1
|
Arellano CJ, Vega D. Exploring How the Arms Can Help the Legs in Facilitating Gait Rehabilitation. Adv Biol (Weinh) 2024; 8:e2300661. [PMID: 38519429 DOI: 10.1002/adbi.202300661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/26/2024] [Indexed: 03/24/2024]
Abstract
Inspired by the ideas from the fields of gait rehabilitation, neuroscience, and locomotion biomechanics and energetics, a body of work is reviewed that has led to propose a conceptual framework for novel "self-assistive" walking devices that could further promote walking recovery from incomplete spinal cord injuries. The underlying rationale is based on a neural coupling mechanism that governs the coordinated movements of the arms and legs during walking, and that the excitability of these neural pathways can be exploited by actively engaging the arms during locomotor training. Self-assistive treadmill walking rehabilitation devices are envisioned as an approach that would allow an individual to actively use their arms to help the legs during walking. It is hoped that the conceptual framework inspires the design and use of self-assistive walking devices that are tailored to assist individuals with an incomplete spinal cord injury to regain their functional walking ability.
Collapse
Affiliation(s)
- Christopher J Arellano
- Department of Orthopaedic Surgery, University of Arizona, Tucson, AZ, 85724, USA
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | - Daisey Vega
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
2
|
Harnie J, Al Arab R, Mari S, Yassine S, Eddaoui O, Jéhannin P, Audet J, Lecomte C, Iorio-Morin C, Prilutsky BI, Rybak IA, Frigon A. Forelimb movements contribute to hindlimb cutaneous reflexes during locomotion in cats. J Neurophysiol 2024; 131:997-1013. [PMID: 38691528 PMCID: PMC11381123 DOI: 10.1152/jn.00104.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
During quadrupedal locomotion, interactions between spinal and supraspinal circuits and somatosensory feedback coordinate forelimb and hindlimb movements. How this is achieved is not clear. To determine whether forelimb movements modulate hindlimb cutaneous reflexes involved in responding to an external perturbation, we stimulated the superficial peroneal nerve in six intact cats during quadrupedal locomotion and during hindlimb-only locomotion (with forelimbs standing on stationary platform) and in two cats with a low spinal transection (T12-T13) during hindlimb-only locomotion. We compared cutaneous reflexes evoked in six ipsilateral and four contralateral hindlimb muscles. Results showed similar occurrence and phase-dependent modulation of short-latency inhibitory and excitatory responses during quadrupedal and hindlimb-only locomotion in intact cats. However, the depth of modulation was reduced in the ipsilateral semitendinosus during hindlimb-only locomotion. Additionally, longer-latency responses occurred less frequently in extensor muscles bilaterally during hindlimb-only locomotion, whereas short-latency inhibitory and longer-latency excitatory responses occurred more frequently in the ipsilateral and contralateral sartorius anterior, respectively. After spinal transection, short-latency inhibitory and excitatory responses were similar to both intact conditions, whereas mid- or longer-latency excitatory responses were reduced or abolished. Our results in intact cats and the comparison with spinal-transected cats suggest that the absence of forelimb movements suppresses inputs from supraspinal structures and/or cervical cord that normally contribute to longer-latency reflex responses in hindlimb extensor muscles.NEW & NOTEWORTHY During quadrupedal locomotion, the coordination of forelimb and hindlimb movements involves central circuits and somatosensory feedback. To demonstrate how forelimb movement affects hindlimb cutaneous reflexes during locomotion, we stimulated the superficial peroneal nerve in intact cats during quadrupedal and hindlimb-only locomotion as well as in spinal-transected cats during hindlimb-only locomotion. We show that forelimb movement influences the modulation of hindlimb cutaneous reflexes, particularly the occurrence of long-latency reflex responses.
Collapse
Affiliation(s)
- Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Rasha Al Arab
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Sirine Yassine
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Oussama Eddaoui
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Pierre Jéhannin
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Charly Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| | - Christian Iorio-Morin
- Division of Neurosurgery, Department of Surgery, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Ilya A Rybak
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Singh RE, Ahmadi A, Parr AM, Samadani U, Krassioukov AV, Netoff TI, Darrow DP. Epidural stimulation restores muscle synergies by modulating neural drives in participants with sensorimotor complete spinal cord injuries. J Neuroeng Rehabil 2023; 20:59. [PMID: 37138361 PMCID: PMC10155428 DOI: 10.1186/s12984-023-01164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Multiple studies have corroborated the restoration of volitional motor control after motor-complete spinal cord injury (SCI) through the use of epidural spinal cord stimulation (eSCS), but rigorous quantitative descriptions of muscle coordination have been lacking. Six participants with chronic, motor and sensory complete SCI underwent a brain motor control assessment (BMCA) consisting of a set of structured motor tasks with and without eSCS. We investigated how muscle activity complexity and muscle synergies changed with and without stimulation. We performed this analysis to better characterize the impact of stimulation on neuromuscular control. We also recorded data from nine healthy participants as controls. Competition exists between the task origin and neural origin hypotheses underlying muscle synergies. The ability to restore motor control with eSCS in participants with motor and sensory complete SCI allows us to test whether changes in muscle synergies reflect a neural basis in the same task. Muscle activity complexity was computed with Higuchi Fractal Dimensional (HFD) analysis, and muscle synergies were estimated using non-negative matrix factorization (NNMF) in six participants with American Spinal Injury Association (ASIA) Impairment Score (AIS) A. We found that the complexity of muscle activity was immediately reduced by eSCS in the SCI participants. We also found that over the follow-up sessions, the muscle synergy structure of the SCI participants became more defined, and the number of synergies decreased over time, indicating improved coordination between muscle groups. Lastly, we found that the muscle synergies were restored with eSCS, supporting the neural hypothesis of muscle synergies. We conclude that eSCS restores muscle movements and muscle synergies that are distinct from those of healthy, able-bodied controls.
Collapse
Affiliation(s)
- Rajat Emanuel Singh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Kinesiology, Northwestern College, Orange, IA, USA
| | - Aliya Ahmadi
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, USA
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Uzma Samadani
- Department of Bioinformatics & Computational Biology, UMN, Minneapolis, MN, USA
- Minneapolis Veteran Affairs Medical Center, Minneapolis, MN, USA
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada
- Division of Physical Medicine & Rehabilitation, Department of Medicine, UBC, British Columbia , BC, Canada
- GF Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David P Darrow
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, USA.
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Kitamura T, Masugi Y, Yamamoto SI, Ogata T, Kawashima N, Nakazawa K. Modulation of corticospinal excitability related to the forearm muscle during robot-assisted stepping in humans. Exp Brain Res 2023; 241:1089-1100. [PMID: 36928923 PMCID: PMC10082104 DOI: 10.1007/s00221-023-06565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/28/2023] [Indexed: 03/18/2023]
Abstract
In recent years, the neural control mechanisms of the arms and legs during human bipedal walking have been clarified. Rhythmic leg stepping leads to suppression of monosynaptic reflex excitability in forearm muscles. However, it is unknown whether and how corticospinal excitability of the forearm muscle is modulated during leg stepping. The purpose of the present study was to investigate the excitability of the corticospinal tract in the forearm muscle during passive and voluntary stepping. To compare the neural effects on corticospinal excitability to those on monosynaptic reflex excitability, the present study also assessed the excitability of the H-reflex in the forearm muscle during both types of stepping. A robotic gait orthosis was used to produce leg stepping movements similar to those of normal walking. Motor evoked potentials (MEPs) and H-reflexes were evoked in the flexor carpi radialis (FCR) muscle during passive and voluntary stepping. The results showed that FCR MEP amplitudes were significantly enhanced during the mid-stance and terminal-swing phases of voluntary stepping, while there was no significant difference between the phases during passive stepping. Conversely, the FCR H-reflex was suppressed during both voluntary and passive stepping, compared to the standing condition. The present results demonstrated that voluntary commands to leg muscles, combined with somatosensory inputs, may facilitate corticospinal excitability in the forearm muscle, and that somatosensory inputs during walking play a major role in monosynaptic reflex suppression in forearm muscle.
Collapse
Affiliation(s)
- Taku Kitamura
- Department of Bio-Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama-shi, Saitama, Japan.,Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Robotics Program, Tokyo Metropolitan College of Industrial Technology, Arakawa-ku, Tokyo, Japan
| | - Yohei Masugi
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.,Department of Physical Therapy, School of Health Sciences, Tokyo International University, Kawagoe-shi, Saitama, Japan
| | - Shin-Ichiroh Yamamoto
- Department of Bio-Science and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama-shi, Saitama, Japan
| | - Toru Ogata
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Department of Rehabilitation Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Noritaka Kawashima
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
5
|
Surface EMG in Subacute and Chronic Care after Traumatic Spinal Cord Injuries. TRAUMA CARE 2022. [DOI: 10.3390/traumacare2020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Traumatic spinal cord injury (SCI) is a devastating condition commonly originating from motor vehicle accidents or falls. Trauma care after SCI is challenging; after decompression surgery and spine stabilization, the first step is to assess the location and severity of the traumatic lesion. For this, clinical outcome measures are used to quantify the residual sensation and volitional control of muscles below the level of injury. These clinical assessments are important for decision-making, including the prediction of the recovery potential of individuals after the SCI. In clinical care, this quantification is usually performed using sensation and motor scores, a semi-quantitative measurement, alongside the binary classification of the sacral sparing (yes/no). Objective: In this perspective article, I review the use of surface EMG (sEMG) as a quantitative outcome measurement in subacute and chronic trauma care after SCI. Methods: Here, I revisit the main findings of two comprehensive scoping reviews recently published by our team on this topic. I offer a perspective on the combined findings of these scoping reviews, which integrate the changes in sEMG with SCI and the use of sEMG in neurorehabilitation after SCI. Results: sEMG provides a complimentary assessment to quantify the residual control of muscles with great sensitivity and detail compared to the traditional clinical assessments. Our scoping reviews unveiled the ability of the sEMG assessment to detect discomplete lesions (muscles with absent motor scores but present sEMG). Moreover, sEMG is able to measure the spontaneous activity of motor units at rest, and during passive maneuvers, the evoked responses with sensory or motor stimulation, and the integrity of the spinal cord and descending tracts with motor evoked potentials. This greatly complements the diagnostics of the SCI in the subacute phase of trauma care and deepens our understanding of neurorehabilitation strategies during the chronic phase of the traumatic injury. Conclusions: sEMG offers important insights into the neurophysiological factors underlying sensorimotor impairment and recovery after SCIs. Although several qualitative or semi-quantitative outcome measures determine the level of injury and the natural recovery after SCIs, using quantitative measures such as sEMG is promising. Nonetheless, there are still several barriers limiting the use of sEMG in the clinical environment and a need to advance high-density sEMG technology.
Collapse
|
6
|
Balbinot G, Joner Wiest M, Li G, Pakosh M, Cesar Furlan J, Kalsi-Ryan S, Zariffa J. The use of surface EMG in neurorehabilitation following traumatic spinal cord injury: a scoping review. Clin Neurophysiol 2022; 138:61-73. [DOI: 10.1016/j.clinph.2022.02.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 02/27/2022] [Indexed: 11/03/2022]
|
7
|
Fang J, Hunt KJ. Mechanical Design and Control System Development of a Rehabilitation Robotic System for Walking With Arm Swing. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:720182. [PMID: 36188797 PMCID: PMC9397737 DOI: 10.3389/fresc.2021.720182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022]
Abstract
Background: Interlimb neural coupling implies that arm swing should be included during gait training to improve rehabilitation outcomes. We previously developed several systems for production of walking with arm swing, but the reaction forces on the foot sole during usage of the systems were not satisfactory and there was potential to improve control system performance. This work aimed to design and technically evaluate a novel system for producing walking with synchronised arm and leg movement and with dynamic force loading on the foot soles. Methods: The robotic system included a passive curved treadmill and a trunk frame, upon which the rigs for the upper and lower limbs were mounted. Ten actuators and servocontrollers with EtherCAT communication protocol controlled the bilateral shoulder, elbow, hip, knee and ankle joints. Impedance control algorithms were developed and ran in an industrial PC. Flexible pressure sensors recorded the plantar forces on the foot soles. The criteria of implementation and responsiveness were used to formally evaluate the technical feasibility of the system. Results: Using impedance algorithms, the system produced synchronous walking with arm swing on the curved treadmill, with mean RMS angular tracking error <2° in the 10 joint profiles. The foot trajectories relative to the hip presented similar shapes to those during normal gait, with mean RMS displacement error <1.5 cm. A force pattern that started at the heel and finished at the forefoot was observed during walking using the system, which was similar to the pattern from overground walking. Conclusion: The robotic system produced walking-like kinematics in the 10 joints and in the foot trajectories. Integrated with the curved treadmill, the system also produced walking-like force patterns on the foot soles. The system is considered feasible as far as implementation and responsiveness are concerned. Future work will focus on improvement of the mechanical system for future clinical application.
Collapse
|
8
|
Kibushi B, Kihira N, Moritani T, Kouzaki M. Disturbance of neural coupling between upper and lower limbs during gait transition. Neurosci Lett 2021; 761:136100. [PMID: 34237412 DOI: 10.1016/j.neulet.2021.136100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/27/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Humans spontaneously alternate between walking and running with a change in locomotion speed, which is termed gait transition. It has been suggested that sensory information in the muscle is a factor that triggers the gait transition; however, direct evidence for this has not been presented. In addition, it has been suggested that upper limb movement during human gait facilitates leg muscle activity due to the neural coupling between the upper and lower limbs. We hypothesized that a disturbance of afferent inputs in the neural coupling between the upper and lower limbs suppressively act on the gait transition. Here, we aimed to deepen the understanding of contribution of the afferent inputs in neural coupling between the upper and lower limbs to the gait transition. Eight participants performed spontaneous walk-to-run and run-to-walk transitions under two different conditions: Normal (arms swinging normally); and TIS (partial blocking of afferent inputs from the arms by inducing tourniquet ischemia). We compared the preferred gait transition speeds (PTS), joint angles, muscle activities, and muscle synergies between the two conditions. Control of coordinated muscle activities can be investigated by analyzing muscle synergies, which are groups of muscles that activate together. The PTS, joint angle profiles, muscle activity profiles, and muscle synergies were nearly identical between conditions (walk-to-run PTS at Normal and TIS: 6.9 ± 0.4 and 6.9 ± 0.4 km/h; run-to-walk PTS at Normal and TIS: 6.6 ± 0.4 and 6.5 ± 0.4 km/h; p = 0.869 and p = 0.402, respectively). Therefore, we conclude that the control of gait transition is little affected by disturbing the neural coupling between the upper and lower limbs by reducing afferent inputs from the forearms and distal upper arms. Our findings might reflect robustness of the neural coupling between the upper and lower limbs during locomotion against neural perturbations or disturbances.
Collapse
Affiliation(s)
- Benio Kibushi
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, Japan.
| | - Naoto Kihira
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| | - Toshio Moritani
- School of Health and Sport Sciences, Chukyo University, 101-2 Yagoto Honmachi, Showa-ku, Nagoya-shi, Aichi, Japan
| | - Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
9
|
Balbinot G, Li G, Wiest MJ, Pakosh M, Furlan JC, Kalsi-Ryan S, Zariffa J. Properties of the surface electromyogram following traumatic spinal cord injury: a scoping review. J Neuroeng Rehabil 2021; 18:105. [PMID: 34187509 PMCID: PMC8244234 DOI: 10.1186/s12984-021-00888-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
Traumatic spinal cord injury (SCI) disrupts spinal and supraspinal pathways, and this process is reflected in changes in surface electromyography (sEMG). sEMG is an informative complement to current clinical testing and can capture the residual motor command in great detail-including in muscles below the level of injury with seemingly absent motor activities. In this comprehensive review, we sought to describe how the sEMG properties are changed after SCI. We conducted a systematic literature search followed by a narrative review focusing on sEMG analysis techniques and signal properties post-SCI. We found that early reports were mostly focused on the qualitative analysis of sEMG patterns and evolved to semi-quantitative scores and a more detailed amplitude-based quantification. Nonetheless, recent studies are still constrained to an amplitude-based analysis of the sEMG, and there are opportunities to more broadly characterize the time- and frequency-domain properties of the signal as well as to take fuller advantage of high-density EMG techniques. We recommend the incorporation of a broader range of signal properties into the neurophysiological assessment post-SCI and the development of a greater understanding of the relation between these sEMG properties and underlying physiology. Enhanced sEMG analysis could contribute to a more complete description of the effects of SCI on upper and lower motor neuron function and their interactions, and also assist in understanding the mechanisms of change following neuromodulation or exercise therapy.
Collapse
Affiliation(s)
- Gustavo Balbinot
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.
| | - Guijin Li
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Matheus Joner Wiest
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
| | - Maureen Pakosh
- Library & Information Services, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Julio Cesar Furlan
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Canada
- Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
- Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Jose Zariffa
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
10
|
Vega D, Arellano CJ. Using a simple rope-pulley system that mechanically couples the arms, legs, and treadmill reduces the metabolic cost of walking. J Neuroeng Rehabil 2021; 18:96. [PMID: 34098979 PMCID: PMC8186224 DOI: 10.1186/s12984-021-00887-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emphasizing the active use of the arms and coordinating them with the stepping motion of the legs may promote walking recovery in patients with impaired lower limb function. Yet, most approaches use seated devices to allow coupled arm and leg movements. To provide an option during treadmill walking, we designed a rope-pulley system that physically links the arms and legs. This arm-leg pulley system was grounded to the floor and made of commercially available slotted square tubing, solid strut channels, and low-friction pulleys that allowed us to use a rope to connect the subject's wrist to the ipsilateral foot. This set-up was based on our idea that during walking the arm could generate an assistive force during arm swing retraction and, therefore, aid in leg swing. METHODS To test this idea, we compared the mechanical, muscular, and metabolic effects between normal walking and walking with the arm-leg pulley system. We measured rope and ground reaction forces, electromyographic signals of key arm and leg muscles, and rates of metabolic energy consumption while healthy, young subjects walked at 1.25 m/s on a dual-belt instrumented treadmill (n = 8). RESULTS With our arm-leg pulley system, we found that an assistive force could be generated, reaching peak values of 7% body weight on average. Contrary to our expectation, the force mainly coincided with the propulsive phase of walking and not leg swing. Our findings suggest that subjects actively used their arms to harness the energy from the moving treadmill belt, which helped to propel the whole body via the arm-leg rope linkage. This effectively decreased the muscular and mechanical demands placed on the legs, reducing the propulsive impulse by 43% (p < 0.001), which led to a 17% net reduction in the metabolic power required for walking (p = 0.001). CONCLUSIONS These findings provide the biomechanical and energetic basis for how we might reimagine the use of the arms in gait rehabilitation, opening the opportunity to explore if such a method could help patients regain their walking ability. TRIAL REGISTRATION Study registered on 09/29/2018 in ClinicalTrials.gov (ID-NCT03689647).
Collapse
Affiliation(s)
- Daisey Vega
- Department of Health and Human Performance, Center for Neuromotor and Biomechanics Research, University of Houston, 3875 Holman St., Rm 104 Garrison, Houston, TX, 77204-6015, USA
| | - Christopher J Arellano
- Department of Health and Human Performance, Center for Neuromotor and Biomechanics Research, University of Houston, 3875 Holman St., Rm 104 Garrison, Houston, TX, 77204-6015, USA.
| |
Collapse
|
11
|
Weersink JB, de Jong BM, Halliday DM, Maurits NM. Intermuscular coherence analysis in older adults reveals that gait-related arm swing drives lower limb muscles via subcortical and cortical pathways. J Physiol 2021; 599:2283-2298. [PMID: 33687081 PMCID: PMC8252748 DOI: 10.1113/jp281094] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS Gait-related arm swing in humans supports efficient lower limb muscle activation, indicating a neural coupling between the upper and lower limbs during gait. Intermuscular coherence analyses of gait-related electromyography from upper and lower limbs in 20 healthy participants identified significant coherence in alpha and beta/gamma bands indicating that upper and lower limbs share common subcortical and cortical drivers that coordinate the rhythmic four-limb gait pattern. Additional directed connectivity analyses revealed that upper limb muscles drive and shape lower limb muscle activity during gait via subcortical and cortical pathways and to a lesser extent vice versa. The results provide a neural underpinning that arm swing may serve as an effective rehabilitation therapy concerning impaired gait in neurological diseases. ABSTRACT Human gait benefits from arm swing, as it enhances efficient lower limb muscle activation in healthy participants as well as patients suffering from neurological impairment. The underlying neuronal mechanisms of such coupling between upper and lower limbs remain poorly understood. The aim of the present study was to examine this coupling by intermuscular coherence analysis during gait. Additionally, directed connectivity analysis of this coupling enabled assessment of whether gait-related arm swing indeed drives lower limb muscles. To that end, electromyography recordings were obtained from four lower limb muscles and two upper limb muscles bilaterally, during gait, of 20 healthy participants (mean (SD) age 67 (6.8) years). Intermuscular coherence analysis revealed functional coupling between upper and lower limb muscles in the alpha and beta/gamma band during muscle specific periods of the gait cycle. These effects in the alpha and beta/gamma bands indicate involvement of subcortical and cortical sources, respectively, that commonly drive the rhythmic four-limb gait pattern in an efficiently coordinated fashion. Directed connectivity analysis revealed that upper limb muscles drive and shape lower limb muscle activity during gait via subcortical and cortical pathways and to a lesser extent vice versa. This indicates that gait-related arm swing reflects the recruitment of neuronal support for optimizing the cyclic movement pattern of the lower limbs. These findings thus provide a neural underpinning for arm swing to potentially serve as an effective rehabilitation therapy concerning impaired gait in neurological diseases.
Collapse
Affiliation(s)
- Joyce B Weersink
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, The Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, The Netherlands
| | - David M Halliday
- Department of Electronic Engineering & York Biomedical Research Institute, University of York, York, YO10 5DD, UK
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, The Netherlands
| |
Collapse
|
12
|
Sasada S, Tazoe T, Nakajima T, Omori S, Futatsubashi G, Komiyama T. Arm cycling increases the short-latency reflex from ankle dorsiflexor afferents to knee extensor muscles. J Neurophysiol 2020; 125:110-119. [PMID: 33146064 DOI: 10.1152/jn.00299.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low-intensity electrical stimulation of the common peroneal nerve (CPN) evokes a short latency reflex in the heteronymous knee extensor muscles (referred to as the CPN reflex). The CPN reflex is facilitated at a heel strike during walking, contributing to body weight support. However, the origin of the CPN reflex increase during walking remains unclear. We speculate that this increase originates from multiple sources due to a body of evidence suggesting the presence of neural coupling between the arms and legs. Therefore, we investigated the extent to which the CPN reflex is modulated during rhythmic arm cycling. Twenty-eight subjects sat in an armchair and were asked to perform arm cycling at a moderate cadence using a stationary ergometer while performing isometric contraction of the knee extensors, such that the CPN reflex was evoked. The CPN reflex was evoked by stimulating the CPN [0.9-2.0× the motor threshold (MT) in the tibialis anterior muscle] at the level of the neck of the fibula. The CPN-reflex amplitude was measured from the vastus lateralis (VL). The biphasic reflex response in the VL was evoked within 27-45 ms following CPN stimulation. The amplitude of the CPN reflex increased during arm cycling compared with that before cycling. The modulation of the CPN reflex during arm cycling was detected only for CPN stimulation intensity around 1.2× MT. Furthermore, CPN-reflex modulation was not observed during the isometric contraction of the arm or passive arm cycling. Our results suggest the presence of neural coupling between the CPN-reflex pathways and neural systems generating locomotive arm movement.NEW & NOTEWORTHY Whether locomotive arm movements contribute to the control of the reflex pathway from ankle dorsiflexor afferents to knee extensor muscles [common peroneal nerve (CPN)-reflex] is an unresolved issue. The CPN reflex in the stationary leg was facilitated only by arm cycling, and not by passive or isometric motor tasks. Our results suggest that the arm locomotor system modulates the reflex pathway from ankle dorsiflexor afferents to the knee extensor muscles.
Collapse
Affiliation(s)
- Syusaku Sasada
- Department of Food and Nutrition Science, Sagami Women's University, Kanagawa, Japan.,Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Toshiki Tazoe
- Neural Prosthesis Project, Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | - Tomoyoshi Komiyama
- Graduate School of Education, Chiba University, Chiba, Japan.,Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
13
|
Effects of the Immobilization of the Upper Extremities on Spatiotemporal Gait Parameters during Walking in Stroke Patients: A Preliminary Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6157231. [PMID: 32596338 PMCID: PMC7288199 DOI: 10.1155/2020/6157231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 11/18/2022]
Abstract
Background The purpose of this study was to investigate the effects of upper extremity immobilization and consequent walking speed on spatiotemporal gait parameters in stroke patients with hemiparesis. Methods The following variables were assessed or measured in 29 stroke patients: age, height, weight, disease duration, Korean version of the Mini-Mental State Examination (MMSE-K), Berg balance scale (BBS-K), functional gait assessment (FGA-K), cause of the disease (type of lesion), and hemiparetic side. The measurement of gait was performed using two pressure plates of 1.5 m to create a 3 m walking distance and leaving 1.5 m of extension at both start and end, to ultimately create a 6 m walking distance that the patient could walk through. The following gait patterns were randomly selected based on card draws: self-selected walk speed (SW), self-selected walk speed with immobilized upper extremities (SWI), fast walking (FW), and fast walking with immobilized upper extremities (FWI). Each patient was assessed for four different gait patterns, with three measurements per pattern (12 gait measurements in total). Results While there were significant differences in the stride length, step width, velocity, and step length of the paretic side between self-selected walk speed (SW) and SWI, FWI did not show significant changes in any of the tested parameters. Conclusions Immobilization of the upper extremities may affect walking at self-selected walk speeds. A comprehensive training program including upper extremity movement should be established for gait rehabilitation. Clinical Trial Registration. This trial is registered at http://cris.nih.go.kr/cris.
Collapse
|
14
|
Interlimb conditioning of lumbosacral spinally evoked motor responses after spinal cord injury. Clin Neurophysiol 2020; 131:1519-1532. [PMID: 32403065 DOI: 10.1016/j.clinph.2020.03.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/11/2020] [Accepted: 03/06/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The importance of subcortical pathways to functional motor recovery after spinal cord injury (SCI) has been demonstrated in multiple animal models. The current study evaluated descending interlimb influence on lumbosacral motor excitability after chronic SCI in humans. METHODS Ulnar nerve stimulation and transcutaneous electrical spinal stimulation were used in a condition-test paradigm to evaluate the presence of interlimb connections linking the cervical and lumbosacral spinal segments in non-injured (n=15) and spinal cord injured (SCI) (n=18) participants. RESULTS Potentiation of spinally evoked motor responses (sEMRs) by ulnar nerve conditioning was observed in 7/7 SCI participants with volitional leg muscle activation, and in 6/11 SCI participants with no volitional activation. Of these six, conditioning of sEMRs was present only when the neurological level of injury was rostral to the ulnar innervation entry zones. CONCLUSIONS Descending modulation of lumbosacral motor pools via interlimb projections may exist in SCI participants despite the absence of volitional leg muscle activation. SIGNIFICANCE Evaluation of sub-clinical, spared pathways within the spinal cord after SCI may provide an improved understanding of both the contributions of different pathways to residual function, and the mechanisms of plasticity and functional motor recovery following rehabilitation..
Collapse
|
15
|
Korupolu R, Stampas A, Singh M, Zhou P, Francisco G. Electrophysiological Outcome Measures in Spinal Cord Injury Clinical Trials: A Systematic Review. Top Spinal Cord Inj Rehabil 2020; 25:340-354. [PMID: 31844386 DOI: 10.1310/sci2504-340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Electrophysiological measures are being increasingly utilized due to their ability to provide objective measurements with minimal bias and to detect subtle changes with quantitative data on neural function. Heterogeneous reporting of trial outcomes limits effective interstudy comparison and optimization of treatment. Objective: The objective of this systematic review is to describe the reporting of electrophysiological outcome measures in spinal cord injury (SCI) clinical trials in order to inform a subsequent consensus study. Methods: A systematic search of PubMed and EMBASE databases was conducted according to PRISMA guidelines. Adult human SCI clinical trials published in English between January 1, 2008 and September 15, 2018 with at least one electrophysiological outcome measure were eligible. Findings were reviewed by all authors to create a synthesis narrative describing each outcome measure. Results: Sixty-four SCI clinical trials were included in this review. Identified electrophysiological outcomes included electromyography activity (44%), motor evoked potentials (33%), somatosensory evoked potentials (33%), H-reflex (20%), reflex electromyography activity (11%), nerve conduction studies (9%), silent period (3%), contact heat evoked potentials (2%), and sympathetic skin response (2%). Heterogeneity was present in regard to both methods of measurement and reporting of electrophysiological outcome measures. Conclusion: This review demonstrates need for the development of a standardized reporting set for electrophysiological outcome measures. Limitations of this review include exclusion of non-English publications, studies more than 10 years old, and an inability to assess methodological quality of primary studies due to a lack of guidelines on reporting of systematic reviews of outcome measures.
Collapse
Affiliation(s)
- Radha Korupolu
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Argyrios Stampas
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Mani Singh
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| | - Gerard Francisco
- Department of Physical Medicine and Rehabilitation, University of Texas John P and Katherine G McGovern Medical School, Houston, Texas
| |
Collapse
|
16
|
Kishi T, Ogata T, Ora H, Shigeyama R, Nakayama M, Seki M, Orimo S, Miyake Y. Synchronized Tactile Stimulation on Upper Limbs Using a Wearable Robot for Gait Assistance in Patients With Parkinson's Disease. Front Robot AI 2020; 7:10. [PMID: 33501179 PMCID: PMC7806086 DOI: 10.3389/frobt.2020.00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
This study aimed to investigate whether using a wearable robot applying interactive rhythmic stimulation on the upper limbs of patients with Parkinson's disease (PD) could affect their gait. The wearable robot presented tactile stimuli on the patients' upper limbs, which was mutually synchronized with the swing of their upper limbs. We conducted an evaluation experiment with PD patients (n = 30, Modified Hoehn-Yahr = 1-3, on-state) to investigate the assistance effect by the robot and the immediate after-effect of intervention. The participants were instructed to walk 30 m under four different conditions: (1) not wearing the robot before the intervention (Pre-condition), (2) wearing the robot without the rhythm assistance (RwoA condition), (3) wearing the robot with rhythm assistance (RwA condition), and (4) not wearing the robot immediately after the intervention (Post-condition). These conditions were conducted in this order over a single day. The third condition was performed three times and the others, once. The arm swing amplitude, stride length, and velocity were increased in the RwA condition compared to the RwoA condition. The coefficient of variance (CV) of the stride duration was decreased in the RwA condition compared to the RwoA condition. These results revealed that the assistance by the robot increased the gait performance of PD patients. In addition, the stride length and velocity were increased and the stride duration CV was decreased in the Post-condition compared to the Pre-condition. These results show that the effect of robot assistance on the patient's gait remained immediately after the intervention. These findings suggest that synchronized rhythmic stimulation on the upper limbs could influence the gait of PD patients and that the robot may assist with gait rehabilitation in these patients.
Collapse
Affiliation(s)
- Takayuki Kishi
- Department of Systems and Control Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Taiki Ogata
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroki Ora
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Ryo Shigeyama
- Department of Systems and Control Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | - Satoshi Orimo
- Department of Neurology, Kanto Central Hospital, Setagaya, Japan
| | - Yoshihiro Miyake
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
17
|
Hill A, Nantel J. The effects of arm swing amplitude and lower-limb asymmetry on gait stability. PLoS One 2019; 14:e0218644. [PMID: 31860669 PMCID: PMC6924645 DOI: 10.1371/journal.pone.0218644] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/29/2019] [Indexed: 11/18/2022] Open
Abstract
Changes to arm swing and gait symmetry are symptomatic of several pathological gaits associated with reduced stability. The purpose of this study was to examine the relative contributions of arm swing and gait symmetry towards gait stability. We theorized that actively increasing arm swing would increase gait stability, while asymmetric walking would decrease gait stability. Fifteen healthy, young adults (23.4 ± 2.8 yrs) walked on a split-belt treadmill under symmetric (1.2 m/s) and asymmetric walking (left/right, 5:4 speed ratio) with three different arm swings: held, normal, and active. Trunk local dynamic stability, inter-limb coordination, and spatiotemporal gait variability and symmetry were measured. Active arm swing resulted in improved local trunk stability, increased gait variability, and decreased inter-limb coordination (p < .013). The changes in local trunk stability and gait variability during active arm swing suggests that these metrics quantify fundamentally different aspects of stability and are not always comparable. Split-belt walking caused reduced local trunk stability, increased gait variability, and increased lower limb asymmetry (p < .003). However, the arm swing symmetry was unaffected by gait asymmetry, this suggests that the decreases in gait stability are linked to the increases in gait asymmetry rather than increases in arm swing asymmetry.
Collapse
Affiliation(s)
- Allen Hill
- University of Ottawa, School of Human Kinetics, Ottawa, Canada
| | - Julie Nantel
- University of Ottawa, School of Human Kinetics, Ottawa, Canada
- * E-mail:
| |
Collapse
|
18
|
Do Upper Limb Loss and Prosthesis Use Affect Lower Limb Gait Dynamics? ACTA ACUST UNITED AC 2019; Online first. [PMID: 33510563 DOI: 10.1097/jpo.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction Intentional interruption of upper and lower limb coordination of able-bodied subjects alters their gait biomechanics. However, the effect of upper-limb loss (ULL) on lower-limb gait biomechanics is not fully understood. The aim of this secondary study was to perform a follow-up analysis of a previous dataset to characterize the spatiotemporal parameters and lower-limb kinematics and kinetics of gait for persons with ULL when wearing and not wearing an upper limb prosthesis (ULP). We were particularly interested in quantifying the effects of matching the mass and inertia of the prosthetic limb to the sound limb. Materials and Methods Ten persons with unilateral ULL walked at a self-selected speed under three randomly presented conditions: 1) not wearing a prosthesis, 2) wearing their customary prosthesis, and 3) wearing a mock prosthesis that can be adjusted to match the length, mass, and inertial properties of each subject's sound limb. Walkway-embedded force plates and a 12-camera digital motion capture system recorded ground reaction forces (GRFs) and retroreflective marker position data, respectively. Average spatiotemporal (walking speed, cadence, stance time, swing time, step length, double support time), lower-limb kinematic (joint angles), and lower-limb kinetic (ground forces, joint moments and powers) data were processed and their statistical significance were analyzed. Result Walking speed for each condition was nearly equivalent (1.20±0.01 m/s) and differences between condition were non-significant (p=0.769). The interaction effect (side× prosthesis) was significant for peak hip extension (p=0.01) and second peak (propulsive) vertical GRF (p=0.028), but separate follow-up analyses of both main effects were not significant (p≥0.099). All other main effect comparisons were not significant (p≥0.102). Conclusions Although the sample cohort was small and heterogeneous, the results of this study suggest that persons with unilateral ULL did not display significant limb side asymmetry in lower-limb gait spatiotemporal, kinetic, and kinematic parameters, regardless of ULP use.
Collapse
|
19
|
Weersink JB, Maurits NM, de Jong BM. EEG time-frequency analysis provides arguments for arm swing support in human gait control. Gait Posture 2019; 70:71-78. [PMID: 30826690 DOI: 10.1016/j.gaitpost.2019.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 01/31/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Human gait benefits from arm swing, which requires four-limb co-ordination. The Supplementary Motor Area (SMA) is involved in multi-limb coordination. With its location anterior to the leg motor cortex and the pattern of its connections, this suggests a distinct role in gait control. RESEARCH QUESTION Is the SMA functionally implicated in gait-related arm swing? METHODS Ambulant electroencephalography (EEG) was employed during walking with and without arm swing in twenty healthy subjects (mean age: 64.9yrs, SD 7.2). Power changes across the EEG frequency spectrum were assessed by Event Related Spectral Perturbation (ERSP) analysis over both the putative SMA at electrode position Fz and additional sensorimotor regions. RESULTS During walking with arm swing, midline electrodes Fz and Cz showed a step-related pattern of Event Related Desynchronization (ERD) followed by Event Related Synchronization (ERS). Walking without arm swing was associated with significant ERD-ERS power reduction in the high-beta/low-gamma band over Fz and a power increase over Cz. Electrodes C3 and C4 revealed a pattern of ERD during contralateral- and ERS during ipsilateral leg swing. This ERD power decreased in gait without arm swing (low-frequency band). The ERSP pattern during walking with arm swing was similar at CP1 and CP2: ERD was seen during double support and the initial swing phase of the right leg, while a strong ERS emerged during the second half of the left leg's swing. Walking without arm swing showed a significant power reduction of this ERD-ERS pattern over CP2, while over CP1, ERS during left leg's swing turned into ERD. CONCLUSION The relation between arm swing in walking and a step-related ERD-ERS pattern in the high-beta/low-gamma band over the putative SMA, points at an SMA contribution to integrated cyclic anti-phase movements of upper- and lower limbs. This supports a cortical underpinning of arm swing support in gait control.
Collapse
Affiliation(s)
- Joyce B Weersink
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, the Netherlands
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, the Netherlands
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, POB 30.001, Groningen, the Netherlands.
| |
Collapse
|
20
|
Yap RMS, Ogawa KI, Hirobe Y, Nagashima T, Seki M, Nakayama M, Ichiryu K, Miyake Y. Gait-Assist Wearable Robot Using Interactive Rhythmic Stimulation to the Upper Limbs. Front Robot AI 2019; 6:25. [PMID: 33501041 PMCID: PMC7805921 DOI: 10.3389/frobt.2019.00025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/28/2019] [Indexed: 12/02/2022] Open
Abstract
Many power-assist wearable exoskeletons have been developed to provide walking support and gait rehabilitation for elderly subjects and gait-disorder patients. Most designers have focused on a direct power-assist to the wearer's lower limbs. However, gait is a coordinated rhythmic movement of four limbs controlled intrinsically by central pattern generators, with the upper limbs playing an important role in walking. Maintaining a normal gait can become difficult as a person ages, because of decreases in limb coordination, stride length, and gait speed. It is known that coordination mechanisms can be governed by the principle of mutual entrainment, in which synchronization develops through the interaction between nonlinear phase oscillators in biological systems. This principle led us to hypothesize that interactive rhythmic stimulation to upper-limb movements might compensate for the age-related decline in coordination, thereby improving the gait in the elderly. To investigate this hypothesis, we developed a gait-assist wearable exoskeleton that employs interactive rhythmic stimulation to the upper limbs. In particular, we investigated the effects on spatial (i.e., hip-swing amplitude) and temporal (i.e., hip-swing period) gait parameters by conducting walking experiments with 12 healthy elderly subjects under one control condition and five upper-limb-assist conditions, where the output motor torque was applied at five different upper-limb swing positions. The results showed a statistically significant increase in the mean hip-swing amplitude, with a mean increment of about 7% between the control and upper-limb-assist conditions. They also showed a statistically significant decrease in the mean hip-swing period, with a mean decrement of about 2.3% between the control and one of the upper-limb-assist conditions. Although the increase in the hip-swing amplitude and the decrease in the hip-swing period were both small, the results indicate the possibility that interactive rhythmic stimulation to the upper limbs might have a positive effect on the gait of the elderly.
Collapse
Affiliation(s)
- Robin Miao Sin Yap
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Ken-Ichiro Ogawa
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Hirobe
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Japan
| | - Terumasa Nagashima
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | - Ken Ichiryu
- Kikuchi Seisakusho Co. Ltd., Hachioji, Japan
| | - Yoshihiro Miyake
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
21
|
Zhou R, Parhizi B, Assh J, Alvarado L, Ogilvie R, Chong SL, Mushahwar VK. Effect of cervicolumbar coupling on spinal reflexes during cycling after incomplete spinal cord injury. J Neurophysiol 2018; 120:3172-3186. [DOI: 10.1152/jn.00509.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal networks in the cervical and lumbar cord are actively coupled during locomotion to coordinate arm and leg activity. The goals of this project were to investigate the intersegmental cervicolumbar connectivity during cycling after incomplete spinal cord injury (iSCI) and to assess the effect of rehabilitation training on improving reflex modulation mediated by cervicolumbar pathways. Two studies were conducted. In the first, 22 neurologically intact (NI) people and 10 people with chronic iSCI were recruited. The change in H-reflex amplitude in flexor carpi radialis (FCR) during leg cycling and H-reflex amplitude in soleus (SOL) during arm cycling were investigated. In the second study, two groups of participants with chronic iSCI underwent 12 wk of cycling training: one performed combined arm and leg cycling (A&L) and the other legs only cycling (Leg). The effect of training paradigm on the amplitude of the SOL H-reflex was assessed. Significant reduction in the amplitude of both FCR and SOL H-reflexes during dynamic cycling of the opposite limbs was found in NI participants but not in participants with iSCI. Nonetheless, there was a significant reduction in the SOL H-reflex during dynamic arm cycling in iSCI participants after training. Substantial improvements in SOL H-reflex properties were found in the A&L group after training. The results demonstrate that cervicolumbar modulation during rhythmic movements is disrupted in people with chronic iSCI; however, this modulation is restored after cycling training. Furthermore, involvement of the arms simultaneously with the legs during training may better regulate the leg spinal reflexes.NEW & NOTEWORTHY This work systematically demonstrates the disruptive effect of incomplete spinal cord injury on cervicolumbar coupling during rhythmic locomotor movements. It also shows that the impaired cervicolumbar coupling could be significantly restored after cycling training. Actively engaging the arms in rehabilitation paradigms for the improvement of walking substantially regulates the excitability of the lumbar spinal networks. The resulting regulation may be better than that obtained by interventions that focus on training of the legs only.
Collapse
Affiliation(s)
- R. Zhou
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - B. Parhizi
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - J. Assh
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - L. Alvarado
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - R. Ogilvie
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - S. L. Chong
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - V. K. Mushahwar
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Yang HS, James CR, Atkins LT, Sawyer SF, Sizer PS, Kumar NA, Kim J. Effects of arm weight on gait performance in healthy subjects. Hum Mov Sci 2018; 60:40-47. [PMID: 29775941 DOI: 10.1016/j.humov.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 11/30/2022]
Abstract
Previous studies have investigated how additional arm weights affect gait. Although light weights (0.45 kg) seemed to elicit performance improvements in Parkinsonian patients, it was not studied how light weights affect gait parameters in healthy individuals. It is important to understand normal responses in a healthy population so that clinical effects might be better understood. Therefore, the purpose of this study was to investigate the effects of arm weights on arm swing amplitude, gait performance, and muscle activity in healthy people. Twenty-two subjects walked overground at their preferred speed under different weight carriage conditions (C1: no weight; C2: unilateral arm weight; C3: bilateral arm weights; C4: waist weights). Gait speed increased in C2 (p = 0.018) and C4 (p = 0.013) when compared with C1(C1: 1.21 ± 0.08; C2: 1.25 ± 0.11; C3: 1.24 ± 0.11; C4: 1.25 ± 0.11 m/s) with an increase in cadence during C2 (p < 0.001), C3 (p = 0.008), and C4 (p < 0.001) (C1: 105.5 ± 5.2; C2: 108.5 ± 5.6; C3: 107.9 ± 5.6; C4: 108.5 ± 5.3 steps/min) and in tibialis anterior electromyographic activity on the unweighted side in C2 (p = 0.048) (C1: 21.05 ± 4.59; C2: 25.10 ± 6.10; C3: 23.93 ± 4.75; C4: 24.33 ± 6.32 μV). The results indicate that an additional sensory input with the application of the weights may result in an overcompensation with the whole body and facilitate faster walking speed when applied on one arm or around the waist. The locations of the weights and amount of the weights may elicit different responses. Various strategies of adding weights should be further investigated as a potential intervention to improve performance in individuals with various gait impairments. Although there is evidence for benefits of this intervention in Parkinsonian patients, further study is warranted in other patient populations, such as stroke patients, who might benefit from this intervention to improve gait performance.
Collapse
Affiliation(s)
- Hyung Suk Yang
- Division of Kinesiology and Sport Management, University of South Dakota, Vermillion, SD, USA.
| | - C Roger James
- Department of Rehabilitation Sciences and Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Lee T Atkins
- Department of Physical Therapy, Angelo State University, San Angelo, TX, USA.
| | - Steven F Sawyer
- Department of Rehabilitation Sciences and Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Phillip S Sizer
- Department of Rehabilitation Sciences and Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Neeraj A Kumar
- Department of Rehabilitation Sciences and Center for Rehabilitation Research, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Jongyeol Kim
- Department of Neurology, Texas Tech University Health Science Center, TX, USA.
| |
Collapse
|
23
|
Klarner T, Zehr EP. Sherlock Holmes and the curious case of the human locomotor central pattern generator. J Neurophysiol 2018. [PMID: 29537920 DOI: 10.1152/jn.00554.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evidence first described in reduced animal models over 100 years ago led to deductions about the control of locomotion through spinal locomotor central pattern-generating (CPG) networks. These discoveries in nature were contemporaneous with another form of deductive reasoning found in popular culture, that of Arthur Conan Doyle's detective, Sherlock Holmes. Because the invasive methods used in reduced nonhuman animal preparations are not amenable to study in humans, we are left instead with deducing from other measures and observations. Using the deductive reasoning approach of Sherlock Holmes as a metaphor for framing research into human CPGs, we speculate and weigh the evidence that should be observable in humans based on knowledge from other species. This review summarizes indirect inference to assess "observable evidence" of pattern-generating activity that leads to the logical deduction of CPG contributions to arm and leg activity during locomotion in humans. The question of where a CPG may be housed in the human nervous system remains incompletely resolved at this time. Ongoing understanding, elaboration, and application of functioning locomotor CPGs in humans is important for gait rehabilitation strategies in those with neurological injuries.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,Division of Medical Sciences, University of Victoria, British Columbia, Canada
| |
Collapse
|
24
|
Zhou R, Alvarado L, Ogilvie R, Chong SL, Shaw O, Mushahwar VK. Non-gait-specific intervention for the rehabilitation of walking after SCI: role of the arms. J Neurophysiol 2018; 119:2194-2211. [PMID: 29364074 DOI: 10.1152/jn.00569.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Arm movements modulate leg activity and improve gait efficiency; however, current rehabilitation interventions focus on improving walking through gait-specific training and do not actively involve the arms. The goal of this project was to assess the effect of a rehabilitation strategy involving simultaneous arm and leg cycling on improving walking after incomplete spinal cord injury (iSCI). We investigated the effect of 1) non-gait-specific training and 2) active arm involvement during training on changes in over ground walking capacity. Participants with iSCI were assigned to simultaneous arm-leg cycling (A&L) or legs only cycling (Leg) training paradigms, and cycling movements were assisted with electrical stimulation. Overground walking speed significantly increased by 0.092 ± 0.022 m/s in the Leg group and 0.27 ± 0.072m/s in the A&L group after training. Whereas the increases in the Leg group were similar to those seen after current locomotor training strategies, increases in the A&L group were significantly larger than those in the Leg group. Walking distance also significantly increased by 32.12 ± 8.74 m in the Leg and 91.58 ± 36.24 m in the A&L group. Muscle strength, sensation, and balance improved in both groups; however, the A&L group had significant improvements in most gait measures and had more regulated joint kinematics and muscle activity after training compared with the Leg group. We conclude that electrical stimulation-assisted cycling training can produce significant improvements in walking after SCI. Furthermore, active arm involvement during training can produce greater improvements in walking performance. This strategy may also be effective in people with other neural disorders or diseases. NEW & NOTEWORTHY This work challenges concepts of task-specific training for the rehabilitation of walking and encourages coordinated training of the arms and legs after spinal cord injury. Cycling of the legs produced significant improvements in walking that were similar in magnitude to those reported with gait-specific training. Moreover, active engagement of the arms simultaneously with the legs generated nearly double the improvements obtained by leg training only. The cervico-lumbar networks are critical for the improvement of walking.
Collapse
Affiliation(s)
- Rui Zhou
- Neuroscience & Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Laura Alvarado
- Neuroscience & Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Robert Ogilvie
- Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Su Ling Chong
- Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Oriana Shaw
- Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| | - Vivian K Mushahwar
- Neuroscience & Mental Health Institute, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Division of Physical Medicine & Rehabilitation, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta , Edmonton, Alberta , Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta , Edmonton, Alberta , Canada
| |
Collapse
|
25
|
Frigon A. The neural control of interlimb coordination during mammalian locomotion. J Neurophysiol 2017; 117:2224-2241. [PMID: 28298308 DOI: 10.1152/jn.00978.2016] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
Neuronal networks within the spinal cord directly control rhythmic movements of the arms/forelimbs and legs/hindlimbs during locomotion in mammals. For an effective locomotion, these networks must be flexibly coordinated to allow for various gait patterns and independent use of the arms/forelimbs. This coordination can be accomplished by mechanisms intrinsic to the spinal cord, somatosensory feedback from the limbs, and various supraspinal pathways. Incomplete spinal cord injury disrupts some of the pathways and structures involved in interlimb coordination, often leading to a disruption in the coordination between the arms/forelimbs and legs/hindlimbs in animal models and in humans. However, experimental spinal lesions in animal models to uncover the mechanisms coordinating the limbs have limitations due to compensatory mechanisms and strategies, redundant systems of control, and plasticity within remaining circuits. The purpose of this review is to provide a general overview and critical discussion of experimental studies that have investigated the neural mechanisms involved in coordinating the arms/forelimbs and legs/hindlimbs during mammalian locomotion.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
26
|
Rhythmic wrist movements facilitate the soleus H-reflex and non-voluntary air-stepping in humans. Neurosci Lett 2017; 638:39-45. [PMID: 27931775 DOI: 10.1016/j.neulet.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/22/2016] [Accepted: 12/04/2016] [Indexed: 11/23/2022]
Abstract
Neural coupling between the upper and lower limbs during human walking is supported by modulation of cross-limb reflexes and the presence of rhythmic activity in the proximal arm muscles. Nevertheless, the involvement of distal arm muscles in cyclic movements and sensorimotor neuromodulation is also suggested given their step-synchronized activation in many locomotor-related tasks (e.g., swimming, skiing, climbing, cycling, crawling, etc.). Here we investigated the effect of rhythmic wrist movements, separately and in conjunction with arm swinging, on the characteristics of non-voluntary cyclic leg movements evoked by muscle vibration in a gravity neutral position and on the soleus H-reflex of the stationary legs. For the H-reflex modulation, five conditions were compared: stationary arms, voluntary alternating upper limb swinging, combined upper limb and wrist motion, wrist movements only and motion of the upper limbs with addition of load. Rhythmic wrist movements significantly facilitated the amplitude of non-voluntary leg oscillations, including ankle joint oscillations, and the H-reflex. The latter effect was related to rhythmicity of wrist motion rather than to a simple extra tension in the upper limb muscles (a kind of the Jendrassik manoeuvre) since adding resistance to arm oscillations (without flexion-extension in the wrist joint) had an opposite inhibitory effect on the H-reflex. Our results further support the existence of connections between the distal parts of the upper and lower extremities at the neural level, suggesting that wrist joint movements can be an important component of motor neurorehabilitation.
Collapse
|
27
|
Côté MP, Murray M, Lemay MA. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure. J Neurotrauma 2016; 34:1841-1857. [PMID: 27762657 DOI: 10.1089/neu.2016.4577] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Body-weight supported locomotor training (BWST) promotes recovery of load-bearing stepping in lower mammals, but its efficacy in individuals with a spinal cord injury (SCI) is limited and highly dependent on injury severity. While animal models with complete spinal transections recover stepping with step-training, motor complete SCI individuals do not, despite similarly intensive training. In this review, we examine the significant differences between humans and animal models that may explain this discrepancy in the results obtained with BWST. We also summarize the known effects of SCI and locomotor training on the muscular, motoneuronal, interneuronal, and supraspinal systems in human and non-human models of SCI and address the potential causes for failure to translate to the clinic. The evidence points to a deficiency in neuronal activation as the mechanism of failure, rather than muscular insufficiency. While motoneuronal and interneuronal systems cannot be directly probed in humans, the changes brought upon by step-training in SCI animal models suggest a beneficial re-organization of the systems' responsiveness to descending and afferent feedback that support locomotor recovery. The literature on partial lesions in humans and animal models clearly demonstrate a greater dependency on supraspinal input to the lumbar cord in humans than in non-human mammals for locomotion. Recent results with epidural stimulation that activates the lumbar interneuronal networks and/or increases the overall excitability of the locomotor centers suggest that these centers are much more dependent on the supraspinal tonic drive in humans. Sensory feedback shapes the locomotor output in animal models but does not appear to be sufficient to drive it in humans.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Marion Murray
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Michel A Lemay
- 2 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Klarner T, Barss TS, Sun Y, Kaupp C, Loadman PM, Zehr EP. Long-Term Plasticity in Reflex Excitability Induced by Five Weeks of Arm and Leg Cycling Training after Stroke. Brain Sci 2016; 6:brainsci6040054. [PMID: 27827888 PMCID: PMC5187568 DOI: 10.3390/brainsci6040054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
Neural connections remain partially viable after stroke, and access to these residual connections provides a substrate for training-induced plasticity. The objective of this project was to test if reflex excitability could be modified with arm and leg (A & L) cycling training. Nineteen individuals with chronic stroke (more than six months postlesion) performed 30 min of A & L cycling training three times a week for five weeks. Changes in reflex excitability were inferred from modulation of cutaneous and stretch reflexes. A multiple baseline (three pretests) within-subject control design was used. Plasticity in reflex excitability was determined as an increase in the conditioning effect of arm cycling on soleus stretch reflex amplitude on the more affected side, by the index of modulation, and by the modulation ratio between sides for cutaneous reflexes. In general, A & L cycling training induces plasticity and modifies reflex excitability after stroke.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
- Division of Medical Sciences, University of Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
29
|
Zehr EP, Barss TS, Dragert K, Frigon A, Vasudevan EV, Haridas C, Hundza S, Kaupp C, Klarner T, Klimstra M, Komiyama T, Loadman PM, Mezzarane RA, Nakajima T, Pearcey GEP, Sun Y. Neuromechanical interactions between the limbs during human locomotion: an evolutionary perspective with translation to rehabilitation. Exp Brain Res 2016; 234:3059-3081. [PMID: 27421291 PMCID: PMC5071371 DOI: 10.1007/s00221-016-4715-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 06/27/2016] [Indexed: 11/10/2022]
Abstract
During bipedal locomotor activities, humans use elements of quadrupedal neuronal limb control. Evolutionary constraints can help inform the historical ancestry for preservation of these core control elements support transfer of the huge body of quadrupedal non-human animal literature to human rehabilitation. In particular, this has translational applications for neurological rehabilitation after neurotrauma where interlimb coordination is lost or compromised. The present state of the field supports including arm activity in addition to leg activity as a component of gait retraining after neurotrauma.
Collapse
Affiliation(s)
- E P Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Katie Dragert
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
| | - Alain Frigon
- Department of Pharmacology-physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Erin V Vasudevan
- Department of Physical Therapy, SUNY Stony Brook University, Stony Brook, NY, USA
| | - Carlos Haridas
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
| | - Sandra Hundza
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Motion and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, BC, Canada
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Marc Klimstra
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Motion and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, BC, Canada
| | - Tomoyoshi Komiyama
- Division of Sports and Health Science, Chiba University, Chiba, Japan
- The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Rinaldo A Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, Universidade de Brasília-UnB, Brasília, Brazil
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
30
|
Thibaudier Y, Hurteau MF, Dambreville C, Chraibi A, Goetz L, Frigon A. Interlimb Coordination during Tied-Belt and Transverse Split-Belt Locomotion before and after an Incomplete Spinal Cord Injury. J Neurotrauma 2016; 34:1751-1765. [PMID: 27219842 DOI: 10.1089/neu.2016.4421] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coordination between the arms/forelimbs and legs/hindlimbs is often impaired in humans and quadrupedal mammals after incomplete spinal cord injury. In quadrupeds, the forelimbs often take more steps than the hindlimbs, producing a two-to-one forelimb-hindlimb (2-1 FL-HL) coordination. In locomotor performance scales, this is generally considered a loss of FL-HL coordination. Here, FL-HL coordination was quantified before and 8 weeks after a lateral spinal hemisection at the sixth thoracic segment in six adult cats. Cats were tested during tied-belt locomotion (equal front and rear speeds) and transverse split-belt locomotion with the forelimbs or hindlimbs stepping faster. The results show that consistent phasing between forelimb and hindlimb movements was maintained after hemisection, even with the appearance of 2-1 FL-HL coordination, indicating that new stable forms of coordination emerge. Moreover, transverse split-belt locomotion potently modulated interlimb coordination and was capable of restoring a one-to-one FL-HL coordination with a faster treadmill speed for the hindlimbs. In conclusion, the results suggest that neural communication persists after an incomplete spinal cord injury, despite an unequal number of steps between the forelimbs and hindlimbs, and that interlimb coordination can be modulated by having the forelimbs or hindlimbs move at a faster frequency. We propose that locomotor recovery scales incorporate more sensitive methods to quantify FL-HL coordination, to better reflect residual functional capacity and possible cervicolumbar neural communication. Lastly, devising training protocols that make use of the bidirectional influences of the cervical and lumbar locomotor pattern generators could strengthen interlimb coordination and promote locomotor recovery.
Collapse
Affiliation(s)
- Yann Thibaudier
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Marie-France Hurteau
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Charline Dambreville
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Anass Chraibi
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Laurent Goetz
- 2 Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec , Quebec, Canada
| | - Alain Frigon
- 1 Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| |
Collapse
|
31
|
Yoon J, Park J, Park K, Jo G, Kim H, Jang W, Kim JS, Youn J, Oh ES, Kim HT, Youm CH. The effects of additional arm weights on arm-swing magnitude and gait patterns in Parkinson’s disease. Clin Neurophysiol 2016; 127:693-697. [DOI: 10.1016/j.clinph.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/03/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
|
32
|
Solopova IA, Selionov VA, Zhvansky DS, Gurfinkel VS, Ivanenko Y. Human cervical spinal cord circuitry activated by tonic input can generate rhythmic arm movements. J Neurophysiol 2015; 115:1018-30. [PMID: 26683072 DOI: 10.1152/jn.00897.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023] Open
Abstract
The coordination between arms and legs during human locomotion shares many features with that in quadrupeds, yet there is limited evidence for the central pattern generator for the upper limbs in humans. Here we investigated whether different types of tonic stimulation, previously used for eliciting stepping-like leg movements, may evoke nonvoluntary rhythmic arm movements. Twenty healthy subjects participated in this study. The subject was lying on the side, the trunk was fixed, and all four limbs were suspended in a gravity neutral position, allowing unrestricted low-friction limb movements in the horizontal plane. The results showed that peripheral sensory stimulation (continuous muscle vibration) and central tonic activation (postcontraction state of neuronal networks following a long-lasting isometric voluntary effort, Kohnstamm phenomenon) could evoke nonvoluntary rhythmic arm movements in most subjects. In ∼40% of subjects, tonic stimulation elicited nonvoluntary rhythmic arm movements together with rhythmic movements of suspended legs. The fact that not all participants exhibited nonvoluntary limb oscillations may reflect interindividual differences in responsiveness of spinal pattern generation circuitry to its activation. The occurrence and the characteristics of induced movements highlight the rhythmogenesis capacity of cervical neuronal circuitries, complementing the growing body of work on the quadrupedal nature of human gait.
Collapse
Affiliation(s)
- I A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia;
| | - V A Selionov
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - D S Zhvansky
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - V S Gurfinkel
- Biomedical Engineering Department, Oregon Health and Science University, Portland, Oregon; and
| | - Y Ivanenko
- Laboratory of Neuromotor Physiology, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
33
|
Ogawa T, Sato T, Ogata T, Yamamoto SI, Nakazawa K, Kawashima N. Rhythmic arm swing enhances patterned locomotor-like muscle activity in passively moved lower extremities. Physiol Rep 2015; 3:3/3/e12317. [PMID: 25742956 PMCID: PMC4393153 DOI: 10.14814/phy2.12317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The use of driven gait orthosis (DGO) has drawn attention in gait rehabilitation for patients after central nervous system (CNS) lesions. By imposing a passive locomotor-like kinematic pattern, the neural mechanisms responsible for locomotion can be activated as in a normal gait. To further enhance this activity, discussions on possible intervention are necessary. Given the possible functional linkages between the upper and lower limbs, we investigated in healthy subjects the degree of modification in the lower limb muscles during DGO-induced passive gait by the addition of swing movement in the upper extremity. The results clearly showed that muscle activity in the ankle dorsiflexor TA muscle was significantly enhanced when the passive locomotor-like movement was accompanied by arm swing movement. The modifications in the TA activity were not a general increase through the stride cycles, but were observed under particular phases as in normal gaits. Voluntary effort to swing the arms may have certain effects on the modification of the muscle activity. The results provide clinical implications regarding the usefulness of voluntary arm swing movement as a possible intervention in passive gait training using DGO, since ordinary gait training using DGO does not induce spontaneous arm swing movement despite its known influence on the lower limb movement.
Collapse
Affiliation(s)
- Tetsuya Ogawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama, Japan Japan Society for the Promotion of Science, Chiyoda Tokyo, Japan Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Takahiko Sato
- College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma Saitama, Japan
| | - Toru Ogata
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Shin-Ichiro Yamamoto
- College of Systems Engineering and Science, Shibaura Institute of Technology, Minuma Saitama, Japan
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, The University of Tokyo, Meguro Tokyo, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
34
|
Volitional walking via upper limb muscle-controlled stimulation of the lumbar locomotor center in man. J Neurosci 2014; 34:11131-42. [PMID: 25122909 DOI: 10.1523/jneurosci.4674-13.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gait disturbance in individuals with spinal cord lesion is attributed to the interruption of descending pathways to the spinal locomotor center, whereas neural circuits below and above the lesion maintain their functional capability. An artificial neural connection (ANC), which bridges supraspinal centers and locomotor networks in the lumbar spinal cord beyond the lesion site, may restore the functional impairment. To achieve an ANC that sends descending voluntary commands to the lumbar locomotor center and bypasses the thoracic spinal cord, upper limb muscle activity was converted to magnetic stimuli delivered noninvasively over the lumbar vertebra. Healthy participants were able to initiate and terminate walking-like behavior and to control the step cycle through an ANC controlled by volitional upper limb muscle activity. The walking-like behavior stopped just after the ANC was disconnected from the participants even when the participant continued to swing arms. Furthermore, additional simultaneous peripheral electrical stimulation to the foot via the ANC enhanced this walking-like behavior. Kinematics of the induced behaviors were identical to those observed in voluntary walking. These results demonstrate that the ANC induces volitionally controlled, walking-like behavior of the legs. This paradigm may be able to compensate for the dysfunction of descending pathways by sending commands to the preserved locomotor center at the lumbar spinal cord and may enable individuals with paraplegia to regain volitionally controlled walking.
Collapse
|
35
|
Miyoshi T, Komatsu F, Takagi M, Kawashima N. Attempt toward a development of aquatic exercise device for gait disorders. Disabil Rehabil Assist Technol 2014; 10:501-507. [PMID: 24856666 DOI: 10.3109/17483107.2014.921938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To develop an aquatic exercise device to facilitate locomotive motor output and achieve repetitive physiological gait patterns to improve movement dysfunctions. METHODS A custom designed leg movement apparatus (LMA) consisted of closed 4-linkage mechanisms and one-length changeable link using a spring. Three-dimensional motions and electromyographic (EMG) activities were recorded in eight healthy subjects to evaluate the reproducibility of the physiological gait patterns using the LMA with or without a spring apparatus in water. RESULTS Using the LMA with a spring apparatus compared to walking in water, the foot trajectories and the time course of the elevation angles in each lower limb joint kinematics were preserved. The time-series of the EMG showed reciprocal modulation between agonist and antagonist muscle groups in the hip and ankle joints. However, the amplitudes of the tibialis anterior muscle in the first half and rectus femoris in the last half of the movement cycle were reduced using the LMA with a spring apparatus. CONCLUSION We developed a novel aquatic exercise device to reproduce physiological gait patterns. The LMA with a spring apparatus would be particularly valuable in therapy for movement dysfunctions to facilitate locomotive motor outputs. Implications for Rehabilitation The leg movement apparatus with spring for underwater use (LMA) would be effective gait training to induce the locomotor-like EMG activities. Hydrotherapy with the LMA has advantages over the partial body weight support treadmill training on land with a robotic device; (1) the LMA is electrically and mechanically safe, and (2) the LMA would require self-effort to generate the gait pattern for movement disorders, or also enable passive gait training by the physiotherapists.
Collapse
Affiliation(s)
- Tasuku Miyoshi
- a Faculty of Engineering , Iwate University , Iwate , Japan and
| | - Fumie Komatsu
- a Faculty of Engineering , Iwate University , Iwate , Japan and
| | - Motoki Takagi
- a Faculty of Engineering , Iwate University , Iwate , Japan and
| | - Noritaka Kawashima
- b Department of Rehabilitation for the Movement Functions , Research Institute of National Rehabilitation Center for Persons with Disabilities , Saitama , Japan
| |
Collapse
|
36
|
Coordinating arms and legs on a hybrid rehabilitation tricycle: the metabolic benefit of asymmetrical compared to symmetrical arm movements. Eur J Appl Physiol 2014; 114:743-50. [PMID: 24384984 DOI: 10.1007/s00421-013-2814-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE The most commonly used propulsion method for handcycling is moving the arms symmetrically. Previous studies indicated that during outdoor handcycling symmetrical arm movements are more efficient. During locomotor movements, however, arm movements are performed asymmetrically in combination with leg movements. We questioned which combination of arm and leg movements is more efficient during combined arm and leg cycling for stationary use. METHODS Twenty-five able-bodied adults performed eight submaximal tests of 6 min on a hybrid handcycle at three incremental gears during four different conditions ('arms only' and 'arms & legs' with arms symmetrical and asymmetrical). Oxygen uptake (VO2), heart rate (HR) and Borg score (Borg) were assessed. RESULTS Increasing workload resulted in significant increases in VO2 (16 W: 13.0 ± 2.4 ml kg(-1) min(-1), 31 W: 14.5 ± 2.9, 49 W: 15.5 ± 2.8; p < 0.001) and Borg (16 W: 7.7 ± 1.7 points, 31 W: 8.6 ± 1.9, 49 W: 9.5 ± 1.9; p < 0.001). During 'arms only', no differences were found in exercise intensity between symmetrical and asymmetrical movements. Contrarily, during 'arms & legs', both VO2 (p < 0.001) and Borg (p = 0.001) were significantly lower for the asymmetrical (VO2: 13.8 ± 2.6 ml kg(-1) min(-1), Borg: 8.1 ± 1.6 points) compared to the symmetrical condition (VO2: 14.9 ± 2.8, Borg: 9.1 ± 2.0). CONCLUSIONS Results indicated that asymmetrical arm movements, especially in combination with leg movements, represented the most efficient condition on a stationary hybrid handcycle. The current results suggest that neural energy costs are lower when moving in the preferred (asymmetrical) coordination when no steering is required. These findings may have implications for stationary arm & leg cycling rehabilitation and tricycle adaptations in patients with spinal cord injury.
Collapse
|
37
|
Shah PK, Garcia-Alias G, Choe J, Gad P, Gerasimenko Y, Tillakaratne N, Zhong H, Roy RR, Edgerton VR. Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury. ACTA ACUST UNITED AC 2013; 136:3362-77. [PMID: 24103912 DOI: 10.1093/brain/awt265] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Can lower limb motor function be improved after a spinal cord lesion by re-engaging functional activity of the upper limbs? We addressed this issue by training the forelimbs in conjunction with the hindlimbs after a thoracic spinal cord hemisection in adult rats. The spinal circuitries were more excitable, and behavioural and electrophysiological analyses showed improved hindlimb function when the forelimbs were engaged simultaneously with the hindlimbs during treadmill step-training as opposed to training only the hindlimbs. Neuronal retrograde labelling demonstrated a greater number of propriospinal labelled neurons above and below the thoracic lesion site in quadrupedally versus bipedally trained rats. The results provide strong evidence that actively engaging the forelimbs improves hindlimb function and that one likely mechanism underlying these effects is the reorganization and re-engagement of rostrocaudal spinal interneuronal networks. For the first time, we provide evidence that the spinal interneuronal networks linking the forelimbs and hindlimbs are amenable to a rehabilitation training paradigm. Identification of this phenomenon provides a strong rationale for proceeding toward preclinical studies for determining whether training paradigms involving upper arm training in concert with lower extremity training can enhance locomotor recovery after neurological damage.
Collapse
Affiliation(s)
- Prithvi K Shah
- 1 Departments of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
The how and why of arm swing during human walking. Gait Posture 2013; 38:555-62. [PMID: 23489950 DOI: 10.1016/j.gaitpost.2013.02.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Revised: 11/26/2012] [Accepted: 02/05/2013] [Indexed: 02/02/2023]
Abstract
Humans walk bipedally, and thus, it is unclear why they swing their arms. In this paper, we will review the mechanisms and functions of arm swinging in human gait. First, we discuss the potential advantages of having swinging arms. Second, we go into the detail on the debate whether arm swing is arising actively or passively, where we will conclude that while a large part of arm swinging is mechanically passive, there is an active contribution of muscles (i.e. an activity that is not merely caused by stretch reflexes). Third, we describe the possible function of the active muscular contribution to arm swinging in normal gait, and discuss the possibility that a Central Pattern Generator (CPG) generates this activity. Fourth, we discuss examples from pathological cases, in which arm swinging is affected. Moreover, using the ideas presented, we suggest ways in which arm swing may be used as a therapeutic aid. We conclude that (1) arm swing should be seen as an integral part of human bipedal gait, arising mostly from passive movements, which are stabilized by active muscle control, which mostly originates from locomotor circuits in the central nervous system (2) arm swinging during normal bipedal gait most likely serves to reduce energy expenditure and (3) arm swinging may be of therapeutic value.
Collapse
|
39
|
McNulty PA, Burke D. Self-sustained motor activity triggered by interlimb reflexes in chronic spinal cord injury, evidence of functional ascending propriospinal pathways. PLoS One 2013; 8:e72725. [PMID: 23936543 PMCID: PMC3732223 DOI: 10.1371/journal.pone.0072725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 07/12/2013] [Indexed: 11/25/2022] Open
Abstract
The loss or reduction of supraspinal inputs after spinal cord injury provides a unique opportunity to examine the plasticity of neural pathways within the spinal cord. In a series of nine experiments on a patient, quadriplegic due to spinal cord injury, we investigated interlimb reflexes and self-sustained activity in completely paralyzed and paretic muscles due to a disinhibited propriospinal pathway. Electrical stimuli were delivered over the left common peroneal nerve at the fibular head as single stimuli or in trains at 2–100 Hz lasting 1 s. Single stimuli produced a robust interlimb reflex twitch in the contralateral thumb at a mean latency 69 ms, but no activity in other muscles. With stimulus trains the thumb twitch occurred at variable subharmonics of the stimulus rate, and strong self-sustained activity developed in the contralateral wrist extensors, outlasting both the stimuli and the thumb reflex by up to 20 s. Similar behavior was recorded in the ipsilateral wrist extensors and quadriceps femoris of both legs, but not in the contralateral thenar or peroneal muscles. The patient could not terminate the self-sustained activity voluntarily, but it was abolished on the left by attempted contractions of the paralyzed thumb muscles of the right hand. These responses depend on the functional integrity of an ascending propriospinal pathway, and highlight the plasticity of spinal circuitry following spinal cord injury. They emphasize the potential for pathways below the level of injury to generate movement, and the role of self-sustained reflex activity in the sequelae of spinal cord injury.
Collapse
Affiliation(s)
- Penelope A McNulty
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
40
|
Kam DD, Rijken H, Manintveld T, Nienhuis B, Dietz V, Duysens J. Arm movements can increase leg muscle activity during submaximal recumbent stepping in neurologically intact individuals. J Appl Physiol (1985) 2013; 115:34-42. [DOI: 10.1152/japplphysiol.00510.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Facilitation of leg muscle activity by active arm movements during locomotor tasks could be beneficial during gait rehabilitation after spinal cord injury. The present study explored the effects of arm movements on leg muscle activity during submaximal recumbent stepping. Healthy subjects exercised on a recumbent stepping machine both with and without arm movements. Activity of five leg muscles was recorded and compared for stepping with and without arm movements. To determine which arm movements are optimal for leg muscle facilitation, subjects were instructed to step with 1) mechanically coupled vs. decoupled arm and leg movements, 2) synchronous vs. asynchronous arm movements, and 3) at 50 vs. 70 RPM. Leg muscle activity was increased by active arm movements in all muscles, except the vastus lateralis muscle. Activity of other extensors (soleus, medial gastrocnemius, and biceps femoris) was primarily increased during the extension phase, whereas activity of flexors (tibialis anterior) was also increased during the flexion phase. Facilitation was more or less consistent for both frequencies and for synchronous and asynchronous movements. For coupled arm movements, facilitation tended to be diminished or absent. The observed facilitation in the present study is probably of neuromuscular rather than biomechanical origin, since the arms are probably hardly involved in postural control or weight-bearing during recumbent stepping. Further studies in patients should explore the possibility to integrate neuromuscular facilitation in rehabilitation programs.
Collapse
Affiliation(s)
- Digna de Kam
- Sint Maartenskliniek, Research, Development & Education, Nijmegen, The Netherlands
- Radboud University Medical Centre, Nijmegen Centre for Evidence Based Practice, Department of Rehabilitation, Nijmegen, The Netherlands
| | - Hennie Rijken
- Sint Maartenskliniek, Research, Development & Education, Nijmegen, The Netherlands
| | - Toos Manintveld
- Sint Maartenskliniek, Research, Development & Education, Nijmegen, The Netherlands
| | - Bart Nienhuis
- Sint Maartenskliniek, Research, Development & Education, Nijmegen, The Netherlands
| | - Volker Dietz
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland; and
| | - Jacques Duysens
- Sint Maartenskliniek, Research, Development & Education, Nijmegen, The Netherlands
- Radboud University Medical Centre, Nijmegen Centre for Evidence Based Practice, Department of Rehabilitation, Nijmegen, The Netherlands
- Department of Kinesiology, Motor Control Laboratory, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
41
|
Nakajima T, Barss T, Klarner T, Komiyama T, Zehr EP. Amplification of interlimb reflexes evoked by stimulating the hand simultaneously with conditioning from the foot during locomotion. BMC Neurosci 2013; 14:28. [PMID: 23497331 PMCID: PMC3605396 DOI: 10.1186/1471-2202-14-28] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/07/2013] [Indexed: 11/17/2022] Open
Abstract
Background Widespread interlimb reflexes evoked in leg muscles by cutaneous stimulation of the hand are phase-modulated and behaviorally relevant to produce functional changes in ankle trajectory during walking. These reflexes are complementary to the segmental responses evoked by stimulation at the ankle. Despite differences in the expression of reflex amplitude based upon site of nerve stimulation, there are some common features as well, suggesting the possibility of shared interneuronal pathways. Currently little is known about integration or shared reflex systems from interlimb cutaneous networks during human locomotion. Here we investigated convergent reflex effects following cutaneous stimulation of the hand and foot during arm and leg cycling (AL) by using spatial facilitation. Participants performed AL cycling and static activation of the target muscle knee extensor vastus lateralis (VL) in 3 different randomly ordered nerve stimulation conditions: 1) superficial radial nerve (SR; input from hand); 2) superficial peroneal nerve (SP; input from foot); and, 3) combined stimulation (SR + SP). Stimuli were applied around the onset of rhythmic EMG bursts in VL corresponding to the onset of the power or leg extension phase. Results During AL cycling, small inhibitory (~80 ms) and large facilitatory reflexes (~100 ~ 150 ms) were seen in VL. The amplitudes of the facilitatory responses with SR + SP stimulation were significantly larger than those for SP or SR stimulation alone. The facilitation was also significantly larger than the simple mathematical summation of amplitudes from SP and SR trials. This indicates extra facilitation beyond what would be accounted for by serial neuronal processing and was not observed during static activation. Conclusions We conclude that AL cycling activates shared interneurons in convergent reflex pathways from cutaneous inputs innervating the hand and leg. This enhanced activity has functional implications for corrective responses during locomotion and for translation to rehabilitation after neurotrauma.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Japan
| | | | | | | | | |
Collapse
|
42
|
Harkema SJ, Hillyer J, Schmidt-Read M, Ardolino E, Sisto SA, Behrman AL. Locomotor training: as a treatment of spinal cord injury and in the progression of neurologic rehabilitation. Arch Phys Med Rehabil 2012; 93:1588-97. [PMID: 22920456 DOI: 10.1016/j.apmr.2012.04.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/28/2012] [Accepted: 04/12/2012] [Indexed: 12/14/2022]
Abstract
Scientists, clinicians, administrators, individuals with spinal cord injury (SCI), and caregivers seek a common goal: to improve the outlook and general expectations of the adults and children living with neurologic injury. Important strides have already been accomplished; in fact, some have labeled the changes in neurologic rehabilitation a "paradigm shift." Not only do we recognize the potential of the damaged nervous system, but we also see that "recovery" can and should be valued and defined broadly. Quality-of-life measures and the individual's sense of accomplishment and well-being are now considered important factors. The ongoing challenge from research to clinical translation is the fine line between scientific uncertainty (ie, the tenet that nothing is ever proven) and the necessary burden of proof required by the clinical community. We review the current state of a specific SCI rehabilitation intervention (locomotor training), which has been shown to be efficacious although thoroughly debated, and summarize the findings from a multicenter collaboration, the Christopher and Dana Reeve Foundation's NeuroRecovery Network.
Collapse
Affiliation(s)
- Susan J Harkema
- Department of Neurological Surgery, Kentucky Spinal Cord Research Center, University of Louisville, Louisville, KY, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Bovonsunthonchai S, Hiengkaew V, Vachalathiti R, Vongsirinavarat M, Tretriluxana J. Effect of speed on the upper and contralateral lower limb coordination during gait in individuals with stroke. Kaohsiung J Med Sci 2012; 28:667-72. [PMID: 23217359 DOI: 10.1016/j.kjms.2012.04.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/08/2012] [Indexed: 11/27/2022] Open
Abstract
The purposes of this study were to investigate the upper and contralateral lower limb coordination and to study the effect of speed on the upper and contralateral lower limb coordination in individuals with stroke and control groups. Thirty individuals with stroke who were able to walk independently without using any assistive devices and 30 control individuals were recruited for the study. Upper and contralateral lower limb coordination was analyzed using the shoulder and contralateral hip displacements in the sagittal plane. All data were analyzed by three-dimensional gait analysis. Results demonstrated high degrees of coordination in the upper and contralateral lower limbs of the controls and in the unaffected upper and affected lower limbs of individuals with stroke. Gait speed was found to be associated with the upper and contralateral lower limb coordination in individuals with stroke but not in the controls. The findings implied that the affected upper limb plays an important role for improving gait coordination and is necessary for gait performance in individuals with stroke. Thus, health professionals should exercise the affected arm to increase efficiency of walking in individuals with stroke.
Collapse
|
44
|
Tester NJ, Barbeau H, Howland DR, Cantrell A, Behrman AL. Arm and leg coordination during treadmill walking in individuals with motor incomplete spinal cord injury: a preliminary study. Gait Posture 2012; 36:49-55. [PMID: 22341058 PMCID: PMC3362672 DOI: 10.1016/j.gaitpost.2012.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 12/19/2011] [Accepted: 01/05/2012] [Indexed: 02/02/2023]
Abstract
Arm and leg coordination naturally emerges during walking, but can be affected by stroke or Parkinson's disease. The purpose of this preliminary study was to characterize arm and leg coordination during treadmill walking at self-selected comfortable walking speeds (CWSs) in individuals using arm swing with motor incomplete spinal cord injury (iSCI). Hip and shoulder angle cycle durations and amplitudes, strength of peak correlations between contralateral hip and shoulder joint angle time series, the time shifts at which these peak correlations occur, and associated variability were quantified. Outcomes in individuals with iSCI selecting fast CWSs (range, 1.0-1.3m/s) and speed-matched individuals without neurological injuries are similar. Differences, however, are detected in individuals with iSCI selecting slow CWSs (range, 0.25-0.65 m/s) and may represent compensatory strategies to improve walking balance or forward propulsion. These individuals elicit a 1:1, arm:leg frequency ratio versus the 2:1 ratio observed in non-injured individuals. Shoulder and hip movement patterns, however, are highly reproducible (coordinated) in participants with iSCI, regardless of CWS. This high degree of inter-extremity coordination could reflect an inability to modify a single movement pattern post-iSCI. Combined, these data suggest inter-extremity walking coordination may be altered, but is present after iSCI, and therefore may be regulated, in part, by neural control.
Collapse
Affiliation(s)
- Nicole J Tester
- Brain Rehabilitation Research Center, Malcom Randall Veterans Affairs Medical Center, Gainesville, FL, United States; Department of Physical Therapy, University of Florida, Gainesville, FL 32608, USA.
| | | | | | | | | |
Collapse
|
45
|
Thompson AK. Interlimb coordination during locomotion: Finding available neural pathways and using them for gait recovery. Clin Neurophysiol 2012; 123:635-7. [DOI: 10.1016/j.clinph.2011.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
46
|
Harkema S, Behrman A, Barbeau H. Evidence-based therapy for recovery of function after spinal cord injury. HANDBOOK OF CLINICAL NEUROLOGY 2012; 109:259-74. [PMID: 23098718 DOI: 10.1016/b978-0-444-52137-8.00016-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Physical rehabilitation for individuals coping with neurological deficits is evolving in response to a paradigm shift in thinking about the injured nervous system and using evidence as a basis for clinical decisions. Functional recovery from paralysis was generally believed to be nearly impossible, based on traditional expert opinion, and the priority was to develop compensation strategies to achieve functional goals in the home and community. Research, which began in animal models of neurological insult and is currently being translated to the clinic, has challenged these assumptions. The nervous system, whether intact or injured, has enormous potential for adaptation and modification, which can be harnessed to facilitate recovery. In this chapter we will briefly outline the history of physical rehabilitation as it concerns the development of strategies aimed at compensation, rather than functional recovery. Then we will discuss how new activity-based therapies are being developed, based on evidence from basic science and clinical evidence. One of these activity-based therapies is locomotor training, a program which relies on the intrinsic, automatic, control of locomotion by "lower" neural centers. A brief description of the program, including the four foundational principles, will be followed by an introduction to the use of robotics in these programs. Finally, we will discuss a second activity-based therapy, functional electrical stimulation (FES), and the future of physical rehabilitation for spinal cord injury and other neurological disorders.
Collapse
Affiliation(s)
- Susan Harkema
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.
| | | | | |
Collapse
|
47
|
Zehr EP, Loadman PM. Persistence of locomotor-related interlimb reflex networks during walking after stroke. Clin Neurophysiol 2011; 123:796-807. [PMID: 21945456 DOI: 10.1016/j.clinph.2011.07.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Cutaneous nerve stimulation evokes coordinated and phase-modulated reflex output widely distributed to muscles of all four limbs during walking. Accessibility to this distributed network after stroke offers insight into the pathological changes and suggests utility for therapeutic applications. Here we examined muscles in both the more (MA) and less affected (LA) legs evoked by stimulation at the ankle and wrist during walking in chronic (>6 months post CVA) stroke. METHODS Stroke and control participants walked on a treadmill with a harness support system. Reflexes were evoked with trains of electrical stimuli delivered separately to the cutaneous superficial peroneal (SP; at the ankle) and superficial radial (SR; at the wrist) nerves. Background locomotor and reflex EMG were phase-averaged across the gait cycle and analyzed off line. RESULTS Locomotor background muscle activation patterns were altered bilaterally in stroke, as compared with control. Phase-dependent modulation of interlimb cutaneous reflexes was found in both stroke and control subjects with stimulation of each nerve, but responses were blunted in stroke. Reflex reversal in tibialis anterior (TA) at heel strike with SP nerve stimulation was present in both groups. Notably, SR nerve stimulation produced facilitation during the swing-to-stance transition in the TA and suppression of MG in the MA leg during stance. CONCLUSIONS Interlimb cutaneous inputs may access coordinated reflex pathways in the MA limb during walking after stroke. Importantly activation in these pathways could provoke responses to counter foot drop during swing phase of walking. Additionally, our data support the perspective that there is no "unaffected" side after stroke and that caution should be used when interpreting the LA side as "control" after stroke. SIGNIFICANCE The presence of functionally-relevant interlimb cutaneous reflexes in the MA leg presents a substrate that may be strengthened by rehabilitation.
Collapse
Affiliation(s)
- E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada.
| | | |
Collapse
|
48
|
Arm motion coupling during locomotion-like actions: an experimental study and a dynamic model. Motor Control 2011; 15:206-20. [PMID: 21628725 DOI: 10.1123/mcj.15.2.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We studied the coordination of arm movements in standing persons who performed an out-of-phase arm-swinging task while stepping in place or while standing. The subjects were instructed to stop one of the arms in response to an auditory signal while trying to keep the rest of the movement pattern unchanged. A significant increase was observed in the amplitude of the arm that continued swinging under both the stepping and standing conditions. This increase was similar between the right and left arms. A dynamic model was developed including two coupled nonlinear van der Pol oscillators. We assumed that stopping an arm did not eliminate the coupling but introduced a new constraint. Within the model, superposition of two factors, a command to stop the ongoing movement of one arm and the coupling between the two oscillators, has been able to account for the observed effects. The model makes predictions for future experiments.
Collapse
|
49
|
Gizzi L, Nielsen JF, Felici F, Ivanenko YP, Farina D. Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J Neurophysiol 2011; 106:202-10. [PMID: 21511705 DOI: 10.1152/jn.00727.2010] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been hypothesized that the coordinated activation of muscles is controlled by the central nervous system by means of a small alphabet of control signals (also referred to as activation signals) and motor modules (synergies). We analyzed the locomotion of 10 patients recently affected by stroke (maximum of 20 wk) and compared it with that of healthy controls. The aim was to assess whether the walking of subacute stroke patients is based on the same motor modules and/or activation signals as healthy subjects. The activity of muscles of the lower and upper limb and the trunk was measured and used for extracting motor modules. Four modules were sufficient to explain the majority of variance in muscle activation in both controls and patients. Modules from the affected side of stroke patients were different from those of healthy controls and from the unaffected side of stroke patients. However, the activation signals were similar between groups and between the affected and unaffected side of stroke patients, and were characterized by impulses at specific time instants within the gait cycle, underlying an impulsive controller of gait. In conclusion, motor modules observed in healthy subjects during locomotion are different from those used by subacute stroke patients, despite similar impulsive activation signals. We suggest that this pattern is consistent with a neuronal network in which the timing of activity generated by central pattern generators is directed to the motoneurons via a premotor network that distributes the activity in a task-dependent manner determined by sensory and descending control information.
Collapse
Affiliation(s)
- Leonardo Gizzi
- Department of Neurorehabilitation Engineering, Bernstein Center for Computational Neuroscience, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | | | | | | | | |
Collapse
|
50
|
Huang HJ, Ferris DP. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling. J Neuroeng Rehabil 2010; 7:59. [PMID: 21143960 PMCID: PMC3004935 DOI: 10.1186/1743-0003-7-59] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 12/10/2010] [Indexed: 11/10/2022] Open
Abstract
Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32%. Enhancement observed in experimental data exceeded 32%. Enhancement within this symmetrical four-CPG neural architecture was more sensitive to relatively small interlimb coupling gains. Excitatory sensory feedback gains could produce greater output amplitudes, but larger gains were required for entrainment compared to inhibitory sensory feedback gains. Conclusions Based on these simulations, symmetrical interlimb coupling can account for much, but not all of the excitatory neural coupling between upper and lower limbs during rhythmic locomotor-like movements.
Collapse
Affiliation(s)
- Helen J Huang
- Department of Biomedical Engineering, Human Neuromechanics Laboratory, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109-2214, USA.
| | | |
Collapse
|