1
|
Hedge ET, Hughson RL. Frequency domain analysis to extract dynamic response characteristics for oxygen uptake during transitions to moderate- and heavy-intensity exercises. J Appl Physiol (1985) 2020; 129:1422-1430. [PMID: 33054659 DOI: 10.1152/japplphysiol.00503.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
At the onset of an exercise transition, exponential modeling to calculate a time constant (τ) is the conventional method to analyze pulmonary oxygen uptake (V̇O2p) kinetics for moderate and heavy exercises. A new frequency domain analysis technique, mean normalized gain (MNG), has been used to analyze V̇O2p kinetics during moderate exercise, but has not been evaluated for its ability to detect differences in kinetics between moderate and heavy exercises. This study tested the hypothesis that MNG would detect smaller amplitude V̇O2p responses in the heavy-exercise domain compared with moderate-exercise domain. Eight young healthy adults (3 female; age: 27 ± 6 yr; peak V̇O2p: 43 ± 6 mL·min-1·kg-1; means ± SD) performed three bouts of pseudorandom binary sequence (PRBS) exercise for frequency analysis, with the work rate (WR) changing between 25 W and 90% ventilatory threshold (VT; L → MPRBS), 25 W and 50% of the difference between VT and peak V̇O2p (Δ50%; L → HPRBS), and VT to Δ50% (VT → HPRBS). Step exercise tests with equivalent changes in WR to the PRBS tests were performed to facilitate the comparison between MNG and τ. MNG was the highest for L → MPRBS (59 ± 7%), then L → HPRBS (52 ± 6%), and the lowest for VT → HPRBS (38 ± 7%, F(2,14) = 129.755, P < 0.001) exercise conditions indicating slower kinetics with increasing exercise intensity that correlated strongly in repeated measures with τ from step transitions (rrm = -0.893). These results indicate that frequency domain analysis and MNG reliably detect differences in V̇O2p kinetics observed across exercise intensity domains.NEW & NOTEWORTHY Mean normalized gain is able to detect differences in V̇O2p kinetics between moderate-, heavy-, and heavy-intensity exercises from a raised WR within the same individuals. This new method of kinetic analysis may be advantageous compared with conventional V̇O2p curve fitting, as it is less sensitive to breath-by-breath noise, it can provide useful information from a single exercise testing session, and it can be applied to nonconstant work rate exercise situations.
Collapse
Affiliation(s)
- Eric T Hedge
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Hughes WE, Kruse NT, Ueda K, Feider AJ, Hanada S, Bock JM, Casey DP. Dietary nitrate does not acutely enhance skeletal muscle blood flow and vasodilation in the lower limbs of older adults during single-limb exercise. Eur J Appl Physiol 2020; 120:1357-1369. [DOI: 10.1007/s00421-020-04368-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/05/2020] [Indexed: 12/21/2022]
|
3
|
Birnbaumer P, Müller A, Tschakert G, Sattler MC, Hofmann P. Performance Enhancing Effect of Metabolic Pre-conditioning on Upper-Body Strength-Endurance Exercise. Front Physiol 2018; 9:963. [PMID: 30079032 PMCID: PMC6062767 DOI: 10.3389/fphys.2018.00963] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/29/2018] [Indexed: 01/02/2023] Open
Abstract
High systemic blood lactate (La) was shown to inhibit glycolysis and to increase oxidative metabolism in subsequent anaerobic exercise. Aim of this study was to examine the effect of a metabolic pre-conditioning (MPC) on net La increase and performance in subsequent pull-up exercise (PU). Nine trained students (age: 25.1 ± 1.9 years; BMI: 21.7 ± 1.4) performed PU on a horizontal bar with legs placed on a box (angular hanging) either without or with MPC in a randomized order. MPC was a 26.6 ± 2 s all out shuttle run. Each trial started with a 15-min warm-up phase. Time between MPC and PU was 8 min. Heart rate (HR) and gas exchange measures (VO2, VCO2, and VE) were monitored, La and glucose were measured at specific time points. Gas exchange measures were compared by area under the curve (AUC). In PU without MPC, La increased from 1.24 ± 0.4 to 6.4 ± 1.4 mmol⋅l-1, whereas with MPC, PU started at 9.28 ± 1.98 mmol⋅l-1 La which increased to 10.89 ± 2.13 mmol⋅l-1. With MPC, net La accumulation was significantly reduced by 75.5% but performance was significantly increased by 1 rep (4%). Likewise, net oxygen uptake VO2 (50% AUC), pulmonary ventilation (VE) (34% AUC), and carbon dioxide VCO2 production (26% AUC) were significantly increased during PU but respiratory exchange ratio (RER) was significantly blunted during work and recovery. MPC inhibited glycolysis and increased oxidative metabolism and performance in subsequent anaerobic upper-body strength-endurance exercise.
Collapse
Affiliation(s)
- Philipp Birnbaumer
- Institute of Sports Science, Exercise Physiology, Training and Training Therapy Research Group, University of Graz, Graz, Austria.,Department of Physical Activity and Public Health, Institute of Sports Science, University of Graz, Graz, Austria
| | - Alexander Müller
- Institute of Sports Science, Exercise Physiology, Training and Training Therapy Research Group, University of Graz, Graz, Austria
| | - Gerhard Tschakert
- Institute of Sports Science, Exercise Physiology, Training and Training Therapy Research Group, University of Graz, Graz, Austria
| | - Matteo C Sattler
- Department of Physical Activity and Public Health, Institute of Sports Science, University of Graz, Graz, Austria
| | - Peter Hofmann
- Institute of Sports Science, Exercise Physiology, Training and Training Therapy Research Group, University of Graz, Graz, Austria
| |
Collapse
|
4
|
Nederveen JP, Keir DA, Love LK, Rossiter HB, Kowalchuk JM. Effect of heavy-intensity 'priming' exercise on oxygen uptake and muscle deoxygenation kinetics during moderate-intensity step-transitions initiated from an elevated work rate. Respir Physiol Neurobiol 2016; 235:62-70. [PMID: 27693390 DOI: 10.1016/j.resp.2016.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/26/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
We examined the effect of heavy-intensity 'priming' exercise on the rate of adjustment of pulmonary O2 uptake (τV˙O2p) initiated from elevated intensities. Fourteen men (separated into two groups: τV˙O2p≤25s [Fast] or τV˙O2p>25s [Slow]) completed step-transitions from 20W to 45% lactate threshold (LT; lower-step, LS) and 45% to 90%LT (upper-step, US) performed (i) without; and (ii) with US preceded by heavy-intensity exercise (HUS). Breath-by-breath V˙O2p and near-infrared spectroscopy-derived muscle deoxygenation ([HHb+Mb]) were measured. Compared to LS, τV˙O2p was greater (p<0.05) in US in both Fast (LS, 19±4s; US, 30±4s) and Slow (LS, 25±5s; US, 40±11s) with τV˙O2p in US being lower (p<0.05) in Fast. In HUS, τV˙O2p in Slow was reduced (28±8s, p<0.05) and was not different (p>0.05) from LS or Fast group US. In Slow, τ[HHb+Mb] increased (p<0.05) in US relative to HUS; this finding coupled with a reduced τV˙O2p indicates a priming-induced improvement in matching of muscle O2 delivery-to-O2 utilization during transitions from elevated intensities in those with Slow but not Fast V˙O2p kinetics.
Collapse
Affiliation(s)
- Joshua P Nederveen
- Canadian Centre for Activity and Aging, London, ON, Canada; School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Daniel A Keir
- Canadian Centre for Activity and Aging, London, ON, Canada; School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Lorenzo K Love
- Canadian Centre for Activity and Aging, London, ON, Canada; School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA; Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - John M Kowalchuk
- Canadian Centre for Activity and Aging, London, ON, Canada; School of Kinesiology, The University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
5
|
Abstract
It is widely accepted that warming-up prior to exercise is vital for the attainment of optimum performance. Both passive and active warm-up can evoke temperature, metabolic, neural and psychology-related effects, including increased anaerobic metabolism, elevated oxygen uptake kinetics and post-activation potentiation. Passive warm-up can increase body temperature without depleting energy substrate stores, as occurs during the physical activity associated with active warm-up. While the use of passive warm-up alone is not commonplace, the idea of utilizing passive warming techniques to maintain elevated core and muscle temperature throughout the transition phase (the period between completion of the warm-up and the start of the event) is gaining in popularity. Active warm-up induces greater metabolic changes, leading to increased preparedness for a subsequent exercise task. Until recently, only modest scientific evidence was available supporting the effectiveness of pre-competition warm-ups, with early studies often containing relatively few participants and focusing mostly on physiological rather than performance-related changes. External issues faced by athletes pre-competition, including access to equipment and the length of the transition/marshalling phase, have also frequently been overlooked. Consequently, warm-up strategies have continued to develop largely on a trial-and-error basis, utilizing coach and athlete experiences rather than scientific evidence. However, over the past decade or so, new research has emerged, providing greater insight into how and why warm-up influences subsequent performance. This review identifies potential physiological mechanisms underpinning warm-ups and how they can affect subsequent exercise performance, and provides recommendations for warm-up strategy design for specific individual and team sports.
Collapse
|
6
|
Abstract
Muscular exercise requires transitions to and from metabolic rates often exceeding an order of magnitude above resting and places prodigious demands on the oxidative machinery and O2-transport pathway. The science of kinetics seeks to characterize the dynamic profiles of the respiratory, cardiovascular, and muscular systems and their integration to resolve the essential control mechanisms of muscle energetics and oxidative function: a goal not feasible using the steady-state response. Essential features of the O2 uptake (VO2) kinetics response are highly conserved across the animal kingdom. For a given metabolic demand, fast VO2 kinetics mandates a smaller O2 deficit, less substrate-level phosphorylation and high exercise tolerance. By the same token, slow VO2 kinetics incurs a high O2 deficit, presents a greater challenge to homeostasis and presages poor exercise tolerance. Compelling evidence supports that, in healthy individuals walking, running, or cycling upright, VO2 kinetics control resides within the exercising muscle(s) and is therefore not dependent upon, or limited by, upstream O2-transport systems. However, disease, aging, and other imposed constraints may redistribute VO2 kinetics control more proximally within the O2-transport system. Greater understanding of VO2 kinetics control and, in particular, its relation to the plasticity of the O2-transport/utilization system is considered important for improving the human condition, not just in athletic populations, but crucially for patients suffering from pathologically slowed VO2 kinetics as well as the burgeoning elderly population.
Collapse
Affiliation(s)
- David C Poole
- Departments of Kinesiology, Anatomy, and Physiology, Kansas State University, Manhattan, Kansas, USA.
| | | |
Collapse
|
7
|
|
8
|
Molina R, Denadai BS. Muscle damage slows oxygen uptake kinetics during moderate-intensity exercise performed at high pedal rate. Appl Physiol Nutr Metab 2011; 36:848-55. [PMID: 22050134 DOI: 10.1139/h11-109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to investigate the dependence of oxygen uptake (VO₂) kinetics on pedal cadence during moderate-intensity exercise following exercise-induced muscle damage (EIMD). Twenty untrained males were randomly assigned to a 50 revolution per minute (rpm) (age, 23.3 ± 1.8 years; VO₂(max), 38.9 ± 2.8 mL·kg⁻¹·min⁻¹) or 100 rpm group (age, 24.4 ± 3.5 years, VO₂(max), 42.9 ± 4.3 mL·kg⁻¹·min⁻¹). Participants completed "step" tests to moderate-intensity exercise from an unloaded baseline on a cycle ergometer before (baseline) and at 24 and 48 h after muscle-damaging exercise (10 sets of 10 eccentric contractions performed on an isokinetic dynamometer with a 2-min rest between each set). Pedal cadence was kept constant throughout each cycling trial (50 or 100 rpm). There were no changes in phase II pulmonary VO₂ kinetics following EIMD for the 50 rpm group (baseline = 35 ± 4 s; 24 h = 35 ± 7 s; and 48 h = 36 ± 9 s). However, the phase II VO₂ was significantly greater at 24 h (59 ± 27 s) compared with baseline (39 ± 6 s) and 48 h (40 ± 9 s) for the 100 rpm group. It is concluded that the effects of EIMD on phase II VO₂ kinetics during moderate-intensity cycling exercise is dependent on pedal cadence. The slower VO₂ kinetics after muscle damage suggests that type II fibers are involved during transition to moderate-intensity exercise at high pedal cadence.
Collapse
Affiliation(s)
- Renato Molina
- São Paulo State University, Rio Claro-São Paulo, Brazil
| | | |
Collapse
|
9
|
Breese BC, Armstrong N, Barker AR, Williams CA. The effect of pedal rate on pulmonary O2 uptake kinetics during very heavy intensity exercise in trained and untrained teenage boys. Respir Physiol Neurobiol 2011; 177:149-54. [DOI: 10.1016/j.resp.2011.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 03/14/2011] [Accepted: 03/22/2011] [Indexed: 10/18/2022]
|
10
|
Murias JM, Spencer MD, Kowalchuk JM, Paterson DH. Influence of phase I duration on phase II V̇o2 kinetics parameter estimates in older and young adults. Am J Physiol Regul Integr Comp Physiol 2011; 301:R218-24. [PMID: 21490368 DOI: 10.1152/ajpregu.00060.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Older adults (O) may have a longer phase I pulmonary O2 uptake kinetics (V̇o2p) than young adults (Y); this may affect parameter estimates of phase II V̇o2p. Therefore, we sought to: 1) experimentally estimate the duration of phase I V̇o2p (EE phase I) in O and Y subjects during moderate-intensity exercise transitions; 2) examine the effects of selected phase I durations (i.e., different start times for modeling phase II) on parameter estimates of the phase II V̇o2p response; and 3) thereby determine whether slower phase II kinetics in O subjects represent a physiological difference or a by-product of fitting strategy. V̇o2p was measured breath-by-breath in 19 O (68 ± 6 yr; mean ± SD) and 19 Y (24 ± 5 yr) using a volume turbine and mass spectrometer. Phase I V̇o2p was longer in O (31 ± 4 s) than Y (20 ± 7 s) ( P < 0.05). In O, phase II τV̇o2p was larger ( P < 0.05) when fitting started at 15 s (49 ± 12 s) compared with fits starting at the individual EE phase I (43 ± 12 s), 25 s (42 ± 10 s), 35 s (42 ± 12 s), and 45 s (45 ± 15 s). In Y, τV̇o2p was not affected by the time at which phase II V̇o2p fitting started (τV̇o2p = 31 ± 7 s, 29 ± 9 s, 30 ± 10 s, 32 ± 11 s, and 30 ± 8 s for fittings starting at 15 s, 25 s, 35 s, 45 s, and EE phase I, respectively). Fitting from EE phase I, 25 s, or 35 s resulted in the smallest CI τV̇o2p in both O and Y. Thus, fitting phase II V̇o2p from (but not constrained to) 25 s or 35 s provides consistent estimates of V̇o2p kinetics parameters in Y and O, despite the longer phase I V̇o2p in O.
Collapse
Affiliation(s)
- Juan M. Murias
- Canadian Centre for Activity and Aging,
- School of Kinesiology, and
| | | | - John M. Kowalchuk
- Canadian Centre for Activity and Aging,
- School of Kinesiology, and
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
11
|
Vanhatalo A, Poole DC, DiMenna FJ, Bailey SJ, Jones AM. Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all-out sprint exercise. Am J Physiol Regul Integr Comp Physiol 2010; 300:R700-7. [PMID: 21160059 DOI: 10.1152/ajpregu.00761.2010] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The slow component of pulmonary O(2) uptake (Vo(2)) during constant work rate (CWR) high-intensity exercise has been attributed to the progressive recruitment of (type II) muscle fibers. We tested the following hypotheses: 1) the Vo(2) slow component gain would be greater in a 3-min all-out cycle test than in a work-matched CWR test, and 2) the all-out test would be associated with a progressive decline, and the CWR test with a progressive increase, in muscle activation, as estimated from the electromyogram (EMG) of the vastus lateralis muscle. Eight men (aged 21-39 yr) completed a ramp incremental test, a 3-min all-out test, and a work- and time-matched CWR test to exhaustion. The maximum Vo(2) attained in an initial ramp incremental test (3.97 ± 0.83 l/min) was reached in both experimental tests (3.99 ± 0.84 and 4.03 ± 0.76 l/min for all-out and CWR, respectively). The Vo(2) slow component was greater (P < 0.05) in the all-out test (1.21 ± 0.31 l/min, 4.2 ± 2.2 ml·min(-1)·W(-1)) than in the CWR test (0.59 ± 0.22 l/min, 1.70 ± 0.5 ml·min(-1)·W(-1)). The integrated EMG declined by 26% (P < 0.001) during the all-out test and increased by 60% (P < 0.05) during the CWR test from the first 30 s to the last 30 s of exercise. The considerable reduction in muscle efficiency in the all-out test in the face of a progressively falling integrated EMG indicates that progressive fiber recruitment is not requisite for development of the Vo(2) slow component during voluntary exercise in humans.
Collapse
Affiliation(s)
- Anni Vanhatalo
- Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, Univ. of Exeter, Devon, UK
| | | | | | | | | |
Collapse
|
12
|
Hernández A, McDonald JR, Lai N, Gladden LB. A prior bout of contractions speeds V̇o2 and blood flow on-kinetics and reduces the V̇o2 slow-component amplitude in canine skeletal muscle contracting in situ. J Appl Physiol (1985) 2010; 108:1169-76. [DOI: 10.1152/japplphysiol.01318.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It was the purpose of this study to examine the effect of a priming contractile bout on oxygen uptake (V̇o2) on-kinetics in highly oxidative skeletal muscle. Canine gastrocnemii ( n = 12) were stimulated via their sciatic nerves (8 V, 0.2-ms duration, 50 Hz, 200-ms train) at a rate of 2 contractions/3 s (≈70% peak V̇o2) for two 2-min bouts, separated by 2 min of recovery. Blood flow was recorded with an ultrasonic flowmeter, and muscle oxygenation monitored via near-infrared spectroscopy. Compared with the first bout ( bout 2 vs. bout 1), the V̇o2 primary time constant (mean ± SD, 9.4 ± 2.3 vs. 12.0 ± 3.9 s) and slow-component amplitude (5.9 ± 6.3 vs. 12.1 ± 9.0 ml O2·kg wet wt−1·min−1) were significantly reduced ( P < 0.05) during the second bout. Blood flow on-kinetics were significantly speeded during the second bout (time constant = 7.7 ± 2.6 vs. 14.8 ± 5.8 s), and O2 extraction was greater at the onset of contractions (0.050 ± 0.030 vs. 0.020 ± 0.010 ml O2/ml blood). Kinetics of muscle deoxygenation were significantly slower at the onset of the second bout (7.2 ± 2.2 vs. 4.4 ± 1.2 s), while relative oxyhemoglobin concentration was elevated throughout the second bout. These results suggest that better matching of O2 delivery to V̇o2 speeds V̇o2 on-kinetics at this metabolic rate, but do not eliminate a potential role for enhanced metabolic activation. Additionally, altered motor unit recruitment at the onset of a second bout is not a prerequisite for reductions in the V̇o2 slow-component amplitude after a priming contractile bout in canine muscle in situ.
Collapse
Affiliation(s)
- Andrés Hernández
- Department of Kinesiology, Auburn University, Auburn, Alabama; and
| | | | - Nicola Lai
- Department of Biomedical Engineering and Center for Modeling Integrated Metabolic Systems, Case Western Reserve University, Cleveland, Ohio
| | - L. Bruce Gladden
- Department of Kinesiology, Auburn University, Auburn, Alabama; and
| |
Collapse
|
13
|
Dimenna FJ, Fulford J, Bailey SJ, Vanhatalo A, Wilkerson DP, Jones AM. Influence of priming exercise on muscle [PCr] and pulmonary O2 uptake dynamics during 'work-to-work' knee-extension exercise. Respir Physiol Neurobiol 2010; 172:15-23. [PMID: 20417317 DOI: 10.1016/j.resp.2010.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/08/2010] [Accepted: 04/15/2010] [Indexed: 12/01/2022]
Abstract
Metabolic transitions from rest to high-intensity exercise were divided into two discrete steps (i.e., rest-to-moderate-intensity (R-->M) and moderate-to-high-intensity (M-->H)) to explore the effect of prior high-intensity 'priming' exercise on intramuscular [PCr] and pulmonary VO₂ kinetics for different sections of the motor unit pool. It was hypothesized that [PCr] and VO₂ kinetics would be unaffected by priming during R-->M exercise, but that the time constants (tau) describing the fundamental [PCr] response and the phase II VO₂ response would be significantly reduced by priming for M-->H exercise. On three separate occasions, six male subjects completed two identical R-->M/M-->H 'work-to-work' prone knee-extension exercise bouts separated by 5min rest. Two trials were performed with measurement of pulmonary VO₂ and the integrated electromyogram (iEMG) of the right m. vastus lateralis. The third trial was performed within the bore of a 1.5-T superconducting magnet for (31)P-MRS assessment of muscle metabolic responses. Priming did not significantly affect the [PCr] or VO₂ tau during R-->M ([PCr] tau Unprimed: 24+/-16 vs. Primed: 22+/-14s; VO₂ tau Unprimed: 26+/-8 vs. Primed: 25+/-9s) or M-->H transitions ([PCr] tau Unprimed: 30+/-5 vs. Primed: 32+/-7s; VO₂ tau Unprimed: 37+/-5 vs. Primed: 38+/-9s). However, it did reduce the amplitudes of the [PCr] and VO₂ slow components by 50% and 46%, respectively, during M-->H (P<0.05 for both comparisons). These effects were accompanied by iEMG changes suggesting reduced muscle fiber activation during M-->H exercise after priming. It is concluded that the tau for the initial exponential change of muscle [PCr] and pulmonary VO₂ following the transition from moderate-to-high-intensity prone knee-extension exercise is not altered by priming exercise.
Collapse
Affiliation(s)
- Fred J Dimenna
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, Devon EX1 2LU, UK
| | | | | | | | | | | |
Collapse
|
14
|
DiMenna FJ, Wilkerson DP, Burnley M, Bailey SJ, Jones AM. Priming exercise speeds pulmonary O2 uptake kinetics during supine “work-to-work” high-intensity cycle exercise. J Appl Physiol (1985) 2010; 108:283-92. [DOI: 10.1152/japplphysiol.01047.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We manipulated the baseline metabolic rate and body position to explore the effect of the interaction between recruitment of discrete sections of the muscle fiber pool and muscle O2 delivery on pulmonary O2 uptake (V̇o2) kinetics during cycle exercise. We hypothesized that phase II V̇o2 kinetics (τp) in the transition from moderate- to severe-intensity exercise would be significantly slower in the supine than upright position because of a compromise to muscle perfusion and that a priming bout of severe-intensity exercise would return τp during supine exercise to τp during upright exercise. Eight male subjects [35 ± 13 (SD) yr] completed a series of “step” transitions to severe-intensity cycle exercise from an “unloaded” (20-W) baseline and a baseline of moderate-intensity exercise in the supine and upright body positions. τp was not significantly different between supine and upright exercise during transitions from a 20-W baseline to moderate- or severe-intensity exercise but was significantly greater during moderate- to severe-intensity exercise in the supine position (54 ± 19 vs. 38 ± 10 s, P < 0.05). Priming significantly reduced τp during moderate- to severe-intensity supine exercise (34 ± 9 s), returning it to a value that was not significantly different from τp in the upright position. This effect occurred in the absence of changes in estimated muscle fractional O2 extraction (from the near-infrared spectroscopy-derived deoxygenated Hb concentration signal), such that the priming-induced facilitation of muscle blood flow matched increased O2 utilization in the recruited fibers, resulting in a speeding of V̇o2 kinetics. These findings suggest that, during supine cycling, priming speeds V̇o2 kinetics by providing an increased driving pressure for O2 diffusion in the higher-order (i.e., type II) fibers, which would be recruited in the transition from moderate- to severe-intensity exercise and are known to be especially sensitive to limitations in O2 supply.
Collapse
Affiliation(s)
- Fred J. DiMenna
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Exeter, Devon; and
| | - Daryl P. Wilkerson
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Exeter, Devon; and
| | - Mark Burnley
- Department of Sport and Exercise Science, Aberystwyth University, Ceredigion, United Kingdom
| | - Stephen J. Bailey
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Exeter, Devon; and
| | - Andrew M. Jones
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Exeter, Devon; and
| |
Collapse
|
15
|
Bailey SJ, Vanhatalo A, Wilkerson DP, DiMenna FJ, Jones AM. Optimizing the “priming” effect: influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. J Appl Physiol (1985) 2009; 107:1743-56. [DOI: 10.1152/japplphysiol.00810.2009] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been suggested that a prior bout of high-intensity exercise has the potential to enhance performance during subsequent high-intensity exercise by accelerating the O2 uptake (V̇o2) on-response. However, the optimal combination of prior exercise intensity and subsequent recovery duration required to elicit this effect is presently unclear. Eight male participants, aged 18–24 yr, completed step cycle ergometer exercise tests to 80% of the difference between the preestablished gas exchange threshold and maximal V̇o2 (i.e., 80%Δ) after no prior exercise (control) and after six different combinations of prior exercise intensity and recovery duration: 40%Δ with 3 min (40-3-80), 9 min (40-9-80), and 20 min (40-20-80) of recovery and 70%Δ with 3 min (70-3-80), 9 min (70-9-80), and 20 min (70-20-80) of recovery. Overall V̇o2 kinetics were accelerated relative to control in all conditions except for 40-9-80 and 40-20-80 conditions as a consequence of a reduction in the V̇o2 slow component amplitude; the phase II time constant was not significantly altered with any prior exercise/recovery combination. Exercise tolerance at 80%Δ was improved by 15% and 30% above control in the 70-9-80 and 70-20-80 conditions, respectively, but was impaired by 16% in the 70-3-80 condition. Prior exercise at 40%Δ did not significantly influence exercise tolerance regardless of the recovery duration. These data demonstrate that prior high-intensity exercise (∼70%Δ) can enhance the tolerance to subsequent high-intensity exercise provided that it is coupled with adequate recovery duration (≥9 min). This combination presumably optimizes the balance between preserving the effects of prior exercise on V̇o2 kinetics and providing sufficient time for muscle homeostasis (e.g., muscle phosphocreatine and H+ concentrations) to be restored.
Collapse
Affiliation(s)
- Stephen J. Bailey
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Devon, United Kingdom
| | - Anni Vanhatalo
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Devon, United Kingdom
| | - Daryl P. Wilkerson
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Devon, United Kingdom
| | - Fred J. DiMenna
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Devon, United Kingdom
| | - Andrew M. Jones
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Devon, United Kingdom
| |
Collapse
|
16
|
DiMenna FJ, Wilkerson DP, Burnley M, Bailey SJ, Jones AM. Influence of extreme pedal rates on pulmonary O2 uptake kinetics during transitions to high-intensity exercise from an elevated baseline. Respir Physiol Neurobiol 2009; 169:16-23. [DOI: 10.1016/j.resp.2009.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 10/20/2022]
|