were substantially higher than those in the Bmal1flox/flox mice. In addition, biochemical and histological studies confirmed the substantial activation of oxidative fibers in the skeletal muscle of the MKO mice. The mechanism includes the regulation of Cacna1s expression, followed by the activation of calcium-nuclear factor of activated T cells (NFAT) axis. We thus conclude that BMAL1 is a critical regulator of the muscular fatty acid level under nutrition overloading and that the mechanism involves the control of oxidative capacity.
Collapse
Affiliation(s)
- Taira Wada
- Laboratory of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| | - Yuya Ichihashi
- Laboratory of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| | - Emi Suzuki
- Laboratory of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| | - Kumiko Ishige
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| | - Taketo Uchiyama
- Laboratory of Organic Chemistry, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, School of Medicine, Nihon University, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Reiko Nakao
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| | - Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
| | - Shigeki Shimba
- Laboratory of Health Science, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Chiba, Funabshi 274-8555, Japan.
| |
Collapse
|
16
|
Helm B, Visser ME, Schwartz W, Kronfeld-Schor N, Gerkema M, Piersma T, Bloch G. Two sides of a coin: ecological and chronobiological perspectives of timing in the wild. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160246. [PMID: 28993490 PMCID: PMC5647273 DOI: 10.1098/rstb.2016.0246] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2017] [Indexed: 12/19/2022] Open
Abstract
Most processes within organisms, and most interactions between organisms and their environment, have distinct time profiles. The temporal coordination of such processes is crucial across levels of biological organization, but disciplines differ widely in their approaches to study timing. Such differences are accentuated between ecologists, who are centrally concerned with a holistic view of an organism in relation to its external environment, and chronobiologists, who emphasize internal timekeeping within an organism and the mechanisms of its adjustment to the environment. We argue that ecological and chronobiological perspectives are complementary, and that studies at the intersection will enable both fields to jointly overcome obstacles that currently hinder progress. However, to achieve this integration, we first have to cross some conceptual barriers, clarifying prohibitively inaccessible terminologies. We critically assess main assumptions and concepts in either field, as well as their common interests. Both approaches intersect in their need to understand the extent and regulation of temporal plasticity, and in the concept of 'chronotype', i.e. the characteristic temporal properties of individuals which are the targets of natural and sexual selection. We then highlight promising developments, point out open questions, acknowledge difficulties and propose directions for further integration of ecological and chronobiological perspectives through Wild Clock research.This article is part of the themed issue 'Wild Clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G128QQ, UK
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO 50, 6700 AB Wageningen, The Netherlands
| | - William Schwartz
- Department of Neurology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, USA
| | | | - Menno Gerkema
- Chronobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Theunis Piersma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The A. Silberman Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
17
|
Aubè L, Fatnassi M, Monaco D, Khorchani T, Lacalandra GM, Hammadi M, Padalino B. Daily rhythms of behavioral and hormonal patterns in male dromedary camels housed in boxes. PeerJ 2017; 5:e3074. [PMID: 28367365 PMCID: PMC5374969 DOI: 10.7717/peerj.3074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/07/2017] [Indexed: 11/20/2022] Open
Abstract
Background Daily rhythmicity has been observed for a number of hormonal and behavioral variables in mammals. It can be entrained by several external factors, such as light-dark cycle and scheduled feeding. In dromedary camels, daily rhythmicity has been documented only for melatonin secretion and body temperature. In this study, the daily rhythmicity of behavioral repertoire, cortisol and testosterone levels was investigated in captive male camels. Methods Six clinically healthy male dromedary camels (Camelus dromedarius) were used. The animals were housed in single boxes for 24 h daily and fed twice a day. Over a period of 48 h, behavioral observations were made and blood samples taken every two hours. The data were analyzed using diurnality index, conisor analysis and PROC mixed procedure. Results The diurnality index for rumination and lying down was close to 0 (respectively, 0.09 and 0.19), while the indices for stereotypy, standing, feeding and walking were close to 1 (respectively, 0.74, 0.84, 0.92 and 0.85). Cosinor analysis revealed daily rhythmicity for all behaviors and for cortisol levels (acrophase at 12:57) but not for testosterone. Rumination and lying down (inactive behaviors) reached a peak during the scotophase, whereas feeding, walking and stereotypy (active behaviors) reached a peak during the photophase around midday. Cortisol level and expression of stereotypies peaked before and after food distribution and were negatively correlated (r = − 0.287, P = 0.005). Testosterone levels and expression of sexual behaviors were stimulated by the visual and olfactory contacts with the females and were positively correlated (r = 0.164, P = 0.040). Testosterone was also negatively correlated with cortisol (r = − 0.297; P = 0.003). Discussion These preliminary results provided new knowledge about the daily rhythm of behaviors in camels housed in boxes, suggesting that camels exhibit diurnal behavior pattern in the maintenance conditions outlined in the study. Daily rhythmicity seemed to be entrained not only by the light-dark cycle but also by scheduled feeding. The rise in stereotypy after food distribution could be due to the persistence of feeding motivation and frustration after the ingestion of food. Therefore, feeding practices should be improved to satisfy the foraging and feeding motivation of these camels. Behavioral and hormonal daily patterns in camels should be taken in consideration to adapt the management system, giving the animals more freedom during the light period and a diet richer in fiber, so as to improve reproductive performance, health and welfare.
Collapse
Affiliation(s)
- Lydiane Aubè
- Department of Emergency and Organ Transplantation (D.E.T.O.), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, University of Bari , Italy
| | - Meriem Fatnassi
- Livestock and Wildlife Laboratory, Arid Lands Institute (I.R.A.) , Médenine , Tunisia
| | - Davide Monaco
- Department of Emergency and Organ Transplantation (D.E.T.O.), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, University of Bari , Italy
| | - Touhami Khorchani
- Livestock and Wildlife Laboratory, Arid Lands Institute (I.R.A.) , Médenine , Tunisia
| | - Giovanni Michele Lacalandra
- Department of Emergency and Organ Transplantation (D.E.T.O.), Veterinary Clinics and Animal Production Section, University of Bari Aldo Moro, University of Bari , Italy
| | - Mohamed Hammadi
- Livestock and Wildlife Laboratory, Arid Lands Institute (I.R.A.) , Médenine , Tunisia
| | - Barbara Padalino
- Department of Veterinary Medicine, University of Bari , Valenzano (Bari) , Italy
| |
Collapse
|
18
|
Comparative Transcriptomic Analyses by RNA-seq to Elucidate Differentially Expressed Genes in the Muscle of Korean Thoroughbred Horses. Appl Biochem Biotechnol 2016; 180:588-608. [DOI: 10.1007/s12010-016-2118-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/05/2016] [Indexed: 12/27/2022]
|
19
|
Fries M, Montavon S, Spadavecchia C, Levionnois OL. Evaluation of a wireless activity monitoring system to quantify locomotor activity in horses in experimental settings. Equine Vet J 2016; 49:225-231. [DOI: 10.1111/evj.12568] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 02/06/2016] [Indexed: 11/28/2022]
Affiliation(s)
- M. Fries
- Division of Anaesthesiology and Pain Therapy Department of Clinical Veterinary Sciences Vetsuisse Faculty University of Bern Switzerland
| | | | - C. Spadavecchia
- Division of Anaesthesiology and Pain Therapy Department of Clinical Veterinary Sciences Vetsuisse Faculty University of Bern Switzerland
| | - O. L. Levionnois
- Division of Anaesthesiology and Pain Therapy Department of Clinical Veterinary Sciences Vetsuisse Faculty University of Bern Switzerland
| |
Collapse
|
20
|
Giannetto C, Fazio F, Assenza A, Alberghina D, Panzera M, Piccione G. Intrasubject and intersubject variabilities in the daily rhythm of total locomotor activity in horses. J Vet Behav 2016. [DOI: 10.1016/j.jveb.2016.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Mayeuf-Louchart A, Staels B, Duez H. Skeletal muscle functions around the clock. Diabetes Obes Metab 2015; 17 Suppl 1:39-46. [PMID: 26332967 DOI: 10.1111/dom.12517] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/03/2015] [Indexed: 12/16/2022]
Abstract
In mammals, the central clock localized in the central nervous system imposes a circadian rhythmicity to all organs. This is achieved thanks to a well-conserved molecular clockwork, involving interactions between several transcription factors, whose pace is conveyed to peripheral tissues through neuronal and humoral signals. The molecular clock plays a key role in the control of numerous physiological processes and takes part in the regulation of metabolism and energy balance. Skeletal muscle is one of the peripheral organs whose function is under the control of the molecular clock. However, although skeletal muscle metabolism and performances display circadian rhythmicity, the role of the molecular clock in the skeletal muscle has remained unappreciated for years. Peripheral organs such as skeletal muscle, and the liver, among others, can be desynchronized from the central clock by external stimuli, such as feeding or exercise, which impose a new rhythm at the organism level. In this review, we discuss our current understanding of the clock in skeletal muscle circadian physiology, focusing on the control of myogenesis and skeletal muscle metabolism.
Collapse
Affiliation(s)
- A Mayeuf-Louchart
- University of Lille, U1011, EGID, F-59000, Lille, France
- INSERM, U1011, F-59000 Lille, France
- CHU Lille, F-59000, Lille, France
- Institut Pasteur de Lille, U1011, F-59000 Lille, France
| | - B Staels
- University of Lille, U1011, EGID, F-59000, Lille, France
- INSERM, U1011, F-59000 Lille, France
- CHU Lille, F-59000, Lille, France
- Institut Pasteur de Lille, U1011, F-59000 Lille, France
| | - H Duez
- University of Lille, U1011, EGID, F-59000, Lille, France
- INSERM, U1011, F-59000 Lille, France
- CHU Lille, F-59000, Lille, France
- Institut Pasteur de Lille, U1011, F-59000 Lille, France
| |
Collapse
|
22
|
Murphy BA, Blake CM, Brown JA, Martin AM, Forde N, Sweeney LM, Evans ACO. Evidence of a molecular clock in the ovine ovary and the influence of photoperiod. Theriogenology 2015; 84:208-16. [PMID: 25892340 DOI: 10.1016/j.theriogenology.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
The influence of the central circadian clock on reproductive timing is well established. Much less is known about the role of peripheral oscillators such as those in the ovary. We investigated the influence of photoperiod and timing of the LH surge on expression of circadian clock genes and genes involved in steroidogenesis in ovine ovarian stroma. Seventy-two Suffolk cross ewes were divided into two groups, and their estrous cycles were synchronized. Progestagen sponge removal was staggered by 12 hours between the groups such that expected LH peak would occur midway through either the light or dark phase of the photoperiodic cycle. Four animals from each group were killed, and their ovaries were harvested beginning 36 hours after sponge removal, at 6-hour intervals for 48 hours. Blood was sampled every 3 hours for the period 24 to 48 hours after sponge removal to detect the LH surge. The interval to peak LH did not differ between the groups (36.2 ± 1.2 and 35.6 ± 1.1 hours, respectively). There was an interaction between group and the time of sponge removal on the expression of the core clock genes ARNTL, PER1, CRY1, CLOCK, and DBP (P < 0.01, P < 0.05, P < 0.01, P < 0.01, and P < 0.01, respectively). As no significant interaction between group and time of day was detected, the datasets were combined. Statistically significant rhythmic oscillation was observed for ARNTL, CLOCK, CRY1 (P < 0.01, respectively), PTGS2, DBP, PTGER2, and CYP17A1 (P < 0.05, respectively), confirming the existence of a time-sensitive functionality within the ovary, which may influence steroidogenesis and is independent of the ovulatory cycle.
Collapse
Affiliation(s)
- B A Murphy
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - C M Blake
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J A Brown
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - A-M Martin
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - N Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - L M Sweeney
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland.
| | - A C O Evans
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
23
|
Varcoe TJ, Gatford KL, Voultsios A, Salkeld MD, Boden MJ, Rattanatray L, Kennaway DJ. Rapidly alternating photoperiods disrupt central and peripheral rhythmicity and decrease plasma glucose, but do not affect glucose tolerance or insulin secretion in sheep. Exp Physiol 2014; 99:1214-28. [DOI: 10.1113/expphysiol.2014.080630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tamara J. Varcoe
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Kathryn L. Gatford
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Athena Voultsios
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Mark D. Salkeld
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Michael J. Boden
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - Leewen Rattanatray
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| | - David J. Kennaway
- Robinson Research Institute; School of Paediatrics and Reproductive Health; University of Adelaide; Adelaide SA 5005 Australia
| |
Collapse
|
24
|
Murphy BA, Wagner AL, McGlynn OF, Kharazyan F, Browne JA, Elliott JA. Exercise influences circadian gene expression in equine skeletal muscle. Vet J 2014; 201:39-45. [PMID: 24888677 DOI: 10.1016/j.tvjl.2014.03.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 11/30/2022]
Abstract
Circadian rhythms are endogenously generated 24-h oscillations that coordinate numerous aspects of mammalian physiology, metabolism and behaviour. The existence of a molecular circadian clock in equine skeletal muscle has previously been demonstrated. This study investigates how the circadian 24-h expression of exercise-relevant genes in skeletal muscle is influenced by a regular exercise regime. Mid-gluteal, percutaneous muscle biopsies were obtained over a 24-h period from six Thoroughbred mares before and after an 8-week exercise programme. Real-time qPCR assays were used to assess the expression patterns of core clock genes ARNTL, PER2, NR1D1, clock-controlled gene DBP, and muscle genes MYF6, UCP3, VEGFA, FOXO1, MYOD1, PPARGC1A, PPARGC1B, FBXO32 and PDK4. Two-way repeated measures ANOVA revealed a significant interaction between circadian time and exercise for muscle genes MYF6, UCP3, MYOD1 and PDK4. A significant effect of time was observed for all genes with the exception of VEGFA, where a main effect of exercise was observed. By cosinor analysis, the core clock genes, ARNTL (P <0.01) and NR1D1 (P <0.05), showed 24-h rhythmicity both pre- and post-exercise, while PER2 expression was rhythmic post-exercise (P <0.05) but not pre-exercise. The expression profiles of muscle genes MYOD1 and MYF6 showed significant fits to a 24-h cosine waveform indicative of circadian rhythmicity post-exercise only (P <0.01). This study suggests that the metabolic capacity of muscle is influenced by scheduled exercise and that optimal athletic performance may be achieved when exercise times and competition times coincide.
Collapse
Affiliation(s)
- B A Murphy
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - A L Wagner
- Center of Muscle Biology, Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - O F McGlynn
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - F Kharazyan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - J A Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - J A Elliott
- Center for Chronobiology, Departments of Psychiatry and Psychology, University of California, La Jolla, San Diego, CA 92093-0109, USA
| |
Collapse
|
25
|
Murphy BA. A bark in time: Identification of a canine circadian clock marker. Vet J 2013; 196:288-9. [DOI: 10.1016/j.tvjl.2013.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
|
26
|
Influence of time of food administration on daily rhythm of total locomotor activity in ponies. J Vet Behav 2013. [DOI: 10.1016/j.jveb.2012.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Watts LM, Browne JA, Murphy BA. Investigation of a non-invasive method of assessing the equine circadian clock using hair follicle cells. J Circadian Rhythms 2012; 10:7. [PMID: 23039139 PMCID: PMC3514281 DOI: 10.1186/1740-3391-10-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 09/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background A comprehensive understanding of the equine circadian clock involves the evaluation of circadian clock gene expression. A non-invasive and effective method for detecting equine clock gene expression has yet to be established. Currently, research surrounding this area has relied on collecting tissue biopsies or blood samples that can often be costly, time consuming and uncomfortable for the animal. Methods Five mares were individually stabled under a light–dark (LD) cycle that mimicked the external environmental photoperiod during a time of year corresponding with the vernal equinox. Hair follicles were collected every 4 h over a 24-h period by plucking hairs from the mane. RNA was extracted and quantitative (q) PCR assays were performed to determine temporal expression patterns for the core clock genes; ARNTL, CRY1, PER1, PER2, NR1D2 and the clock controlled gene, DBP. Results Repeated measures ANOVA for the clock gene transcripts PER1 and PER2 and the clock controlled gene, DBP, revealed significant variation in expression over time (p < .05, respectively). Cosinor analysis confirmed a significant 24-h temporal component for PER1 (p = .002) and DBP (p = .0033) and also detected rhythmicity for NR1D2 (p = .0331). Conclusions We show that the extraction of RNA from equine hair follicle cells can identify the circadian 24 h oscillations of specific clock genes and a clock-controlled gene and therefore provide a valuable non-invasive method for evaluating the equine peripheral circadian clock. This method will serve as a useful tool for future evaluations of equine circadian rhythms and their response to environmental changes.
Collapse
Affiliation(s)
- Lisa M Watts
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | |
Collapse
|
28
|
Amaral IPG, Johnston IA. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish. Am J Physiol Regul Integr Comp Physiol 2011; 302:R193-206. [PMID: 22031781 DOI: 10.1152/ajpregu.00367.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To identify circadian patterns of gene expression in skeletal muscle, adult male zebrafish were acclimated for 2 wk to a 12:12-h light-dark photoperiod and then exposed to continuous darkness for 86 h with ad libitum feeding. The increase in gut food content associated with the subjective light period was much diminished by the third cycle, enabling feeding and circadian rhythms to be distinguished. Expression of zebrafish paralogs of mammalian transcriptional activators of the circadian mechanism (bmal1, clock1, and rora) followed a rhythmic pattern with a ∼24-h periodicity. Peak expression of rora paralogs occurred at the beginning of the subjective light period [Zeitgeber time (ZT)07 and ZT02 for roraa and rorab], whereas the highest expression of bmal1 and clock paralogs occurred 12 h later (ZT13-15 and ZT16 for bmal and clock paralogs). Expression of the transcriptional repressors cry1a, per1a/1b, per2, per3, nr1d2a/2b, and nr1d1 also followed a circadian pattern with peak expression at ZT0-02. Expression of the two paralogs of cry2 occurred in phase with clock1a/1b. Duplicated genes had a high correlation of expression except for paralogs of clock1, nr1d2, and per1, with cry1b showing no circadian pattern. The highest expression difference was 9.2-fold for the activator bmal1b and 51.7-fold for the repressor per1a. Out of 32 candidate clock-controlled genes, only myf6, igfbp3, igfbp5b, and hsf2 showed circadian expression patterns. Igfbp3, igfbp5b, and myf6 were expressed in phase with clock1a/1b and had an average of twofold change in expression from peak to trough, whereas hsf2 transcripts were expressed in phase with cry1a and had a 7.2-fold-change in expression. The changes in expression of clock and clock-controlled genes observed during continuous darkness were also observed at similar ZTs in fish exposed to a normal photoperiod in a separate control experiment. The role of circadian clocks in regulating muscle maintenance and growth are discussed.
Collapse
Affiliation(s)
- Ian P G Amaral
- Scottish Oceans Institute, School of Biology, University of St. Andrews, Fife, Scotland, United Kingdom.
| | | |
Collapse
|
29
|
Murphy BA, Martin AM, Furney P, Elliott JA. Absence of a serum melatonin rhythm under acutely extended darkness in the horse. J Circadian Rhythms 2011; 9:3. [PMID: 21569251 PMCID: PMC3103467 DOI: 10.1186/1740-3391-9-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 05/10/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In contrast to studies showing gradual adaptation of melatonin (MT) rhythms to an advanced photoperiod in humans and rodents, we previously demonstrated that equine MT rhythms complete a 6-h light/dark (LD) phase advance on the first post-shift day. This suggested the possibility that melatonin secretion in the horse may be more strongly light-driven as opposed to endogenously rhythmic and light entrained. The present study investigates whether equine melatonin is endogenously rhythmic in extended darkness (DD). METHODS Six healthy, young mares were maintained in a lightproof barn under an LD cycle that mimicked the ambient natural photoperiod outside. Blood samples were collected at 2-h intervals for 48 consecutive h: 24-h in LD, followed by 24-h in extended dark (DD). Serum was harvested and stored at -20°C until melatonin and cortisol were measured by commercial RIA kits. RESULTS Two-way repeated measures ANOVA (n = 6/time point) revealed a significant circadian time (CT) x lighting condition interaction (p < .0001) for melatonin with levels non-rhythmic and consistently high during DD (CT 0-24). In contrast, cortisol displayed significant clock-time variation throughout LD and DD (p = .0009) with no CT x light treatment interaction (p = .4018). Cosinor analysis confirmed a significant 24-h temporal variation for melatonin in LD (p = .0002) that was absent in DD (p = .51), while there was an apparent circadian component in cortisol, which approached significance in LD (p = .076), and was highly significant in DD (p = .0059). CONCLUSIONS The present finding of no 24 h oscillation in melatonin in DD is the first evidence indicating that melatonin is not gated by a self-sustained circadian process in the horse. Melatonin is therefore not a suitable marker of circadian phase in this species. In conjunction with recent similar findings in reindeer, it appears that biosynthesis of melatonin in the pineal glands of some ungulates is strongly driven by the environmental light cycle with little input from the circadian oscillator known to reside in the SCN of the mammalian hypothalamus.
Collapse
Affiliation(s)
- Barbara A Murphy
- School of Agriculture, Food Science and Veterinary medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
30
|
The influence of exercise on entrainment of skeletal muscle transcription in the horse. J Equine Vet Sci 2011. [DOI: 10.1016/j.jevs.2011.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|