1
|
Zhong L, Gleason EL. Adenylate Cyclase 1 Links Calcium Signaling to CFTR-Dependent Cytosolic Chloride Elevations in Chick Amacrine Cells. Front Cell Neurosci 2021; 15:726605. [PMID: 34456687 PMCID: PMC8385318 DOI: 10.3389/fncel.2021.726605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 01/03/2023] Open
Abstract
The strength and sign of synapses involving ionotropic GABA and glycine receptors are dependent upon the Cl- gradient. We have shown that nitric oxide (NO) elicits the release of Cl- from internal acidic stores in retinal amacrine cells (ACs); temporarily altering the Cl- gradient and the strength or even sign of incoming GABAergic or glycinergic synapses. The underlying mechanism for this effect of NO requires the cystic fibrosis transmembrane regulator (CFTR) but the link between NO and CFTR activation has not been determined. Here, we test the hypothesis that NO-dependent Ca2+ elevations activate the Ca2+-dependent adenylate cyclase 1 (AdC1) leading to activation of protein kinase A (PKA) whose activity is known to open the CFTR channel. Using the reversal potential of GABA-gated currents to monitor cytosolic Cl-, we established the requirement for Ca2+ elevations. Inhibitors of AdC1 suppressed the NO-dependent increases in cytosolic Cl- whereas inhibitors of other AdC subtypes were ineffective suggesting that AdC1 is involved. Inhibition of PKA also suppressed the action of NO. To address the sufficiency of this pathway in linking NO to elevations in cytosolic Cl-, GABA-gated currents were measured under internal and external zero Cl- conditions to isolate the internal Cl- store. Activators of the cAMP pathway were less effective than NO in producing GABA-gated currents. However, coupling the cAMP pathway activators with the release of Ca2+ from stores produced GABA-gated currents indistinguishable from those stimulated with NO. Together, these results demonstrate that cytosolic Ca2+ links NO to the activation of CFTR and the elevation of cytosolic Cl-.
Collapse
Affiliation(s)
- Li Zhong
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Evanna L Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
2
|
Li Q, Zhang Y, Wu N, Yin N, Sun XH, Wang Z. Activation of somatostatin receptor 5 suppresses T-type Ca 2+ channels through NO/cGMP/PKG signaling pathway in rat retinal ganglion cells. Neurosci Lett 2019; 708:134337. [PMID: 31220522 DOI: 10.1016/j.neulet.2019.134337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/19/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022]
Abstract
Somatostatin has been shown to modulate a variety of neuronal functions by activating the five specific G-protein coupled receptors (sst1-sst5). Here, effects of sst5 receptor activation on T-type Ca2+ channels in acutely isolated retinal ganglion cells (RGCs) of rats were investigated using whole-cell patch-clamp techniques. The sst5 receptor specific agonist L-817,818 significantly and reversibly suppressed T-type Ca2+ currents, and shifted inactivation curve of the channels toward hyperpolarization direction. The effect of L-817,818 was in a dose-dependent manner, with an IC50 being 8.8 μM. Pertussis toxin-sensitive Gi/o protein mediated intracellular nitric oxide (NO)/cGMP/protein kinase G (PKG) signaling cascade was involved in the L-817,818 effect on Ca2+ currents because pharmacological interference of each of these signaling molecules abolished the L-817,818 effect. In contrast, neither phospholipase C/protein kinase C nor cAMP/protein kinase A signal pathways seemed likely to be involved because the L-817,818 effect persisted when these signaling pathways were blocked by U73122, bisindolylmaleimide IV, chelerythrine chloride, and Rp-cAMP, respectively. These results suggest that activation of sst5 receptors suppresses T-type Ca2+ currents in rat RGCs through intracellular NO/cGMP/PKG signaling pathway, which may provide a potential mechanism for protecting RGCs against injury.
Collapse
Affiliation(s)
- Qian Li
- Eye Institute, Eye & ENT Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Myopia (Ministry of Health), Fudan University, Shanghai, 200031, China
| | - Yi Zhang
- Eye Institute, Eye & ENT Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Myopia (Ministry of Health), Fudan University, Shanghai, 200031, China
| | - Na Wu
- Eye Institute, Eye & ENT Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Myopia (Ministry of Health), Fudan University, Shanghai, 200031, China
| | - Ning Yin
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xing-Huai Sun
- Eye Institute, Eye & ENT Hospital, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Key Laboratory of Myopia (Ministry of Health), Fudan University, Shanghai, 200031, China.
| | - Zhongfeng Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Romero-Garcia S, Prado-Garcia H. Mitochondrial calcium: Transport and modulation of cellular processes in homeostasis and cancer (Review). Int J Oncol 2019; 54:1155-1167. [PMID: 30720054 DOI: 10.3892/ijo.2019.4696] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/06/2018] [Indexed: 11/05/2022] Open
Abstract
In addition to their role in providing cellular energy, mitochondria fulfill a key function in cellular calcium management. The present review provides an integrative view of cellular and mitochondrial calcium homeostasis, and discusses how calcium regulates mitochondrial dynamics and functionality, thus affecting various cellular processes. Calcium crosstalk exists in the domain created between the endoplasmic reticulum and mitochondria, which is known as the mitochondria‑associated membrane (MAM), and controls cellular homeostasis. Calcium signaling participates in numerous biochemical and cellular processes, where calcium concentration, temporality and durability are part of a regulated, finely tuned interplay in non‑transformed cells. In addition, cancer cells modify their MAMs, which consequently affects calcium homeostasis to support mesenchymal transformation, migration, invasiveness, metastasis and autophagy. Alterations in calcium homeostasis may also support resistance to apoptosis, which is a serious problem facing current chemotherapeutic treatments. Notably, mitochondrial dynamics are also affected by mitochondrial calcium concentration to promote cancer survival responses. Dysregulated levels of mitochondrial calcium, alongside other signals, promote mitoflash generation in tumor cells, and an increased frequency of mitoflashes may induce epithelial‑to‑mesenchymal transition. Therefore, cancer cells remodel their calcium balance through numerous mechanisms that support their survival and growth.
Collapse
Affiliation(s)
- Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosío Villegas', CP 14080 Mexico City, Mexico
| | - Heriberto Prado-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosío Villegas', CP 14080 Mexico City, Mexico
| |
Collapse
|
4
|
Dunn VK, Gleason E. Inhibition of endocytosis suppresses the nitric oxide-dependent release of Cl- in retinal amacrine cells. PLoS One 2018; 13:e0201184. [PMID: 30044876 PMCID: PMC6059450 DOI: 10.1371/journal.pone.0201184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/10/2018] [Indexed: 11/18/2022] Open
Abstract
Our lab has previously shown that nitric oxide (NO) can alter the synaptic response properties of amacrine cells by releasing Cl- from internal acidic compartments. This alteration in the Cl- gradient brings about a positive shift in the reversal potential of the GABA-gated current, which can convert inhibitory synapses into excitatory synapses. Recently, we have shown that the cystic fibrosis transmembrane regulator (CFTR) Cl- channel is involved in the Cl- release. Here, we test the hypothesis that (acidic) synaptic vesicles are a source of NO-releasable Cl- in chick retinal amacrine cells. If SVs are a source of Cl-, then depleting synaptic vesicles should decrease the nitric oxide-dependent shift in the reversal potential of the GABA-gated current. The efficacy of four inhibitors of dynamin (dynasore, Dyngo 4a, Dynole 34-2, and MiTMAB) were evaluated. In order to deplete synaptic vesicles, voltage-steps were used to activate V-gated Ca2+ channels and stimulate the synaptic vesicle cycle either under control conditions or after treatment with the dynamin inhibitors. Voltage-ramps were used to measure the NO-dependent shift in the reversal potential of the GABA-gated currents under both conditions. Our results reveal that activating the synaptic vesicle cycle in the presence of dynasore or Dyngo 4a blocked the NO-dependent shift in EGABA. However, we also discovered that some dynamin inhibitors reduced Ca2+ signaling and L-type Ca2+ currents. Conversely, dynasore also increased neurotransmitter release at autaptic sites. To further resolve the mechanism underlying the inhibition of the NO-dependent shift in the reversal potential for the GABA-gated currents, we also tested the effects of the clathrin assembly inhibitor Pitstop 2 and found that this compound also inhibited the shift. These data provide evidence that dynamin inhibitors have multiple effects on amacrine cell synaptic transmission. These data also suggest that inhibition of endocytosis disrupts the ability of NO to elicit Cl- release from internal stores which may in part be due to depletion of synaptic vesicles.
Collapse
Affiliation(s)
- Vernon K. Dunn
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Evanna Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
5
|
Krishnan V, Maddox JW, Rodriguez T, Gleason E. A role for the cystic fibrosis transmembrane conductance regulator in the nitric oxide-dependent release of Cl - from acidic organelles in amacrine cells. J Neurophysiol 2017; 118:2842-2852. [PMID: 28835528 DOI: 10.1152/jn.00511.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
γ-Amino butyric acid (GABA) and glycine typically mediate synaptic inhibition because their ligand-gated ion channels support the influx of Cl- However, the electrochemical gradient for Cl- across the postsynaptic plasma membrane determines the voltage response of the postsynaptic cell. Typically, low cytosolic Cl- levels support inhibition, whereas higher levels of cytosolic Cl- can suppress inhibition or promote depolarization. We previously reported that nitric oxide (NO) releases Cl- from acidic organelles and transiently elevates cytosolic Cl-, making the response to GABA and glycine excitatory. In this study, we test the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) is involved in the NO-dependent efflux of organellar Cl- We first establish the mRNA and protein expression of CFTR in our model system, cultured chick retinal amacrine cells. Using whole cell voltage-clamp recordings of currents through GABA-gated Cl- channels, we examine the effects of pharmacological inhibition of CFTR on the NO-dependent release of internal Cl- To interfere with the expression of CFTR, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing. We find that both pharmacological inhibition and CRISPR/Cas9-mediated knockdown of CFTR block the ability of NO to release Cl- from internal stores. These results demonstrate that CFTR is required for the NO-dependent efflux of Cl- from acidic organelles.NEW & NOTEWORTHY Although CFTR function has been studied extensively in the context of epithelia, relatively little is known about its function in neurons. We show that CFTR is involved in an NO-dependent release of Cl- from acidic organelles. This internal function of CFTR is particularly relevant to neuronal physiology because postsynaptic cytosolic Cl- levels determine the outcome of GABA- and glycinergic synaptic signaling. Thus the CFTR may play a role in regulating synaptic transmission.
Collapse
Affiliation(s)
- Vijai Krishnan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - J Wesley Maddox
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Tyler Rodriguez
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Evanna Gleason
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
6
|
Fonteriz R, Matesanz-Isabel J, Arias-Del-Val J, Alvarez-Illera P, Montero M, Alvarez J. Modulation of Calcium Entry by Mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:405-21. [PMID: 27161238 DOI: 10.1007/978-3-319-26974-0_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of mitochondria in intracellular Ca(2+) signaling relies mainly in its capacity to take up Ca(2+) from the cytosol and thus modulate the cytosolic [Ca(2+)]. Because of the low Ca(2+)-affinity of the mitochondrial Ca(2+)-uptake system, this organelle appears specially adapted to take up Ca(2+) from local high-Ca(2+) microdomains and not from the bulk cytosol. Mitochondria would then act as local Ca(2+) buffers in cellular regions where high-Ca(2+) microdomains form, that is, mainly close to the cytosolic mouth of Ca(2+) channels, both in the plasma membrane and in the endoplasmic reticulum (ER). One of the first targets proposed already in the 1990s to be regulated in this way by mitochondria were the store-operated Ca(2+) channels (SOCE). Mitochondria, by taking up Ca(2+) from the region around the cytosolic mouth of the SOCE channels, would prevent its slow Ca(2+)-dependent inactivation, thus keeping them active for longer. Since then, evidence for this mechanism has accumulated mainly in immunitary cells, where mitochondria actually move towards the immune synapse during T cell activation. However, in many other cell types the available data indicate that the close apposition between plasma and ER membranes occurring during SOCE activation precludes mitochondria from getting close to the Ca(2+)-entry sites. Alternative pathways for mitochondrial modulation of SOCE, both Ca(2+)-dependent and Ca(2+)-independent, have also been proposed, but further work will be required to elucidate the actual mechanisms at work. Hopefully, the recent knowledge of the molecular nature of the mitochondrial Ca(2+) uniporter will allow soon more precise studies on this matter.
Collapse
Affiliation(s)
- Rosalba Fonteriz
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Ramon y Cajal 7, 47005, Valladolid, Spain
| | - Jessica Matesanz-Isabel
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Ramon y Cajal 7, 47005, Valladolid, Spain
| | - Jessica Arias-Del-Val
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Ramon y Cajal 7, 47005, Valladolid, Spain
| | - Pilar Alvarez-Illera
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Ramon y Cajal 7, 47005, Valladolid, Spain
| | - Mayte Montero
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Ramon y Cajal 7, 47005, Valladolid, Spain
| | - Javier Alvarez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular (IBGM), Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Ramon y Cajal 7, 47005, Valladolid, Spain.
| |
Collapse
|
7
|
Baliño P, Ledesma JC, Aragon CMG. Role of phosphodiesterase-4 on ethanol elicited locomotion and narcosis. Neuropharmacology 2015; 101:271-8. [PMID: 26449868 DOI: 10.1016/j.neuropharm.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
The cAMP signaling pathway has emerged as an important modulator of the pharmacological effects of ethanol. In this respect, the cAMP-dependent protein kinase has been shown to play an important role in the modulation of several ethanol-induced behavioral actions. Cellular levels of cAMP are maintained by the activity of adenylyl cyclases and phosphodiesterases. In the present work we have focused on ascertaining the role of PDE4 in mediating the neurobehavioral effects of ethanol. For this purpose, we have used the selective PDE4 inhibitor Ro 20-1724. This compound has been proven to enhance cellular cAMP response by PDE4 blockade and can be administered systemically. Swiss mice were injected intraperitoneally (i.p.) with Ro 20-1724 (0-5 mg/kg; i.p.) at different time intervals before ethanol (0-4 g/kg; i.p.) administration. Immediately after the ethanol injection, locomotor activity, loss of righting reflex, PKA footprint and enzymatic activity were assessed. Pretreatment with Ro 20-1724 increased ethanol-induced locomotor stimulation in a dose-dependent manner. Doses that increased locomotor stimulation did not modify basal locomotion or the suppression of motor activity produced by high doses of this alcohol. Ro 20-1724 did not alter the locomotor activation produced by amphetamine or cocaine. The time of loss of righting reflex evoked by ethanol was increased after pretreatment with Ro 20-1724. This effect was selective for the narcotic effects of ethanol since Ro 20-1724 did not affect pentobarbital-induced narcotic effects. Moreover, Ro 20-1724 administration increased the PKA footprint and enzymatic activity response elicited by ethanol. These data provide further evidence of the key role of the cAMP signaling pathway in the central effects of ethanol.
Collapse
Affiliation(s)
- Pablo Baliño
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Juan Carlos Ledesma
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| | - Carlos M G Aragon
- Área de Psicobiología, Universtitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain.
| |
Collapse
|
8
|
Chen W, Ke JB, Wu HJ, Miao Y, Li F, Yang XL, Wang Z. Somatostatin receptor-mediated suppression of gabaergic synaptic transmission in cultured rat retinal amacrine cells. Neuroscience 2014; 273:118-27. [PMID: 24846611 DOI: 10.1016/j.neuroscience.2014.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 01/03/2023]
Abstract
Somatostatin (SRIF) modulates neurotransmitter release by activating the specific receptors (sst1-sst5). Our previous study showed that sst5 receptors are expressed in rat retinal GABAergic amacrine cells. Here, we investigated modulation of GABA release by SRIF in cultured amacrine cells, using patch-clamp techniques. The frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in the amacrine cells was significantly reduced by SRIF, which was partially reversed by BIM 23056, an sst5 receptor antagonist, and was further rescued by addition of CYN-154806, an sst2 receptor antagonist. Both nimodipine, an L-type Ca2+ channel blocker, and ω-conotoxin GVIA, an N-type Ca2+ channel blocker, suppressed the sIPSC frequency, and in the presence of nimodipine and ω-conotoxin GVIA, SRIF failed to further suppress the sIPSC frequency. Extracellular application of forskolin, an activator of adenylate cyclase, increased the sIPSC frequency, while the membrane permeable protein kinase A (PKA) inhibitor Rp-cAMP reduced it, and in the presence of Rp-cAMP, SRIF did not change sIPSCs. However, SRIF persisted to suppress the sIPSCs in the presence of KT5823, a protein kinase G (PKG) inhibitor. Moreover, pre-incubation with Bis IV, a protein kinase C (PKC) inhibitor, or pre-application of xestospongin C, an inositol 1,4,5-trisphosphate receptor (IP3R) inhibitor, SRIF still suppressed the sIPSC frequency. All these results suggest that SRIF suppresses GABA release from the amacrine cells by inhibiting presynaptic Ca2+ channels, in part through activating sst5/sst2 receptors, a process that is mediated by the intracellular cAMP-PKA signaling pathway.
Collapse
Affiliation(s)
- W Chen
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - J B Ke
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - H J Wu
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Y Miao
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - F Li
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - X L Yang
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Z Wang
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Intracellular calcium chelation with BAPTA-AM modulates ethanol-induced behavioral effects in mice. Exp Neurol 2012; 234:446-53. [PMID: 22306018 DOI: 10.1016/j.expneurol.2012.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 11/23/2022]
Abstract
Calcium (Ca(2+)) has been characterized as one of the most ubiquitous, universal and versatile intracellular signaling molecules responsible for controlling numerous cellular processes. Ethanol-induced effects on Ca(2+) distribution and flux have been widely studied in vitro, showing that acute ethanol administration can modulate intracellular Ca(2+) concentrations in a dose dependent manner. In vivo, the relationship between Ca(2+) manipulation and the corresponding ethanol-induced behavioral effects have focused on Ca(2+) flux through voltage-gated Ca(2+) channels. The present study investigated the role of inward Ca(2+) currents in ethanol-induced psychomotor effects (stimulation and sedation) and ethanol intake. We studied the effects of the fast Ca(2+) chelator, BAPTA-AM, on ethanol-induced locomotor activity and the sedative effects of ethanol. Swiss (RjOrl) mice were pretreated with BAPTA-AM (0-10 mg/kg) 30 min before an ethanol (0-4 g/kg) challenge. Our results revealed that pretreatment with BAPTA-AM prevented locomotor stimulation produced by ethanol without altering basal locomotion. In contrast, BAPTA-AM reversed ethanol-induced hypnotic effects. In a second set of experiments, we investigated the effects of intracellular Ca(2+) chelation on ethanol intake. Following a drinking-in-the-dark methodology, male C57BL/6J mice were offered 20% v/v ethanol, tap water, or 0.1% sweetened water. The results of these experiments revealed that BAPTA-AM pretreatment (0-5 mg/kg) reduced ethanol consumption in a dose-dependent manner while leaving water and sweetened water intake unaffected. Our findings support the role of inward Ca(2+) currents in mediating different behavioral responses induced by ethanol. Our results are discussed together with data indicating that ethanol appears to be more sensitive to intracellular Ca(2+) manipulations than other psychoactive drugs.
Collapse
|