1
|
Kasanga EA, Han Y, Shifflet MK, Navarrete W, McManus R, Parry C, Barahona A, Nejtek VA, Manfredsson FP, Kordower JH, Richardson JR, Salvatore MF. Nigral-specific increase in ser31 phosphorylation compensates for tyrosine hydroxylase protein and nigrostriatal neuron loss: Implications for delaying parkinsonian signs. Exp Neurol 2023; 368:114509. [PMID: 37634696 DOI: 10.1016/j.expneurol.2023.114509] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Compensatory mechanisms that augment dopamine (DA) signaling are thought to mitigate onset of hypokinesia prior to major loss of tyrosine hydroxylase (TH) in striatum that occurs in Parkinson's disease. However, the identity of such mechanisms remains elusive. In the present study, the rat nigrostriatal pathway was unilaterally-lesioned with 6-hydroxydopamine (6-OHDA) to determine whether differences in DA content, TH protein, TH phosphorylation, or D1 receptor expression in striatum or substantia nigra (SN) aligned with hypokinesia onset and severity at two time points. In striatum, DA and TH loss reached its maximum (>90%) 7 days after lesion induction. However, in SN, no DA loss occurred, despite ∼60% TH loss. Hypokinesia was established at 21 days post-lesion and maintained at 28 days. At this time, DA loss was ∼60% in the SN, but still of lesser magnitude than TH loss. At day 7 and 28, ser31 TH phosphorylation increased only in SN, corresponding to less DA versus TH protein loss. In contrast, ser40 TH phosphorylation was unaffected in either region. Despite DA loss in both regions at day 28, D1 receptor expression increased only in lesioned SN. These results support the concept that augmented components of DA signaling in the SN, through increased ser31 TH phosphorylation and D1 receptor expression, contribute as compensatory mechanisms against progressive nigrostriatal neuron and TH protein loss, and may mitigate hypokinesia severity.
Collapse
Affiliation(s)
- Ella A Kasanga
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Yoonhee Han
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Marla K Shifflet
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Walter Navarrete
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Robert McManus
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Caleb Parry
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Arturo Barahona
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Vicki A Nejtek
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ 85287, USA
| | - Jason R Richardson
- Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL 33199, USA
| | - Michael F Salvatore
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76117, USA.
| |
Collapse
|
2
|
Yu C, Jiang TT, Shoemaker CT, Fan D, Rossi MA, Yin HH. Striatal mechanisms of turning behaviour following unilateral dopamine depletion in mice. Eur J Neurosci 2022; 56:4529-4545. [PMID: 35799410 PMCID: PMC9710193 DOI: 10.1111/ejn.15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Unilateral dopamine (DA) depletion produces ipsiversive turning behaviour, and the injection of DA receptor agonists can produce contraversive turning, but the underlying mechanisms remain unclear. We conducted in vivo recording and pharmacological and optogenetic manipulations to study the role of DA and striatal output in turning behaviour. We used a video-based tracking programme while recording single unit activity in both putative medium spiny projection neurons (MSNs) and fast-spiking interneurons (FSIs) in the dorsal striatum bilaterally. Our results suggest that unilateral DA depletion reduced striatal output from the depleted side, resulting in asymmetric striatal output. Depletion systematically altered activity in both MSNs and FSIs, especially in neurons that increased firing during turning movements. Like D1 agonist SKF 38393, optogenetic stimulation in the depleted striatum increased striatal output and reversed biassed turning. These results suggest that relative striatal outputs from the two cerebral hemispheres determine the direction of turning: Mice turn away from the side of higher striatal output and towards the side of the lower striatal output.
Collapse
Affiliation(s)
- Chunxiu Yu
- Department of Biomedical Engineering, Michigan Technological University
| | | | | | - David Fan
- Department of Psychology and Neuroscience, Duke University
| | | | - Henry H. Yin
- Department of Psychology and Neuroscience, Duke University
| |
Collapse
|
3
|
Tekriwal A, Felsen G, Ojemann SG, Abosch A, Thompson JA. Motor context modulates substantia nigra pars reticulata spike activity in patients with Parkinson's disease. J Neurol Neurosurg Psychiatry 2022; 93:386-394. [PMID: 35193951 PMCID: PMC10593310 DOI: 10.1136/jnnp-2021-326962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The severity of motor symptoms in Parkinson's disease (PD) depends on environmental conditions. For example, the presence of external patterns such as a rhythmic tone can attenuate bradykinetic impairments. However, the neural mechanisms for this context-dependent attenuation (e.g., paradoxical kinesis) remain unknown. Here, we investigate whether context-dependent symptom attenuation is reflected in single-unit activity recorded in the operating room from the substantia nigra pars reticulata (SNr) of patients with PD undergoing deep brain stimulation surgery. The SNr is known to influence motor planning and execution in animal models, but its role in humans remains understudied. METHODS We recorded SNr activity while subjects performed cued directional movements in response to auditory stimuli under interleaved 'patterned' and 'unpatterned' contexts. SNr localisation was independently confirmed with expert intraoperative assessment as well as post hoc imaging-based reconstructions. RESULTS As predicted, we found that motor performance was improved in the patterned context, reflected in increased reaction speed and accuracy compared with the unpatterned context. These behavioural differences were associated with enhanced responsiveness of SNr neurons-that is, larger changes in activity from baseline-in the patterned context. Unsupervised clustering analysis revealed two distinct subtypes of SNr neurons: one exhibited context-dependent enhanced responsiveness exclusively during movement preparation, whereas the other showed enhanced responsiveness during portions of the task associated with both motor and non-motor processes. CONCLUSIONS Our findings indicate the SNr participates in motor planning and execution, as well as warrants greater attention in the study of human sensorimotor integration and as a target for neuromodulatory therapies.
Collapse
Affiliation(s)
- Anand Tekriwal
- Departments of Neurosurgery and Physiology and Biophysics, Neuroscience Graduate Program, Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gidon Felsen
- Department of Physiology and Biophysics, Neuroscience Graduate Program, Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John A Thompson
- Departments of Neurosurgery and Neurology, Neuroscience Graduate Program, Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|