1
|
Barrios G, Olechowski-Bessaguet A, Pain M, Bacqué-Cazenave J, Cardoit L, Cabirol MJ, Le Ray D, Lambert FM. Functional organization of vestibulospinal inputs responsible for tail postural control in larval Xenopus. Front Neurol 2024; 15:1439784. [PMID: 39220733 PMCID: PMC11361976 DOI: 10.3389/fneur.2024.1439784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
In all vertebrates, maintaining trunk posture primarily depends on descending commands originating from brainstem vestibulospinal nuclei. Despite being broadly outlined across species, the detailed anatomical and operational structure of these vestibulospinal networks remains poorly understood. Xenopus frogs have previously served as an excellent model for exploring such anatomical and functional aspects in relation to the animal's behavioral requirements. In this study, we examined the reflex motor reactions induced by vestibular stimulation in pre-metamorphic tadpoles. Our findings indicate that natural vestibular stimulation in the horizontal plane yields greater efficacy compared to stimulation in other planes, a phenomenon replicated in a frequency-dependent manner through specific galvanic stimulation (GVS) of the horizontal semicircular canals. With the exception of a very rostral cluster of neurons that receive vestibular inputs and project to the spinal cord, the overall anatomical segregation of vestibulospinal nuclei in the brainstem mirrors that observed in juvenile frogs. However, our results suggest closer similarities to mammalian organization than previously acknowledged. Moreover, we demonstrated that vestibulospinal cells project not only to spinal motoneurons in rostral segments but also to more distal segments that undergo regression during metamorphosis. Lastly, we illustrated how vestibular-induced spinal reflexes change during larval development, transitioning from tail swim-based activity to rostral trunk bursting responses, likely anticipating postural control in post-metamorphic frogs.
Collapse
Affiliation(s)
| | | | - Mathilde Pain
- Univ Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Julien Bacqué-Cazenave
- Univ Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
- Normandie Univ, Unicaen, CNRS, EthoS, Caen, France
- Univ Rennes, CNRS, EthoS (Éthologie animale et humaine)-UMR 6552, Rennes, France
| | - Laura Cardoit
- Univ Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | - Didier Le Ray
- Univ Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | |
Collapse
|
2
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
3
|
Banse M, Chagnaud BP, Huby A, Parmentier E, Kéver L. Sound production in piranhas is associated with modifications of the spinal locomotor pattern. J Exp Biol 2021; 224:260574. [PMID: 33942099 PMCID: PMC8126449 DOI: 10.1242/jeb.242336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/10/2021] [Indexed: 11/20/2022]
Abstract
In piranhas, sounds are produced through the vibration of the swim bladder wall caused by the contraction of bilateral sonic muscles. Because they are solely innervated by spinal nerves, these muscles likely evolved from the locomotor hypaxial musculature. The transition from a neuromuscular system initially shaped for slow movements (locomotion) to a system that requires a high contraction rate (sound production) was accompanied with major peripheral structural modifications, yet the associated neural adjustments remain to this date unclear. To close this gap, we investigated the activity of both the locomotor and the sonic musculature using electromyography. The comparison between the activation patterns of both systems highlighted modifications of the neural motor pathway: (1) a transition from a bilateral alternating pattern to a synchronous activation pattern, (2) a switch from a slow- to a high-frequency regime, and (3) an increase in the synchrony of motor neuron activation. Furthermore, our results demonstrate that sound features correspond to the activity of the sonic muscles, as both the variation patterns of periods and amplitudes of sounds highly correspond to those seen in the sonic muscle electromyograms (EMGsonic). Assuming that the premotor network for sound production in piranhas is of spinal origin, our results show that the neural circuit associated with spinal motor neurons transitioned from the slow alternating pattern originally used for locomotion to a much faster simultaneous activation pattern to generate vocal signals.
Collapse
Affiliation(s)
- Marine Banse
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, 4000 Liège, Belgium
| | - Boris P Chagnaud
- Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany.,Institute for Biology, Karl-Franzens-University Graz, 8010 Graz, Austria
| | - Alessia Huby
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, 4000 Liège, Belgium
| | - Eric Parmentier
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, 4000 Liège, Belgium
| | - Loïc Kéver
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, 4000 Liège, Belgium.,Department Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg, Germany
| |
Collapse
|
4
|
Olechowski-Bessaguet A, Grandemange R, Cardoit L, Courty E, Lambert FM, Le Ray D. Functional organization of vestibulospinal inputs on thoracic motoneurons responsible for trunk postural control in Xenopus. J Physiol 2019; 598:817-838. [PMID: 31834949 DOI: 10.1113/jp278599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Vestibulospinal reflexes participate in postural control. How this is achieved has not been investigated fully. We combined electrophysiological, neuroanatomical and imaging techniques to decipher the vestibulospinal network controlling the activation of back and limb muscles responsible for postural adjustments. We describe two distinct pathways activating either thoracic postural motoneurons alone or thoracic and lumbar motoneurons together, with the latter co-ordinating specifically hindlimb extensors and postural back muscles. ABSTRACT In vertebrates, trunk postural stabilization is known to rely mainly on direct vestibulospinal inputs on spinal axial motoneurons. However, a substantial role of central spinal commands ascending from lumbar segments is not excluded during active locomotion. In the adult Xenopus, a lumbar drive dramatically overwhelms the descending inputs onto thoracic postural motoneurons during swimming. Given that vestibulospinal fibres also project onto the lumbar segments that shelter the locomotor generators, we investigated whether such a lumbo-thoracic pathway may relay vestibular information and consequently, also be involved in the control of posture at rest. We show that thoracic postural motoneurons exhibit particular dendritic spatial organization allowing them to gather information from both sides of the cord. In response to passive head motion, these motoneurons display both early and delayed discharges, with the latter occurring in phase with ipsilateral hindlimb extensor bursts. We demonstrate that both vestibulospinal and lumbar ascending fibres converge onto postural motoneurons, and that thoracic motoneurons monosynaptically respond to the electrical stimulation of either pathway. Finally, we show that vestibulospinal fibres project to and activate lumbar interneurons with thoracic projections. Taken together, our results complete the scheme of the vestibulospinal control of posture by illustrating the existence of a novel, indirect pathway, which implicates lumbar interneurons relaying vestibular inputs to thoracic motoneurons, and participating in global body postural stabilization in the absence of active locomotion.
Collapse
Affiliation(s)
- Anne Olechowski-Bessaguet
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - Raphaël Grandemange
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - Elric Courty
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - François M Lambert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| | - Didier Le Ray
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA, CNRS UMR 5287), Université de Bordeaux, Bordeaux cedex, France
| |
Collapse
|
5
|
Lambert FM, Cardoit L, Courty E, Bougerol M, Thoby-Brisson M, Simmers J, Tostivint H, Le Ray D. Functional limb muscle innervation prior to cholinergic transmitter specification during early metamorphosis in Xenopus. eLife 2018; 7:30693. [PMID: 29845935 PMCID: PMC5997451 DOI: 10.7554/elife.30693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 05/06/2018] [Indexed: 12/28/2022] Open
Abstract
In vertebrates, functional motoneurons are defined as differentiated neurons that are connected to a central premotor network and activate peripheral muscle using acetylcholine. Generally, motoneurons and muscles develop simultaneously during embryogenesis. However, during Xenopus metamorphosis, developing limb motoneurons must reach their target muscles through the already established larval cholinergic axial neuromuscular system. Here, we demonstrate that at metamorphosis onset, spinal neurons retrogradely labeled from the emerging hindlimbs initially express neither choline acetyltransferase nor vesicular acetylcholine transporter. Nevertheless, they are positive for the motoneuronal transcription factor Islet1/2 and exhibit intrinsic and axial locomotor-driven electrophysiological activity. Moreover, the early appendicular motoneurons activate developing limb muscles via nicotinic antagonist-resistant, glutamate antagonist-sensitive, neuromuscular synapses. Coincidently, the hindlimb muscles transiently express glutamate, but not nicotinic receptors. Subsequently, both pre- and postsynaptic neuromuscular partners switch definitively to typical cholinergic transmitter signaling. Thus, our results demonstrate a novel context-dependent re-specification of neurotransmitter phenotype during neuromuscular system development.
Collapse
Affiliation(s)
- Francois M Lambert
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Laura Cardoit
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Elric Courty
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Marion Bougerol
- Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France
| | - Muriel Thoby-Brisson
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - John Simmers
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| | - Hervé Tostivint
- Evolution des Régulations Endocriniennes, Muséum National d'Histoire Naturelle, Paris, France
| | - Didier Le Ray
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
6
|
Jean-Xavier C, Perreault MC. Influence of Brain Stem on Axial and Hindlimb Spinal Locomotor Rhythm Generating Circuits of the Neonatal Mouse. Front Neurosci 2018; 12:53. [PMID: 29479302 PMCID: PMC5811543 DOI: 10.3389/fnins.2018.00053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022] Open
Abstract
The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor.
Collapse
Affiliation(s)
| | - Marie-Claude Perreault
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
7
|
Méndez-Olivos EE, Muñoz R, Larraín J. Spinal Cord Cells from Pre-metamorphic Stages Differentiate into Neurons and Promote Axon Growth and Regeneration after Transplantation into the Injured Spinal Cord of Non-regenerative Xenopus laevis Froglets. Front Cell Neurosci 2017; 11:398. [PMID: 29326551 PMCID: PMC5733487 DOI: 10.3389/fncel.2017.00398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Mammals are unable to regenerate its spinal cord after a lesion, meanwhile, anuran amphibians are capable of spinal cord regeneration only as larvae, and during metamorphosis, this capability is lost. Sox2/3+ cells present in the spinal cord of regenerative larvae are required for spinal cord regeneration. Here we evaluate the effect of the transplantation of spinal cord cells from regenerative larvae into the resected spinal cord of non-regenerative stages (NR-stage). Donor cells were able to survive up to 60 days after transplantation in the injury zone. During the first 3-weeks, transplanted cells organize in neural tube-like structures formed by Sox2/3+ cells. This was not observed when donor cells come from non-regenerative froglets. Mature neurons expressing NeuN and Neurofilament-H were detected in the grafted tissue 4 weeks after transplantation concomitantly with the appearance of axons derived from the donor cells growing into the host spinal cord, suggesting that Sox2/3+ cells behave as neural stem progenitor cells. We also found that cells from regenerative animals provide a permissive environment that promotes growth and regeneration of axons coming from the host. These results suggest that Sox2/3 cells present in the spinal cord of regenerative stage (R-stage) larvae are most probably neural stem progenitor cells that are able to survive, proliferate, self-organize and differentiate into neurons in the environment of the non-regenerative host. In addition, we have established an experimental paradigm to study the biology of neural stem progenitor cells in spinal cord regeneration.
Collapse
Affiliation(s)
- Emilio E Méndez-Olivos
- Center for Aging and Regeneration, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rosana Muñoz
- Center for Aging and Regeneration, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Larraín
- Center for Aging and Regeneration, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Abstract
Neural networks that can generate rhythmic motor output in the absence of sensory feedback, commonly called central pattern generators (CPGs), are involved in many vital functions such as locomotion or respiration. In certain circumstances, these neural networks must interact to produce coordinated motor behavior adapted to environmental constraints and to satisfy the basic needs of an organism. In this context, we recently reported the existence of an ascending excitatory influence from lumbar locomotor CPG circuitry to the medullary respiratory networks that is able to depolarize neurons of the parafacial respiratory group during fictive locomotion and to subsequently induce an increased respiratory rhythmicity (Le Gal et al., 2014b). Here, using an isolated in vitro brainstem-spinal cord preparation from neonatal rat in which the respiratory and the locomotor networks remain intact, we show that during fictive locomotion induced either pharmacologically or by sacrocaudal afferent stimulation, the activity of both thoracolumbar expiratory motoneurons and interneurons is rhythmically modulated with the locomotor activity. Completely absent in spinal inspiratory cells, this rhythmic pattern is highly correlated with the hindlimb ipsilateral flexor activities. Furthermore, silencing brainstem neural circuits by pharmacological manipulation revealed that this locomotor-related drive to expiratory motoneurons is solely dependent on propriospinal pathways. Together these data provide the first evidence in the newborn rat spinal cord for the existence of bimodal respiratory-locomotor motoneurons and interneurons onto which both central efferent expiratory and locomotor drives converge, presumably facilitating the coordination between the rhythmogenic networks responsible for two different motor functions. Significance statement: In freely moving animals, distant regions of the brain and spinal cord controlling distinct motor acts must interact to produce the best adapted behavioral response to environmental constraints. In this context, it is well established that locomotion and respiration must to be tightly coordinated to reduce muscular interferences and facilitate breathing rate acceleration during exercise. Here, using electrophysiological recordings in an isolated in vitro brainstem-spinal cord preparation from neonatal rat, we report that the locomotor-related signal produced by the lumbar central pattern generator for locomotion selectively modulates the intracellular activity of spinal respiratory neurons engaged in expiration. Our results thus contribute to our understanding of the cellular bases for coordinating the rhythmic neural circuitry responsible for different behaviors.
Collapse
|
9
|
von Uckermann G, Lambert FM, Combes D, Straka H, Simmers J. Adaptive plasticity of spino-extraocular motor coupling during locomotion in metamorphosing Xenopus
laevis. J Exp Biol 2016; 219:1110-21. [DOI: 10.1242/jeb.136168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/31/2016] [Indexed: 12/25/2022]
Abstract
ABSTRACT
During swimming in the amphibian Xenopus laevis, efference copies of rhythmic locomotor commands produced by the spinal central pattern generator (CPG) can drive extraocular motor output appropriate for producing image-stabilizing eye movements to offset the disruptive effects of self-motion. During metamorphosis, X. laevis remodels its locomotor strategy from larval tail-based undulatory movements to bilaterally synchronous hindlimb kicking in the adult. This change in propulsive mode results in head/body motion with entirely different dynamics, necessitating a concomitant switch in compensatory ocular movements from conjugate left–right rotations to non-conjugate convergence during the linear forward acceleration produced during each kick cycle. Here, using semi-intact or isolated brainstem/spinal cord preparations at intermediate metamorphic stages, we monitored bilateral eye motion along with extraocular, spinal axial and limb motor nerve activity during episodes of spontaneous fictive swimming. Our results show a progressive transition in spinal efference copy control of extraocular motor output that remains adapted to offsetting visual disturbances during the combinatorial expression of bimodal propulsion when functional larval and adult locomotor systems co-exist within the same animal. In stages at metamorphic climax, spino-extraocular motor coupling, which previously derived from axial locomotor circuitry alone, can originate from both axial and de novo hindlimb CPGs, although the latter's influence becomes progressively more dominant and eventually exclusive as metamorphosis terminates with tail resorption. Thus, adaptive interactions between locomotor and extraocular motor circuitry allows CPG-driven efference copy signaling to continuously match the changing spatio-temporal requirements for visual image stabilization throughout the transitional period when one propulsive mechanism emerges and replaces another.
Collapse
Affiliation(s)
- Géraldine von Uckermann
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Bordeaux 33076, France
| | - François M. Lambert
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Bordeaux 33076, France
| | - Denis Combes
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Bordeaux 33076, France
| | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2, Planegg 82152, Germany
| | - John Simmers
- Université de Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Bordeaux 33076, France
| |
Collapse
|
10
|
Beliez L, Barrière G, Bertrand SS, Cazalets JR. Multiple monoaminergic modulation of posturo-locomotor network activity in the newborn rat spinal cord. Front Neural Circuits 2014; 8:99. [PMID: 25177275 PMCID: PMC4133733 DOI: 10.3389/fncir.2014.00099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/30/2014] [Indexed: 01/09/2023] Open
Abstract
Studies devoted to understanding locomotor control have mainly addressed the functioning of the neural circuits controlling leg movements and relatively little is known of the operation of networks that activate trunk muscles in coordination with limb movements. The aim of the present work was (1) to identify the exogenous neurotransmitter cocktail that most strongly activates postural thoracic circuitry; (2) to investigate how the biogenic amines serotonin (5-HT), dopamine (DA), and noradrenaline (NA) modulate the coordination between limb and axial motor networks. Experiments were carried out on in vitro isolated spinal cord preparations from newborn rats. We recorded from ventral roots to monitor hindlimb locomotor and axial postural network activity. Each combination of the three amines with excitatory amino acids (EAAs) elicited coordinated rhythmic motor activity at all segmental levels with specific characteristics. The variability in cycle period was similar with 5-HT and DA while it was significantly higher with NA. DA elicited motor bursts of smaller amplitude in thoracic segments compared to 5-HT and NA, while both DA and NA elicited motor bursts of higher amplitude than 5-HT in the lumbar and sacral segments. The amines modulated the phase relationships of bursts in various segments with respect to the reference lumbar segment. At the thoracic level there was a phase lag between all recorded segments in the presence of 5-HT, while DA and NA elicited synchronous bursting. At the sacral level, 5-HT and DA induced an intersegmental phase shift while relationships became phase-locked with NA. Various combinations of EAAs with two or even all three amines elicited rhythmic motor output that was more variable than with one amine alone. Our results provide new data on the coordinating processes between spinal cord networks, demonstrating that each amine has a characteristic “signature” regarding its specific effect on intersegmental phase relationships.
Collapse
Affiliation(s)
- Lauriane Beliez
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux Bordeaux, France
| | - Gregory Barrière
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux Bordeaux, France
| | - Sandrine S Bertrand
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux Bordeaux, France
| | - Jean-René Cazalets
- CNRS UMR 5287, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, Université de Bordeaux Bordeaux, France
| |
Collapse
|
11
|
Remote control of respiratory neural network by spinal locomotor generators. PLoS One 2014; 9:e89670. [PMID: 24586951 PMCID: PMC3930745 DOI: 10.1371/journal.pone.0089670] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/21/2014] [Indexed: 12/03/2022] Open
Abstract
During exercise and locomotion, breathing rate rapidly increases to meet the suddenly enhanced oxygen demand. The extent to which direct central interactions between the spinal networks controlling locomotion and the brainstem networks controlling breathing are involved in this rhythm modulation remains unknown. Here, we show that in isolated neonatal rat brainstem-spinal cord preparations, the increase in respiratory rate observed during fictive locomotion is associated with an increase in the excitability of pre-inspiratory neurons of the parafacial respiratory group (pFRG/Pre-I). In addition, this locomotion-induced respiratory rhythm modulation is prevented both by bilateral lesion of the pFRG region and by blockade of neurokinin 1 receptors in the brainstem. Thus, our results assign pFRG/Pre-I neurons a new role as elements of a previously undescribed pathway involved in the functional interaction between respiratory and locomotor networks, an interaction that also involves a substance P-dependent modulating mechanism requiring the activation of neurokinin 1 receptors. This neurogenic mechanism may take an active part in the increased respiratory rhythmicity produced at the onset and during episodes of locomotion in mammals.
Collapse
|
12
|
Beyeler A, Rao G, Ladepeche L, Jacques A, Simmers J, Le Ray D. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis. PLoS One 2013; 8:e71013. [PMID: 23951071 PMCID: PMC3741378 DOI: 10.1371/journal.pone.0071013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023] Open
Abstract
During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance and the restoration of functionally-effective behavior.
Collapse
Affiliation(s)
- Anna Beyeler
- Université de Bordeaux – CNRS UMR 5287 (INCIA), Bordeaux, France
| | - Guillaume Rao
- Aix-Marseille Université – CNRS UMR 7287 (ISM), Marseille, France
| | | | - André Jacques
- Aix-Marseille Université – CNRS UMR 7287 (ISM), Marseille, France
| | - John Simmers
- Université de Bordeaux – CNRS UMR 5287 (INCIA), Bordeaux, France
| | - Didier Le Ray
- Université de Bordeaux – CNRS UMR 5287 (INCIA), Bordeaux, France
- * E-mail:
| |
Collapse
|
13
|
Spinal efference copy signaling and gaze stabilization during locomotion in juvenile Xenopus frogs. J Neurosci 2013; 33:4253-64. [PMID: 23467343 DOI: 10.1523/jneurosci.4521-12.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In swimming Xenopus laevis tadpoles, gaze stabilization is achieved by efference copies of spinal locomotory CPG output that produce rhythmic extraocular motor activity appropriate for minimizing motion-derived visual disturbances. During metamorphosis, Xenopus switches its locomotory mechanism from larval tail-based undulatory movements to bilaterally synchronous hindlimb kick propulsion in the adult. The change in locomotory mode leads to body motion dynamics that no longer require conjugate left-right eye rotations for effective retinal image stabilization. Using in vivo kinematic analyses, in vitro electrophysiological recordings and specific CNS lesions, we have investigated spino-extraocular motor coupling in the juvenile frog and the underlying neural pathways to understand how gaze control processes are altered in accordance with the animal's change in body plan and locomotor strategy. Recordings of extraocular and limb motor nerves during spontaneous "fictive" swimming in isolated CNS preparations revealed that there is indeed a corresponding change in spinal efference copy control of extraocular motor output. In contrast to fictive larval swimming where alternating bursts occur in bilateral antagonistic horizontal extraocular nerves, during adult fictive limb-kicking, these motor nerves are synchronously active in accordance with the production of convergent eye movements during the linear head accelerations resulting from forward propulsion. Correspondingly, the neural pathways mediating spino-extraocular coupling have switched from contralateral to strictly ipsilateral ascending influences that ensure a coactivation of bilateral extraocular motoneurons with synchronous left-right limb extensions. Thus, adaptive developmental plasticity during metamorphosis enables spinal CPG-driven extraocular motor activity to match the changing requirements for eye movement control during self-motion.
Collapse
|
14
|
Roberts A, Li WC, Soffe SR. A functional scaffold of CNS neurons for the vertebrates: the developing Xenopus laevis spinal cord. Dev Neurobiol 2012; 72:575-84. [PMID: 21485014 DOI: 10.1002/dneu.20889] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In young and developing amphibians and fish the spinal cord is functional but remarkably simple compared with the adult. Is the pattern of neurons and their connections common across at least these lower vertebrates? Does this basic pattern extend into the brainstem? Could the development of simple functioning neuronal networks depend on very basic rules of connectivity and act as pioneer networks providing a substrate for the development of more complex and subtle networks. In this review of the functional neuron classes in the Xenopus laevis tadpole spinal cord up to hatching, we will consider progress and difficulties in using anatomy, transcription factor expression, physiology, and activity to define spinal neuron types. Even here it is not straightforward and is rarely possible to bring all the different strands of evidence together. But, we think we have a rather complete picture of the hatchling tadpole spinal neuron types and can define clear roles for most of them in behavior. Our present knowledge about the hatchling Xenopus spinal cord should set up many of the problems to be unraveled in the future by more developmentally oriented research.
Collapse
Affiliation(s)
- Alan Roberts
- Biological Sciences, University of Bristol, Woodland Road, Bristol, United Kingdom.
| | | | | |
Collapse
|
15
|
Lambert FM, Combes D, Simmers J, Straka H. Gaze stabilization by efference copy signaling without sensory feedback during vertebrate locomotion. Curr Biol 2012; 22:1649-58. [PMID: 22840517 DOI: 10.1016/j.cub.2012.07.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/06/2012] [Accepted: 07/06/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Self-generated body movements require compensatory eye and head adjustments in order to avoid perturbation of visual information processing. Retinal image stabilization is traditionally ascribed to the transformation of visuovestibular signals into appropriate extraocular motor commands for compensatory ocular movements. During locomotion, however, intrinsic "efference copies" of the motor commands deriving from spinal central pattern generator (CPG) activity potentially offer a reliable and rapid mechanism for image stabilization, in addition to the slower contribution of movement-encoding sensory inputs. RESULTS Using a variety of in vitro and in vivo preparations of Xenopus tadpoles, we demonstrate that spinal locomotor CPG-derived efference copies do indeed produce effective conjugate eye movements that counteract oppositely directed horizontal head displacements during undulatory tail-based locomotion. The efference copy transmission, by which the extraocular motor system becomes functionally appropriated to the spinal cord, is mediated by direct ascending pathways. Although the impact of the CPG feedforward commands matches the spatiotemporal specificity of classical vestibulo-ocular responses, the two fundamentally different signals do not contribute collectively to image stabilization during swimming. Instead, when the CPG is active, horizontal vestibulo-ocular reflexes resulting from head movements are selectively suppressed. CONCLUSIONS These results therefore challenge our traditional understanding of how animals offset the disruptive effects of propulsive body movements on visual processing. Specifically, our finding that predictive efference copies of intrinsic, rhythmic neural signals produced by the locomotory CPG supersede, rather than supplement, reactive vestibulo-ocular reflexes in order to drive image-stabilizing eye adjustments during larval frog swimming, represents a hitherto unreported mechanism for vertebrate ocular motor control.
Collapse
Affiliation(s)
- François M Lambert
- Centre d'Etudes de la SensoriMotricité, CNRS UMR 8194, Université Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
| | | | | | | |
Collapse
|
16
|
Straka H, Simmers J. Xenopus laevis: An ideal experimental model for studying the developmental dynamics of neural network assembly and sensory-motor computations. Dev Neurobiol 2012; 72:649-63. [DOI: 10.1002/dneu.20965] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Opposing aminergic modulation of distinct spinal locomotor circuits and their functional coupling during amphibian metamorphosis. J Neurosci 2009; 29:1163-74. [PMID: 19176825 DOI: 10.1523/jneurosci.5255-08.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biogenic amines serotonin (5-HT) and noradrenaline (NA) are well known modulators of central pattern-generating networks responsible for vertebrate locomotion. Here we have explored monoaminergic modulation of the spinal circuits that generate two distinct modes of locomotion in the metamorphosing frog Xenopus laevis. At metamorphic climax when propulsion is achieved by undulatory larval tail movements and/or by kicking of the newly developed adult hindlimbs, the underlying motor networks remain spontaneously active in vitro, producing either separate fast axial and slow appendicular rhythms or a single combined rhythm that drives coordinated tail-based and limb-based swimming in vivo. In isolated spinal cords already expressing distinct axial and limb rhythms, bath-applied 5-HT induced coupled network activity through an opposite slowing of axial rhythmicity (by increasing motoneuron burst and cycle durations) and an acceleration of limb rhythmicity (by decreasing burst and cycle durations). In contrast, in preparations spontaneously expressing coordinated fictive locomotion, exogenous NA caused a dissociation of spinal activity into separate faster axial and slower appendicular rhythms by decreasing and increasing burst and cycle durations, respectively. Moreover, in preparations from premetamorphic and postmetamorphic animals that express exclusively axial-based or limb-based locomotion, 5-HT and NA modified the developmentally independent rhythms in a similar manner to the amines' opposing effects on the coexisting circuits at metamorphic climax. Thus, by exerting differential modulatory actions on one network that are opposite to their influences on a second adjacent circuit, these two amines are able to precisely regulate the functional relationship between different rhythmogenic networks in a developing vertebrate's spinal cord.
Collapse
|