1
|
Qi Y, Xu Y, Wang H, Wang Q, Li M, Han B, Liu H. Network Reorganization for Neurophysiological and Behavioral Recovery Following Stroke. Cent Nerv Syst Agents Med Chem 2024; 24:117-128. [PMID: 38299298 DOI: 10.2174/0118715249277597231226064144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 02/02/2024]
Abstract
Stroke continues to be the main cause of motor disability worldwide. While rehabilitation has been promised to improve recovery after stroke, efficacy in clinical trials has been mixed. We need to understand the cortical recombination framework to understand how biomarkers for neurophysiological reorganized neurotechnologies alter network activity. Here, we summarize the principles of the movement network, including the current evidence of changes in the connections and function of encephalic regions, recovery from stroke and the therapeutic effects of rehabilitation. Overall, improvements or therapeutic effects in limb motor control following stroke are correlated with the effects of interhemispheric competition or compensatory models of the motor supplementary cortex. This review suggests that future research should focus on cross-regional communication and provide fundamental insights into further treatment and rehabilitation for post-stroke patients.
Collapse
Affiliation(s)
- Yuan Qi
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Yujie Xu
- Chengde Medical College Affiliated Hospital, Chengde, Hebei, CN, China
| | - Huailu Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Qiujia Wang
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Meijie Li
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Bo Han
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| | - Haijie Liu
- Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing CN, China
| |
Collapse
|
2
|
Lim H, Madhavan S. Non-paretic leg movements can facilitate cortical drive to the paretic leg in individuals post stroke with severe motor impairment: Implications for motor priming. Eur J Neurosci 2023; 58:2853-2867. [PMID: 37354080 PMCID: PMC10530620 DOI: 10.1111/ejn.16069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Cross-education, a phenomenon where unilateral strength (or skill) training enhances strength (or skill) in the contralateral untrained limb, has been well studied in able-bodied individuals. Cross-education effect accompanies bilateral changes of corticomotor activity in the motor cortex (M1). Recent reports demonstrated greater cross-education effect in stroke survivors compared to healthy individuals, however, corticomotor responses to cross-education in stroke remains unclear. This study aimed to determine the effects of non-paretic leg movements on corticomotor excitability (CME) and reaction time of the paretic leg in severely impaired stroke survivors. Seventeen post stroke individuals with severe leg motor impairment (Fugl-Meyer lower extremity score less than 21 and absence of motor evoked potential in the paretic leg) performed three 20-min motor trainings using their non-paretic ankle: skill (targeted dynamic movements), strength (isometric resistance) and sham (sub-threshold electrical nerve stimulation). During training, verbal instructions were given to the participants to limit their movement to the non-paretic leg and this was confirmed with visual observation of the paretic leg. Transcranial magnetic stimulation measured CME of the contralateral pathways from the non-lesioned M1 to the non-paretic tibialis anterior (TA) muscle, ipsilateral pathways to the paretic TA and transcallosal inhibition (TCI) from the non-lesioned to lesioned M1. Paretic ankle reaction time was measured using a reaction time paradigm. All outcomes were measured before, immediately post, 30-min post and 60-min post priming. CME of the non-paretic TA increased after skill (.08 ± .10 mV) and strength (.06 ± .05 mV) training (p < .01). Ipsilateral CME of the paretic TA (.02 ± .01 mV) and TCI (.01 ± .01 s, ipsilateral silent period; more inhibition to the lesioned M1) increased after skill (p < .05) but not strength training. Reaction time of the paretic ankle improved after skill and strength training (-.11 ± .2 and -.13 ± .20 s, respectively; p < .05) and was sustained at 60 min. No changes were observed during the sham condition. Our findings may inform future studies for using non-paretic leg movements as a priming modality, especially for those who are contraindicated to other priming paradigms (e.g., brain stimulation) or unable to perform paretic leg movements. Conclusion: Non-paretic leg movements can be used as a priming modality, especially for those who are contraindicated to other priming paradigms (e.g., brain stimulation) or unable to perform paretic leg movements.
Collapse
Affiliation(s)
- Hyosok Lim
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
- Graduate Program in Rehabilitation Sciences, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sangeetha Madhavan
- Brain Plasticity Laboratory, Department of Physical Therapy, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Mirdamadi JL, Xu J, Arevalo-Alas KM, Kam LK, Borich MR. State-dependent interhemispheric inhibition reveals individual differences in motor behavior in chronic stroke. Clin Neurophysiol 2023; 149:157-167. [PMID: 36965468 PMCID: PMC10101934 DOI: 10.1016/j.clinph.2023.02.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/05/2023] [Accepted: 02/26/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVE To investigate state-dependent interhemispheric inhibition (IHI) in chronic stroke survivors compared to neurotypical older adult controls, and test whether abnormal IHI modulation was associated with upper extremity motor behavior. METHODS Dual-coil transcranial magnetic stimulation (TMS) measured IHI bi-directionally, between non-lesioned and lesioned motor cortex (M1) in two activity states: (1) at rest and (2) during contralateral isometric hand muscle contraction. IHI was tested by delivering a conditioning stimulus 8-msec or 50-msec prior to a test stimulus over contralateral M1. Paretic motor behavior was assessed by clinical measures of impairment, strength, and dexterity, and mirroring activity in the non-paretic hand. RESULTS Stroke survivors demonstrated reduced IHI at rest, and less IHI modulation (active - rest) compared to controls. Individual differences in IHI modulation were related to motor behavior differences where greater IHI modulation was associated with greater motor impairment and more mirroring. In contrast, there were no relationships between IHI at rest and motor behavior. CONCLUSIONS Abnormal state-dependent interhemispheric circuit activity may be more sensitive to post-stroke motor deficits than when assessed in a single motor state. SIGNIFICANCE Characterizing state-dependent changes in neural circuitry may enhance models of stroke recovery and inform rehabilitation interventions.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jing Xu
- Department of Kinesiology, University of Georgia, Athens, GA, USA
| | - Karla M Arevalo-Alas
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Liana K Kam
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael R Borich
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Savoury RB, Kibele A, Power KE, Herat N, Alizadeh S, Behm DG. Reduced isometric knee extensor force following anodal transcranial direct current stimulation of the ipsilateral motor cortex. PLoS One 2023; 18:e0280129. [PMID: 36608054 PMCID: PMC9821721 DOI: 10.1371/journal.pone.0280129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The goal of this study was to determine if 10-min of anodal transcranial direct current stimulation (a-tDCS) to the motor cortex (M1) is capable of modulating quadriceps isometric maximal voluntary contraction (MVC) force or fatigue endurance contralateral or ipsilateral to the stimulation site. METHODS In a randomized, cross-over design, 16 (8 females) individuals underwent two sessions of a-tDCS and two sham tDCS (s-tDCS) sessions targeting the left M1 (all participants were right limb dominant), with testing of either the left (ipsilateral) or right (contralateral) quadriceps. Knee extensor (KE) MVC force was recorded prior to and following the a-tDCS and s-tDCS protocols. Additionally, a repetitive MVC fatiguing protocol (12 MVCs with work-rest ratio of 5:10-s) was completed following each tDCS protocol. RESULTS There was a significant interaction effect for stimulation condition x leg tested x time [F(1,60) = 7.156, p = 0.010, ηp2 = 0.11], which revealed a significant absolute KE MVC force reduction in the contralateral leg following s-tDCS (p < 0.001, d = 1.2) and in the ipsilateral leg following a-tDCS (p < 0.001, d = 1.09). A significant interaction effect for condition x leg tested [F(1,56) = 8.12, p = 0.006, ηp2 = 0.13], showed a significantly lower ipsilateral quadriceps (to tDCS) relative MVC force with a-tDCS, versus s-tDCS [t(15) = -3.07, p = 0.016, d = -0.77]. There was no significant difference between the relative contralateral quadriceps (to tDCS) MVC force for a-tDCS and s-tDCS. Although there was an overall significant [F(1,56) = 8.36, p < 0.001] 12.1% force decrease between the first and twelfth MVC repetitions, there were no significant main or interaction effects for fatigue index force. CONCLUSION a-tDCS may be ineffective at increasing maximal force or endurance and instead may be detrimental to quadriceps force production.
Collapse
Affiliation(s)
- Ryan B. Savoury
- School of Human Kinetic and Recreation, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Armin Kibele
- Institute for Sport and Sport Science, University of Kassel, Kassel, Germany
| | - Kevin E. Power
- School of Human Kinetic and Recreation, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Nehara Herat
- School of Human Kinetic and Recreation, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Shahab Alizadeh
- School of Human Kinetic and Recreation, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - David G. Behm
- School of Human Kinetic and Recreation, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
5
|
Zhou S, Zhang SS, Crowley-McHattan ZJ. A scoping review of the contralateral effects of unilateral peripheral stimulation on neuromuscular function. PLoS One 2022; 17:e0263662. [PMID: 35139128 PMCID: PMC8827438 DOI: 10.1371/journal.pone.0263662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
It is known that resistance exercise using one limb can affect motor function of both the exercised limb and the unexercised contralateral limb, a phenomenon termed cross-education. It has been suggested that cross-education has clinical implications, e.g. in rehabilitation for orthopaedic conditions or post-stroke paresis. Much of the research on the contralateral effect of unilateral intervention on motor output is based on voluntary exercise. This scoping review aimed to map the characteristics of current literature on the cross-education caused by three most frequently utilised peripheral neuromuscular stimulation modalities in this context: electrical stimulation, mechanical vibration and percutaneous needling, that may direct future research and translate to clinical practice. A systematic search of relevant databases (Ebsco, ProQuest, PubMed, Scopus, Web of Science) through to the end of 2020 was conducted following the PRISMA Extension for Scoping Review. Empirical studies on human participants that applied a unilateral peripheral neuromuscular stimulation and assessed neuromuscular function of the stimulated and/or the unstimulated side were selected. By reading the full text, the demographic characteristics, context, design, methods and major findings of the studies were synthesised. The results found that 83 studies were eligible for the review, with the majority (53) utilised electrical stimulation whilst those applied vibration (18) or needling (12) were emerging. Although the contralateral effects appeared to be robust, only 31 studies claimed to be in the context of cross-education, and 25 investigated on clinical patients. The underlying mechanism for the contralateral effects induced by unilateral peripheral stimulation remains unclear. The findings suggest a need to enhance the awareness of cross-education caused by peripheral stimulation, to help improve the translation of theoretical concepts to clinical practice, and aid in developing well-designed clinical trials to determine the efficacy of cross-education therapies.
Collapse
Affiliation(s)
- Shi Zhou
- Discipline of Sport and Exercise Science, Faculty of Health, Southern Cross University, Lismore, New South Wales, Australia
- * E-mail:
| | - Shuang-Shuang Zhang
- Discipline of Sport and Exercise Science, Faculty of Health, Southern Cross University, Lismore, New South Wales, Australia
- School of Sport Science, Beijing Sport University, Beijing, China
| | - Zachary J. Crowley-McHattan
- Discipline of Sport and Exercise Science, Faculty of Health, Southern Cross University, Lismore, New South Wales, Australia
| |
Collapse
|
6
|
Sabah HME, Labib HSA. Assessment of neuromuscular electrical stimulation effect on contralateral quadriceps muscle. J Bodyw Mov Ther 2022; 31:84-89. [DOI: 10.1016/j.jbmt.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/15/2021] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
7
|
Sisti HM, Beebe A, Bishop M, Gabrielsson E. A brief review of motor imagery and bimanual coordination. Front Hum Neurosci 2022; 16:1037410. [PMID: 36438642 PMCID: PMC9693758 DOI: 10.3389/fnhum.2022.1037410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
Abstract
Motor imagery is increasingly being used in clinical settings, such as in neurorehabilitation and brain computer interface (BCI). In stroke, patients lose upper limb function and must re-learn bimanual coordination skills necessary for the activities of daily living. Physiotherapists integrate motor imagery with physical rehabilitation to accelerate recovery. In BCIs, users are often asked to imagine a movement, often with sparse instructions. The EEG pattern that coincides with this cognitive task is captured, then used to execute an external command, such as operating a neuroprosthetic device. As such, BCIs are dependent on the efficient and reliable interpretation of motor imagery. While motor imagery improves patient outcome and informs BCI research, the cognitive and neurophysiological mechanisms which underlie it are not clear. Certain types of motor imagery techniques are more effective than others. For instance, focusing on kinesthetic cues and adopting a first-person perspective are more effective than focusing on visual cues and adopting a third-person perspective. As motor imagery becomes more dominant in neurorehabilitation and BCIs, it is important to elucidate what makes these techniques effective. The purpose of this review is to examine the research to date that focuses on both motor imagery and bimanual coordination. An assessment of current research on these two themes may serve as a useful platform for scientists and clinicians seeking to use motor imagery to help improve bimanual coordination, either through augmenting physical therapy or developing more effective BCIs.
Collapse
Affiliation(s)
- Helene M Sisti
- Department of Psychology, Norwich University, Northfield, VT, United States
| | - Annika Beebe
- Department of Psychology, Norwich University, Northfield, VT, United States
| | - Mercedes Bishop
- Department of Psychology, Norwich University, Northfield, VT, United States
| | - Elias Gabrielsson
- Department of Psychology, Norwich University, Northfield, VT, United States
| |
Collapse
|
8
|
Hikosaka M, Aramaki Y. Neuromuscular Fatigue in Unimanual Handgrip Does Not Completely Affect Simultaneous Bimanual Handgrip. Front Hum Neurosci 2021; 15:763580. [PMID: 34795569 PMCID: PMC8593201 DOI: 10.3389/fnhum.2021.763580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
Simultaneous bimanual movements are not merely the sum of two unimanual movements. Here, we considered the unimanual/bimanual motor system as comprising three components: unimanual-specific, bimanual-specific, and overlapping (mobilized during both unimanual and bimanual movements). If the force-generating system controlling the same limb differs between unimanual and bimanual movements, unimanual exercise would be expected to fatigue the unimanual-specific and overlapping parts in the force-generating system but not the bimanual-specific part. Therefore, we predicted that the decrease in bimanual force generation induced by unimanual neuromuscular fatigue would be smaller than the decrease in unimanual force generation. Sixteen healthy right-handed adults performed unimanual and bimanual maximal handgrip measurements before and after a submaximal fatiguing handgrip task. In the fatigue task, participants were instructed to maintain unimanual handgrip force at 50% of their maximal handgrip force until the time to task failure. Each participant performed this task in a left-hand fatigue (LF) condition and a right-hand fatigue (RF) condition, in a random order. Although the degree of neuromuscular fatigue was comparable in both conditions, as expected, the decrease in bimanual right handgrip force was significantly smaller than those during unimanual right performance in the RF condition, but not in the LF condition. These results indicate that for the right-hand, neuromuscular fatigue in unimanual handgrip does not completely affect simultaneous bimanual handgrip. Regarding the underlying mechanisms, we propose that although neuromuscular fatigue caused by unimanual handgrip reduces the motor output of unimanual-specific and overlapping parts in the force-generating system, when simultaneous bimanual handgrip is performed, the overlapping part (which is partially fatigued) and the bimanual-specific part (which is not yet fatigued) generate motor output, thus decreasing the force reduction.
Collapse
Affiliation(s)
- Mikito Hikosaka
- Graduate School of Health and Sport Sciences, Chukyo University, Aichi, Japan
| | - Yu Aramaki
- School of Health and Sport Sciences, Chukyo University, Aichi, Japan
| |
Collapse
|
9
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
10
|
Prak RF, Marsman JBC, Renken R, Tepper M, Thomas CK, Zijdewind I. Increased Ipsilateral M1 Activation after Incomplete Spinal Cord Injury Facilitates Motor Performance. J Neurotrauma 2021; 38:2988-2998. [PMID: 34491111 DOI: 10.1089/neu.2021.0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Incomplete spinal cord injury (SCI) may result in muscle weakness and difficulties with force gradation. Although these impairments arise from the injury and subsequent changes at spinal levels, changes have also been demonstrated in the brain. Blood-oxygen-level dependent (BOLD) imaging was used to investigate these changes in brain activation in the context of unimanual contractions with the first dorsal interosseous muscle. BOLD- and force data were obtained in 19 individuals with SCI (AISA Impairment Scale [AIS] C/D, level C4-C8) and 24 able-bodied controls during maximal voluntary contractions (MVCs). To assess force modulation, participants performed 12 submaximal contractions with each hand (at 10, 30, 50, and 70% MVC) by matching their force level to a visual target. MVCs were weaker in the SCI group (both hands p < 0.001), but BOLD activation did not differ between SCI and control groups. For the submaximal contractions, force (as %MVC) was similar across groups. However, SCI participants showed increased activity of the ipsilateral motor cortex and contralateral cerebellum across all contractions, with no differential effect of force level. Activity of ipsilateral M1 was best explained by force of the target hand (vs. the non-target hand). In conclusion, the data suggest that after incomplete cervical SCI, individuals remain capable of producing maximal supraspinal drive and are able to modulate this drive adequately. Activity of the ipsilateral motor network appears to be task related, although it remains uncertain how this activity contributes to task performance and whether this effect could potentially be harnessed to improve motor functioning.
Collapse
Affiliation(s)
- Roeland F Prak
- Department of Biomedical Sciences of Cells and Systems and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan-Bernard C Marsman
- Department of Biomedical Sciences of Cells and Systems and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Remco Renken
- Department of Biomedical Sciences of Cells and Systems and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marga Tepper
- Department of Rehabilitation Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christine K Thomas
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Physiology and Biophysics and University of Miami Miller School of Medicine, Miami, Florida, USA.,Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems and University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
11
|
Handedness Does Not Impact Inhibitory Control, but Movement Execution and Reactive Inhibition Are More under a Left-Hemisphere Control. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The relationship between handedness, laterality, and inhibitory control is a valuable benchmark for testing the hypothesis of the right-hemispheric specialization of inhibition. According to this theory, and given that to stop a limb movement, it is sufficient to alter the activity of the contralateral hemisphere, then suppressing a left arm movement should be faster than suppressing a right-arm movement. This is because, in the latter case, inhibitory commands produced in the right hemisphere should be sent to the other hemisphere. Further, as lateralization of cognitive functions in left-handers is less pronounced than in right-handers, in the former, the inhibitory control should rely on both hemispheres. We tested these predictions on a medium-large sample of left- and right-handers (n = 52). Each participant completed two sessions of the reaching versions of the stop-signal task, one using the right arm and one using the left arm. We found that reactive and proactive inhibition do not differ according to handedness. However, we found a significant advantage of the right versus the left arm in canceling movements outright. By contrast, there were no differences in proactive inhibition. As we also found that participants performed movements faster with the right than with the left arm, we interpret our results in light of the dominant role of the left hemisphere in some aspects of motor control.
Collapse
|
12
|
Colomer-Poveda D, Zijdewind I, Dolstra J, Márquez G, Hortobágyi T. Voluntary suppression of associated activity decreases force steadiness in the active hand. Eur J Neurosci 2021; 54:5075-5091. [PMID: 34184345 DOI: 10.1111/ejn.15371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/19/2021] [Indexed: 11/30/2022]
Abstract
Unilateral muscle contractions are often accompanied by the activation of the ipsilateral hemisphere, producing associated activity (AA) in the contralateral homologous muscles. However, the functional role of AA is not fully understood. We determined the effects of voluntary suppression of AA in the first dorsal interosseous (FDI), on force steadiness during a constant force isometric contraction of the contralateral FDI. Participants (n = 17, 25.5 years) performed two trials of isometric FDI contractions as steadily as possible. In Trial 1, they did not receive feedback or explicit instructions for suppressing the AA in the contralateral homologous FDI. In Trial 2, participants received feedback and were asked to voluntarily suppress the AA in the contralateral nontarget FDI. During both trials, corticospinal excitability and motor cortical inhibition were measured. The results show that participants effectively suppressed the AA in the nontarget contralateral FDI (-71%), which correlated with reductions in corticospinal excitability (-57%), and the suppression was also accompanied by increases in inhibition (27%) in the ipsilateral motor cortex. The suppression of AA impaired force steadiness, but the decrease in force steadiness did not correlate with the magnitude of suppression. The results show that voluntary suppression of AA decreases force steadiness in the active hand. However, due to the lack of association between suppression and decreased steadiness, we interpret these data to mean that specific elements of the ipsilateral brain activation producing AA in younger adults are neither contributing nor detrimental to unilateral motor control during a steady isometric contraction.
Collapse
Affiliation(s)
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jurian Dolstra
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gonzalo Márquez
- Department of Physical Education and Sport, Faculty of Sports Sciences and Physical Education, University of A Coruna, A Coruna, Spain
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, Pécs, Hungary.,Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| |
Collapse
|
13
|
Carr JC, Bemben MG, Stock MS, DeFreitas JM. Ipsilateral and contralateral responses following unimanual fatigue with and without illusionary mirror visual feedback. J Neurophysiol 2021; 125:2084-2093. [PMID: 33909484 DOI: 10.1152/jn.00077.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Illusionary mirror visual feedback alters interhemispheric communication and influences cross-limb interactions. Combining forceful unimanual contractions with the mirror illusion is a convenient way to provoke robust alterations within ipsilateral motor networks. It is unknown, however, if the mirror illusion affects cross-limb fatigability. We examine this concept by comparing the ipsilateral and contralateral handgrip force and electromyographic (EMG) responses following unimanual fatigue with and without illusionary mirror visual feedback. Participants underwent three experimental sessions (mirror, no-mirror, and control), performing a unimanual fatigue protocol with and without illusionary mirror visual feedback. Maximal handgrip force and EMG activity were measured before and after each session for both hands during maximal unimanual and bimanual contractions. The associated EMG activity from the inactive forearm during unimanual contraction was also examined. The novel findings demonstrate greater relative fatigability during bimanual versus unimanual contraction following unimanual fatigue (-31.8% vs. -23.4%, P < 0.01) and the mirror illusion attenuates this difference (-30.3% vs. -26.3%, P = 0.169). The results show no evidence for a cross-over effect of fatigue with (+0.62%, -2.72%) or without (+0.26%, -2.49%) the mirror illusion during unimanual or bimanual contraction. The mirror illusion resulted in significantly lower levels of associated EMG activity in the contralateral forearm. There were no sex differences for any of the measures of fatigability. These results demonstrate that the mirror illusion influences contraction-dependent fatigue during maximal handgrip contractions. Alterations in facilitatory and inhibitory transcallosal drive likely explain these findings.NEW & NOTEWORTHY Illusionary mirror visual feedback is a promising clinical tool for motor rehabilitation, yet many features of its influence on motor output are unknown. We show that maximal bimanual force output is compromised to a greater extent than unimanual force output following unimanual fatigue, yet illusionary mirror visual feedback attenuates this difference. The mirror illusion also reduces the unintended EMG activity of the inactive, contralateral forearm during unimanual contraction.
Collapse
Affiliation(s)
- Joshua C Carr
- Department of Kinesiology, Texas Christian University, Fort Worth, Texas.,Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, Texas
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Matt S Stock
- School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, Florida.,Neuromuscular Plasticity Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, Florida
| | - Jason M DeFreitas
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
14
|
Hordacre B, Austin D, Brown KE, Graetz L, Parees I, De Trane S, Vallence AM, Koblar S, Kleinig T, McDonnell MN, Greenwood R, Ridding MC, Rothwell JC. Evidence for a Window of Enhanced Plasticity in the Human Motor Cortex Following Ischemic Stroke. Neurorehabil Neural Repair 2021; 35:307-320. [PMID: 33576318 PMCID: PMC7610679 DOI: 10.1177/1545968321992330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND In preclinical models, behavioral training early after stroke produces larger gains compared with delayed training. The effects are thought to be mediated by increased and widespread reorganization of synaptic connections in the brain. It is viewed as a period of spontaneous biological recovery during which synaptic plasticity is increased. OBJECTIVE To look for evidence of a similar change in synaptic plasticity in the human brain in the weeks and months after ischemic stroke. METHODS We used continuous theta burst stimulation (cTBS) to activate synapses repeatedly in the motor cortex. This initiates early stages of synaptic plasticity that temporarily reduces cortical excitability and motor-evoked potential amplitude. Thus, the greater the effect of cTBS on the motor-evoked potential, the greater the inferred level of synaptic plasticity. Data were collected from separate cohorts (Australia and UK). In each cohort, serial measurements were made in the weeks to months following stroke. Data were obtained for the ipsilesional motor cortex in 31 stroke survivors (Australia, 66.6 ± 17.8 years) over 12 months and the contralesional motor cortex in 29 stroke survivors (UK, 68.2 ± 9.8 years) over 6 months. RESULTS Depression of cortical excitability by cTBS was most prominent shortly after stroke in the contralesional hemisphere and diminished over subsequent sessions (P = .030). cTBS response did not differ across the 12-month follow-up period in the ipsilesional hemisphere (P = .903). CONCLUSIONS Our results provide the first neurophysiological evidence consistent with a period of enhanced synaptic plasticity in the human brain after stroke. Behavioral training given during this period may be especially effective in supporting poststroke recovery.
Collapse
Affiliation(s)
- Brenton Hordacre
- University of South Australia, IIMPACT in Health, Adelaide,
Australia
| | - Duncan Austin
- UCL Institute of Neurology, Queen Square, London, UK
| | | | - Lynton Graetz
- Lifespan Human Neurophysiology group, Adelaide Medical
School, The University of Adelaide, Australia
| | - Isabel Parees
- Servicio de Neurologia, Hospital Universitario Ramón
y Cajal, Madrid, Spain
- Servicio de Neurología, Hospital Ruber
Internacional, Madrid, Spain
| | - Stefania De Trane
- The Blizard Institute, Barts and The London School of
Medicine & Dentistry, Queen Mary University of London, London, UK
- Clinical Board: Medicine (Neuroscience), The Royal London
Hospital, Barts Health NHS Trust, London, UK
- National Hospital for Neurology and Neurosurgery, Queen
Square, London, UK
| | - Ann-Maree Vallence
- Discipline of Psychology, College of Science, Health,
Engineering and Education, Murdoch University, Western Australia, Australia
| | - Simon Koblar
- Department of Medicine, The University of Adelaide,
Adelaide, Australia
- Department of Neurology, Royal Adelaide Hospital,
Adelaide, Australia
| | - Timothy Kleinig
- Department of Medicine, The University of Adelaide,
Adelaide, Australia
- Department of Neurology, Royal Adelaide Hospital,
Adelaide, Australia
| | | | - Richard Greenwood
- National Hospital for Neurology and Neurosurgery, Queen
Square, London, UK
| | | | | |
Collapse
|
15
|
Bootsma JM, Caljouw SR, Veldman MP, Maurits NM, Rothwell JC, Hortobágyi T. Neural Correlates of Motor Skill Learning Are Dependent on Both Age and Task Difficulty. Front Aging Neurosci 2021; 13:643132. [PMID: 33828478 PMCID: PMC8019720 DOI: 10.3389/fnagi.2021.643132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/23/2021] [Indexed: 12/21/2022] Open
Abstract
Although a general age-related decline in neural plasticity is evident, the effects of age on neural plasticity after motor practice are inconclusive. Inconsistencies in the literature may be related to between-study differences in task difficulty. Therefore, we aimed to determine the effects of age and task difficulty on motor learning and associated brain activity. We used task-related electroencephalography (EEG) power in the alpha (8–12 Hz) and beta (13–30 Hz) frequency bands to assess neural plasticity before, immediately after, and 24-h after practice of a mirror star tracing task at one of three difficulty levels in healthy younger (19–24 yr) and older (65–86 yr) adults. Results showed an age-related deterioration in motor performance that was more pronounced with increasing task difficulty and was accompanied by a more bilateral activity pattern for older vs. younger adults. Task difficulty affected motor skill retention and neural plasticity specifically in older adults. Older adults that practiced at the low or medium, but not the high, difficulty levels were able to maintain improvements in accuracy at retention and showed modulation of alpha TR-Power after practice. Together, these data indicate that both age and task difficulty affect motor learning, as well as the associated neural plasticity.
Collapse
Affiliation(s)
- Josje M Bootsma
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Simone R Caljouw
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Menno P Veldman
- Movement Control and Neuroplasticity Research Group, Department of Movement Science, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Natasha M Maurits
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, University College London (UCL) Institute of Neurology, London, United Kingdom
| | - Tibor Hortobágyi
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Gomez IN, Ormiston K, Greenhouse I. Response preparation involves a release of intracortical inhibition in task-irrelevant muscles. J Neurophysiol 2020; 125:523-532. [PMID: 33356901 DOI: 10.1152/jn.00390.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action preparation involves widespread modulation of motor system excitability, but the precise mechanisms are unknown. In this study, we investigated whether intracortical inhibition changes in task-irrelevant muscle representations during action preparation. We used transcranial magnetic stimulation (TMS) combined with electromyography in healthy human adults to measure motor-evoked potentials (MEPs) and cortical silent periods (CSPs) in task-irrelevant muscles during the preparatory period of simple delayed response tasks. In experiment 1, participants responded with the left index finger in one task condition and the right index finger in another task condition, whereas MEPs and CSPs were measured from the contralateral nonresponding and tonically contracted index finger. During experiment 2, participants responded with the right pinky finger whereas MEPs and CSPs were measured from the tonically contracted left index finger. In both experiments, MEPs and CSPs were compared between the task preparatory period and a resting intertrial baseline. The CSP duration during response preparation decreased from baseline in every case. A laterality difference was also observed in experiment 1, with a greater CSP reduction during the preparation of left finger responses compared to right finger responses. Despite reductions in CSP duration, consistent with a release of intracortical inhibition, MEP amplitudes were smaller during action preparation when accounting for background levels of muscle activity, consistent with earlier studies that reported decreased corticospinal excitability. These findings indicate that intracortical inhibition associated with task-irrelevant muscles is transiently released during action preparation and implicate a novel mechanism for the controlled and coordinated release of motor cortex inhibition.NEW & NOTEWORTHY In this study, we observed the first evidence of a release of intracortical inhibition in task-irrelevant muscle representations during response preparation. We applied transcranial magnetic stimulation to elicit cortical silent periods in task-irrelevant muscles during response preparation, and observed a consistent decrease in the silent period duration relative to a resting baseline. These findings address the question of whether cortical mechanisms underlie widespread modulation in motor excitability during response preparation.
Collapse
Affiliation(s)
- Isaac N Gomez
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Kara Ormiston
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, Oregon
| |
Collapse
|
17
|
Interlimb Neuromuscular Responses During Fatiguing, Bilateral, Leg Extension Exercise at a Moderate Versus High Load. Motor Control 2020; 25:59-74. [PMID: 33059330 DOI: 10.1123/mc.2020-0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 11/18/2022]
Abstract
This study determined the load- and limb-dependent neuromuscular responses to fatiguing, bilateral, leg extension exercise performed at a moderate (50% one-repetition maximum [1RM]) and high load (80% 1RM). Twelve subjects completed 1RM testing for the bilateral leg extension, followed by repetitions to failure at 50% and 80% 1RM, on separate days. During all visits, the electromyographic (EMG) and mechanomyographic (MMG), amplitude (AMP) and mean power frequency (MPF) signals were recorded from the vastus lateralis of both limbs. There were no limb-dependent responses for any of the neuromuscular signals and no load-dependent responses for EMG AMP, MMG AMP, or MMG MPF (p = .301-.757), but there were main effects for time that indicated increases in EMG and MMG AMP and decreases in MMG MPF. There was a load-dependent decrease in EMG MPF over time (p = .032) that suggested variability in the mechanism responsible for metabolite accumulation at moderate versus high loads. These findings suggested that common drive from the central nervous system was used to modulate force during bilateral leg extension performed at moderate and high loads.
Collapse
|