Roumengous T, Reutter AB, Peterson CL. Effect of low-cost transcranial magnetic stimulation navigation on hotspot targeting and motor evoked potential variability in the biceps brachii.
Restor Neurol Neurosci 2021;
39:319-328. [PMID:
34657854 DOI:
10.3233/rnn-211207]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND
Transcranial magnetic stimulation (TMS) can monitor or modulate brain excitability. However, reliability of TMS outcomes depends on consistent coil placement during stimulation. Neuronavigated TMS systems can address this issue, but their cost limits their use outside of specialist research environments.
OBJECTIVE
The objective was to evaluate the performance of a low-cost navigated TMS approach in improving coil placement consistency and its effect on motor evoked potentials (MEPs) when targeting the biceps brachii at rest and during voluntary contractions.
METHODS
We implemented a navigated TMS system using a low-cost 3D camera system and open-source software environment programmed using the Unity 3D engine. MEPs were collected from the biceps brachii at rest and during voluntary contractions across two sessions in ten non-disabled individuals. Motor hotspots were recorded and targeted via two conditions: navigated and conventional.
RESULTS
The low-cost navigated TMS system reduced coil orientation error (pitch: 1.18°±1.2°, yaw: 1.99°±1.9°, roll: 1.18°±2.2° with navigation, versus pitch: 3.7°±5.7°, yaw: 3.11°±3.1°, roll: 3.8°±9.1° with conventional). The improvement in coil orientation had no effect on MEP amplitudes and variability.
CONCLUSIONS
The low-cost system is a suitable alternative to expensive systems in tracking the motor hotspot between sessions and quantifying the error in coil placement when delivering TMS. Biceps MEP variability reflects physiological variability across a range of voluntary efforts, that can be captured equally well with navigated or conventional approaches of coil locating.
Collapse