1
|
Fu Z, Sui J, Iraji A, Liu J, Calhoun VD. Cognitive and psychiatric relevance of dynamic functional connectivity states in a large (N > 10,000) children population. Mol Psychiatry 2025; 30:402-413. [PMID: 39085394 PMCID: PMC11746149 DOI: 10.1038/s41380-024-02683-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Children's brains dynamically adapt to the stimuli from the internal state and the external environment, allowing for changes in cognitive and mental behavior. In this work, we performed a large-scale analysis of dynamic functional connectivity (DFC) in children aged 9~11 years, investigating how brain dynamics relate to cognitive performance and mental health at an early age. A hybrid independent component analysis framework was applied to the Adolescent Brain Cognitive Development (ABCD) data containing 10,988 children. We combined a sliding-window approach with k-means clustering to identify five brain states with distinct DFC patterns. Interestingly, the occurrence of a strongly connected state with the most within-network synchrony and the anticorrelations between networks, especially between the sensory networks and between the cerebellum and other networks, was negatively correlated with cognitive performance and positively correlated with dimensional psychopathology in children. Meanwhile, opposite relationships were observed for a DFC state showing integration of sensory networks and antagonism between default-mode and sensorimotor networks but weak segregation of the cerebellum. The mediation analysis further showed that attention problems mediated the effect of DFC states on cognitive performance. This investigation unveils the neurological underpinnings of DFC states, which suggests that tracking the transient dynamic connectivity may help to characterize cognitive and mental problems in children and guide people to provide early intervention to buffer adverse influences.
Collapse
Affiliation(s)
- Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
- Department of Computer Science, Georgia State University, Atlanta, GA, USA.
| | - Jing Sui
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Curot J, Dornier V, Valton L, Denuelle M, Robin A, Rulquin F, Sol JC, De Barros A, Trébuchon A, Bénar C, Bartolomei F, Barbeau EJ. Complex memories induced by intracranial electrical brain stimulation are related to complex networks. Cortex 2025; 183:349-372. [PMID: 39741056 DOI: 10.1016/j.cortex.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/01/2024] [Accepted: 11/18/2024] [Indexed: 01/02/2025]
Abstract
The precise and fleeting moment of rich recollection triggered by an environmental cue is difficult to reproduce in the lab. However, epilepsy patients can experience sudden reminiscences after intracranial electrical brain stimulation (EBS). In these cases, the transient brain state related to the activation of the engram and its conscious perception can be recorded using intracerebral EEG (iEEG). We collected various EBS-induced reminiscences for iEEG analysis, classifying them as follows: no or weak details (familiarity); moderate details and context (semantic and personal semantic memories); high details and context (episodic). Nine brain areas were selected within the temporal lobes (including the hippocampus and temporal neocortex, ipsi- and contralateral) and the insula, defining a network (each area as a node). Functional connectivity was measured by estimating pair-wise non-linear correlations between signals recorded from these brain regions during different memory events. Seventeen reminiscences in six patients (2 episodic, 10 personal semantic, 2 semantic memories, 5 familiar objects, 1 déjà-rêvé) were compared to 18 control experiential phenomena (unrelated to reminiscence), 18 negative EBS (which failed to elicit memories or other phenomena) in the same locations, and pre-EBS baseline activity. The global functional connectivity in the network was higher following EBS-induced reminiscences than during baseline activity, control phenomena, or negative EBS. The degree of connectivity increased with the complexity of memories; it was higher for detailed and contextualized memories like episodic memories. More significant links compared to baseline (edges with higher non-linear correlation relative to baseline) were observed for episodic memories than for less contextualized memories. These increases in connectivity occurred in all frequency bands, except the delta band. Our results support understanding declarative memory retrieval as having a multiplexed organization. They also show that richer memories activated by intracranial EBS are related to more complex connectivity patterns across medial and neocortical temporal lobe structures.
Collapse
Affiliation(s)
- Jonathan Curot
- Toulouse University Hospital, France; Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France; University of Toulouse, Faculty of Health, France.
| | - Vincent Dornier
- Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France; University of Toulouse, Faculty of Health, France
| | - Luc Valton
- Toulouse University Hospital, France; Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France
| | - Marie Denuelle
- Toulouse University Hospital, France; Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France
| | | | | | - Jean-Christophe Sol
- Toulouse University Hospital, France; University of Toulouse, Faculty of Health, France; INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, France
| | - Amaury De Barros
- Toulouse University Hospital, France; University of Toulouse, Faculty of Health, France; INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, France
| | - Agnès Trébuchon
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; Marseille University Hospital, France
| | - Christian Bénar
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; Marseille University Hospital, France
| | - Emmanuel J Barbeau
- Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France; University of Toulouse, Faculty of Health, France
| |
Collapse
|
3
|
Angeli PA, DiNicola LM, Saadon-Grosman N, Eldaief MC, Buckner RL. Specialization of the human hippocampal long axis revisited. Proc Natl Acad Sci U S A 2025; 122:e2422083122. [PMID: 39808662 PMCID: PMC11760929 DOI: 10.1073/pnas.2422083122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
The hippocampus possesses anatomical differences along its long axis. Here, we explored the functional specialization of the human hippocampal long axis using network-anchored precision functional MRI in two independent datasets (N = 11 and N = 9) paired with behavioral analysis (N = 266 and N = 238). Functional connectivity analyses demonstrated that the anterior hippocampus was preferentially correlated with a cerebral network associated with remembering, while the posterior hippocampus selectively contained a region correlated with a distinct network associated with behavioral salience. Seed regions placed within the hippocampus recapitulated the distinct cerebral networks. Functional characterization of the anterior and posterior hippocampal regions using task data identified and replicated a functional double dissociation. The anterior hippocampal region was sensitive to remembering and imagining the future, specifically tracking the process of scene construction, while the posterior hippocampal region displayed transient responses to targets in an oddball detection task and to transitions between task blocks. These findings suggest an unexpected specialization along the long axis of the human hippocampus with differential responses reflecting the functional properties of the partner cerebral networks.
Collapse
Affiliation(s)
- Peter A. Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Lauren M. DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Mark C. Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA02129
| | - Randy L. Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA02138
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA02129
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA02129
| |
Collapse
|
4
|
Shao K, Chen X, Yu X, Yang J, Wei M, Zhang M, Li R, Wang X, Wei Y, Chao-Gan Yan FTSSG, Han Y. Functional connectivity changes in two cortico-hippocampal networks of Alzheimer's disease continuum and their correlations with cognition: A SILCODE study. J Alzheimers Dis 2024; 102:801-814. [PMID: 39544016 DOI: 10.1177/13872877241291236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
BACKGROUND The anterior-temporal (AT) and posterior-medial (PM) networks have been proposed to play pivotal roles in the memory processing associated with Alzheimer's disease (AD). Nevertheless, these two networks' intrinsic functional coupling characteristics are still vague in different AD stages. OBJECTIVE To explore the functional connectivity (FC) alterations within and across the AT&PM networks in patients with dementia of the Alzheimer's type (DAT), mild cognitive impairment (MCI), subjective cognitive decline (SCD), and normal controls (NC). METHODS A total of 368 participants over 50 years old from the SILCODE study were recruited, including 99 NC, 134 SCD, 67 MCI, and 68 DAT patients. All the participants underwent a resting-state functional magnetic resonance imaging scan and a battery of neuropsychological tests. The 56 regions-of-interest of the AT&PM networks were defined broadly following existing literature. The FCs were calculated using DPABINet and compared among these four groups. Correlation analyses were performed on FCs and cognitive tests. RESULTS Analysis of variance of all four groups showed significant alteration, mainly in the PM networks. Compared to NC, globally decreased FCs regarding AT&PM networks were observed in DAT and MCI patients, while globally increased FCs regarding AT&PM networks were observed in SCD. The decreased FCs in DAT were significantly correlated with the neuropsychological test on the memory domain. CONCLUSIONS The FC alteration showed different patterns across the AD continuum, especially in individuals with SCD. The elevated FCs in the AT&PM networks of SCD may implicate certain compensating processes in the early stage of AD.
Collapse
Affiliation(s)
- Kai Shao
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University of Bonn Medical Center, Bonn, Germany
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xianfeng Yu
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jie Yang
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Min Wei
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Mingkai Zhang
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Ruixian Li
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Xuanqian Wang
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Yongzhe Wei
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - For The Silcode Study Group Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
- International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Han
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, China
- Alliance of Pre AD, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Department of Neurology, The Central Hospital of Karamay, Xinjiang, China
| |
Collapse
|
5
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. The human social cognitive network contains multiple regions within the amygdala. SCIENCE ADVANCES 2024; 10:eadp0453. [PMID: 39576857 PMCID: PMC11584017 DOI: 10.1126/sciadv.adp0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Reasoning about someone's thoughts and intentions-i.e., forming a "theory of mind"-is a core aspect of social cognition and relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by social cognitive processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to anterior regions of the medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between internal circuits of the amygdala and a broader distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Joseph J. Salvo
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
6
|
Zheng W, Shi X, Chen Y, Hou X, Yang Z, Yao W, Lv T, Bai F. Comparative efficacy of intermittent theta burst stimulation and high-frequency repetitive transcranial magnetic stimulation in amnestic mild cognitive impairment patients. Cereb Cortex 2024; 34:bhae460. [PMID: 39604076 DOI: 10.1093/cercor/bhae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/29/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Intermittent theta burst stimulation, a derivative of repetitive transcranial magnetic stimulation, has been applied to improve cognitive deficits. However, its efficacy and mechanisms in enhancing cognitive function in patients with amnestic mild cognitive impairment compared with traditional repetitive transcranial magnetic stimulation paradigms remain unclear. This study recruited 48 amnestic mild cognitive impairment patients, assigning them to intermittent theta burst stimulation, repetitive transcranial magnetic stimulation, and sham groups (5 times/wk for 4 wk). Neuropsychological assessments and functional magnetic resonance imaging data were collected pre- and post-treatment. Regarding efficacy, both angular gyrus intermittent theta burst stimulation and repetitive transcranial magnetic stimulation significantly improved general cognitive function and memory compared to the sham group, with no significant difference between the 2 treatment groups. Mechanistically, significant changes in brain activity within the temporoparietal network were observed in both the intermittent theta burst stimulation and repetitive transcranial magnetic stimulation groups, and these changes correlated with improvements in general cognitive and memory functions. Additionally, intermittent theta burst stimulation showed stronger modulation of functional connectivity between the hippocampus, parahippocampal gyrus, and temporal regions compared to repetitive transcranial magnetic stimulation. The intermittent theta burst stimulation and repetitive transcranial magnetic stimulation can improve cognitive function in amnestic mild cognitive impairment patients, but intermittent theta burst stimulation may offer higher efficiency. Intermittent theta burst stimulation and repetitive transcranial magnetic stimulation likely enhance cognitive function, especially memory function, by modulating the temporoparietal network.
Collapse
Affiliation(s)
- Wenao Zheng
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xian Shi
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, 321 Zhongshan Road, Nanjing, 210008, China
| | - Xinle Hou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Weina Yao
- Department of Neurology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Tingyu Lv
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 188 Lingshan North Road, Nanjing, 210046, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 188 Lingshan North Road, Nanjing, 210046, China
- Institute of Geriatric Medicine, Medical School of Nanjing University, 188 Lingshan North Road, Nanjing, 210046, China
| |
Collapse
|
7
|
Rayan NA, Aow J, Lim MGL, Arcego DM, Ryan R, Nourbakhsh N, de Lima RMS, Craig K, Zhang TY, Goh YT, Sun AX, Tompkins T, Bronner S, Binda S, Diorio J, Parent C, Meaney MJ, Prabhakar S. Shared and unique transcriptomic signatures of antidepressant and probiotics action in the mammalian brain. Mol Psychiatry 2024; 29:3653-3668. [PMID: 38844534 DOI: 10.1038/s41380-024-02619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 11/08/2024]
Abstract
Understanding the shared and divergent mechanisms across antidepressant (AD) classes and probiotics is critical for improving treatment for mood disorders. Here we examine the transcriptomic effects of bupropion (NDRI), desipramine (SNRI), fluoxetine (SSRI) and a probiotic formulation (Lacidofil®) on 10 regions across the mammalian brain. These treatments massively alter gene expression (on average, 2211 differentially expressed genes (DEGs) per region-treatment combination), highlighting the biological complexity of AD and probiotic action. Intersection of DEG sets against neuropsychiatric GWAS loci, sex-specific transcriptomic portraits of major depressive disorder (MDD), and mouse models of stress and depression reveals significant similarities and differences across treatments. Interestingly, molecular responses in the infralimbic cortex, basolateral amygdala and locus coeruleus are region-specific and highly similar across treatments, whilst responses in the Raphe, medial preoptic area, cingulate cortex, prelimbic cortex and ventral dentate gyrus are predominantly treatment-specific. Mechanistically, ADs concordantly downregulate immune pathways in the amygdala and ventral dentate gyrus. In contrast, protein synthesis, metabolism and synaptic signaling pathways are axes of variability among treatments. We use spatial transcriptomics to further delineate layer-specific molecular pathways and DEGs within the prefrontal cortex. Our study reveals complex AD and probiotics action on the mammalian brain and identifies treatment-specific cellular processes and gene targets associated with mood disorders.
Collapse
Affiliation(s)
- Nirmala Arul Rayan
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Jonathan Aow
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
- NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Michelle Gek Liang Lim
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Danusa Mar Arcego
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Richard Ryan
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Nooshin Nourbakhsh
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
| | | | - Kelly Craig
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Tie Yuan Zhang
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Yeek Teck Goh
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Alfred Xuyang Sun
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, 8 College Road, Singapore, 169857, Singapore
| | - Thomas Tompkins
- Lallemand Bio-Ingredients, 1620 Rue Prefontaine, Montréal, QC, H1W 2N8, Canada
| | - Stéphane Bronner
- Lallemand Health Solutions, Rosell Institute for Microbiome and Probiotics, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Sylvie Binda
- Lallemand Health Solutions, Rosell Institute for Microbiome and Probiotics, 6100 Avenue Royalmount, Montréal, QC, H4P 2R2, Canada
| | - Josie Diorio
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Carine Parent
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada
| | - Michael J Meaney
- NUS Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, QC, H4H 1R3, Canada.
- Singapore Institute for Clinical Sciences, A*STAR, Singapore, 117609, Singapore.
- Brain-Body Initiative, Institute for Cell & Molecular Biology, A*STAR, Singapore, Singapore.
| | - Shyam Prabhakar
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, 138672, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| |
Collapse
|
8
|
Xie H, Illapani VSP, Reppert LT, You X, Krishnamurthy M, Bai Y, Berl MM, Gaillard WD, Hong SJ, Sepeta LN. Longitudinal hippocampal axis in large-scale cortical systems underlying development and episodic memory. Proc Natl Acad Sci U S A 2024; 121:e2403015121. [PMID: 39436664 PMCID: PMC11536083 DOI: 10.1073/pnas.2403015121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/20/2024] [Indexed: 10/23/2024] Open
Abstract
The hippocampus is functionally specialized along its longitudinal axis with intricate interactions with cortical systems, which is crucial for understanding development and cognition. Using a well-established connectopic mapping technique on two large resting-state functional MRI datasets, we systematically quantified topographic organization of the hippocampal functional connectivity (hippocampal gradient) and its cortical interaction in developing brains. We revealed hippocampal functional hierarchy within the large-scale cortical brain systems, with the anterior hippocampus preferentially connected to an anterior temporal (AT) pathway and the posterior hippocampus embedded in a posterior medial (PM) pathway. We examined the developmental effects of the primary gradient and its whole-brain functional interaction. We observed increased functional specialization along the hippocampal long axis and found a general whole-brain connectivity shift from the posterior to the anterior hippocampus during development. Using phenotypic predictive modeling, we further delineated how the hippocampus is differentially integrated into the whole-brain cortical hierarchy underlying episodic memory and identified several key nodes within PM/AT systems. Our results highlight the importance of hippocampal gradient and its cortical interaction in development and for supporting episodic memory.
Collapse
Affiliation(s)
- Hua Xie
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Department of Neurology & Rehabilitation Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| | - Venkata Sita Priyanka Illapani
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
| | - Lauren T. Reppert
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
| | - Xiaozhen You
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Department of Neurology & Rehabilitation Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| | - Manu Krishnamurthy
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
| | - Yutong Bai
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
| | - Madison M. Berl
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Departments of Psychiatry & Behavioral Health, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| | - William D. Gaillard
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Department of Neurology & Rehabilitation Medicine, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| | - Seok-Jun Hong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon16419, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon16419, South Korea
| | - Leigh N. Sepeta
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, D.C.20010
- Departments of Psychiatry & Behavioral Health, The George Washington University School of Medicine and Health Sciences, Washington, D.C.20037
| |
Collapse
|
9
|
Caillaud M, Gallagher I, Foret J, Haley AP. Structural and functional sex differences in medial temporal lobe subregions at midlife. BMC Neurosci 2024; 25:55. [PMID: 39455948 PMCID: PMC11515403 DOI: 10.1186/s12868-024-00905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Research has increasingly recognized sex differences in aging and Alzheimer's Disease (AD) susceptibility. However, sex effects on the medial temporal lobe (MTL), a crucial region affected by aging and AD, remain poorly understood when it comes to the intricacies of morphology and functional connectivity. This study aimed to systematically analyze structural and functional connectivity among MTL subregions, which are known to exhibit documented morphological sex differences, during midlife, occurring before the putative pivotal age of cerebral decline. The study sought to explore the hypothesis that these differences in MTL subregion volumes would manifest in sex-related functional distinctions within the broader brain network. METHODS 201 cognitively unimpaired adults were included and stratified into four groups according to age and sex (i.e., Women and Men aged 40-50 and 50-60). These participants underwent comprehensive high-resolution structural MRI as well as resting-state functional MRI (rsfMRI). Utilizing established automated segmentation, we delineated MTL subregions and assessed morphological differences through an ANOVA. Subsequently, the CONN toolbox was employed for conducting ROI-to-ROI and Fractional Amplitude of Low-Frequency Fluctuations (fALFF) analyses to investigate functional connectivity within the specific MTL subregions among these distinct groups. RESULTS Significant differences in volumetric measurements were found primarily between women aged 40-50 and men of all ages, in the posterior hippocampus (pHPC) and the parahippocampal (PHC) cortex (p < 0.001), and, to a lesser extent, between women aged 50-60 and men of all ages (p < 0.05). Other distinctions were observed, but no significant differences in connectivity patterns or fALFF scores were detected between these groups. DISCUSSION Despite notable sex-related morphological differences in the posterior HPC and PHC regions, women and men appear to share a common pattern of brain connectivity at midlife. Longitudinal analyses are necessary to assess if midlife morphological sex differences in the MTL produce functional changes over time and thus, their potential role in cerebral decline. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
| | | | - Janelle Foret
- University of California San Diego, San Diego, CA, USA
| | | |
Collapse
|
10
|
Yu W, Zadbood A, Chanales AJH, Davachi L. Repetition dynamically and rapidly increases cortical, but not hippocampal, offline reactivation. Proc Natl Acad Sci U S A 2024; 121:e2405929121. [PMID: 39316058 PMCID: PMC11459139 DOI: 10.1073/pnas.2405929121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
No sooner is an experience over than its neural representation begins to be transformed through memory reactivation during offline periods. The lion's share of prior research has focused on understanding offline reactivation within the hippocampus. However, it is hypothesized that consolidation processes involve offline reactivation in cortical regions as well as coordinated reactivation in the hippocampus and cortex. Using fMRI, we presented novel and repeated paired associates to participants during encoding and measured offline memory reactivation for those events during an immediate post-encoding rest period. post-encoding reactivation frequency of repeated and once-presented events did not differ in the hippocampus. However, offline reactivation in widespread cortical regions and hippocampal-cortical coordinated reactivation were significantly enhanced for repeated events. These results provide evidence that repetition might facilitate the distribution of memory representations across cortical networks, a hallmark of systems-level consolidation. Interestingly, we found that offline reactivation frequency in both hippocampus and cortex explained variance in behavioral success on an immediate associative recognition test for the once-presented information, potentially indicating a role of offline reactivation in maintaining these novel, weaker, memories. Together, our findings highlight that endogenous offline reactivation can be robustly and significantly modulated by study repetition.
Collapse
Affiliation(s)
- Wangjing Yu
- Department of Psychology, Columbia University, New York, NY10027
| | - Asieh Zadbood
- Department of Psychology, Columbia University, New York, NY10027
| | - Avi J. H. Chanales
- Hinge, Inc., New York, NY10014
- Department of Psychology, New York University, New York, NY10027
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, NY10027
- Department of Clinical Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY10962
| |
Collapse
|
11
|
Yao L, Li MY, Wang KC, Liu YZ, Zheng HZ, Zhong Z, Ma SQ, Yang HM, Sun MM, He M, Huang HP, Wang HF. Abnormal resting-state functional connectivity of hippocampal subregions in type 2 diabetes mellitus-associated cognitive decline. Front Psychiatry 2024; 15:1360623. [PMID: 39376966 PMCID: PMC11456530 DOI: 10.3389/fpsyt.2024.1360623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Objective Type 2 diabetes mellitus (T2DM) over time predisposes to inflammatory responses and abnormalities in functional brain networks that damage learning, memory, or executive function. The hippocampus is a key region often reporting connectivity abnormalities in memory disorders. Here, we investigated peripheral inflammatory responses and resting-state functional connectivity (RSFC) changes characterized of hippocampal subregions in type 2 diabetes-associated cognitive decline (T2DACD). Methods The study included 16 patients with T2DM, 16 patients with T2DACD and 25 healthy controls (HCs). Subjects were assessed for cognitive performance, tested for the expression of inflammatory factors IL-6, IL-10 and TNF-α in peripheral serum, underwent resting-state functional magnetic resonance imaging scans, and analyzed for RSFC using the hippocampal subregions as seeds. We also calculated the correlation between cognitive performance and RSFC of hippocampal subregion, and analyzed the significantly altered RSFC values of T2DACD for Receiver Operating Characteristic (ROC) analysis. Results T2DACD patients showed a decline in their ability to complete cognitive assessment scales and experimental paradigms, and T2DM did not show abnormal cognitive performance. IL-6 expression was increased in peripheral serum in both T2DACD and T2DM. Compared with HCs, T2DACD showed abnormalities RSFC of the left anterior hippocampus with left precentral gyrus and left angular gyrus. T2DM showed abnormalities RSFC of the left middle hippocampus with right medial frontal gyrus, right anterior and middle hippocampus with left precuneus, left anterior hippocampus with right precuneus and right posterior middle temporal gyrus. Compared with T2DM, T2DACD showed abnormalities RSFC of the left posterior hippocampus and right middle hippocampus with left precuneus. In addition, RSFC in the left posterior hippocampus with left precuneus of T2DACD was positively correlated with Flanker conflict response time (r=0.766, P=0.001). In the ROC analysis, the significantly altered RSFC values of T2DACD achieved significant performance. Conclusions T2DACD showed a significant decrease in attentional inhibition and working memory, peripheral pro-inflammatory response increased, and abnormalities RSFC of the hippocampal subregions with default mode network and sensory-motor network. T2DM did not show a significant cognitive decline, but peripheral pro-inflammatory response increased and abnormalities RSFC of the hippocampus subregions occurred in the brain. In addition, the left precuneus may be a key brain region in the conversion of T2DM to T2DACD. The results of this study may provide a basis for the preliminary diagnosis of T2DACD.
Collapse
Affiliation(s)
- Lin Yao
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meng-Yuan Li
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Kang-Cheng Wang
- College of Psychology, Shandong Normal University, Jinan, Shandong, China
| | - Yan-Ze Liu
- Acupuncture and Tuina Center, The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hai-Zhu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Shi-Qi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hong-Mei Yang
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Meng-Meng Sun
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Min He
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hai-Peng Huang
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hong-Feng Wang
- Institute of Acupuncture and Massage, Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
12
|
Fenerci C, Setton R, Baracchini G, Snytte J, Spreng RN, Sheldon S. Lifespan differences in hippocampal subregion connectivity patterns during movie watching. Neurobiol Aging 2024; 141:182-193. [PMID: 38968875 DOI: 10.1016/j.neurobiolaging.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/17/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Age-related episodic memory decline is attributed to functional alternations in the hippocampus. Less clear is how aging affects the functional connections of the hippocampus to the rest of the brain during episodic memory processing. We examined fMRI data from the CamCAN dataset, in which a large cohort of participants watched a movie (N = 643; 18-88 years), a proxy for naturalistic episodic memory encoding. We examined connectivity profiles across the lifespan both within the hippocampus (anterior, posterior), and between the hippocampal subregions and cortical networks. Aging was associated with reductions in contralateral (left, right) but not ipsilateral (anterior, posterior) hippocampal subregion connectivity. Aging was primarily associated with increased coupling between the anterior hippocampus and regions affiliated with Control, Dorsal Attention and Default Mode networks, yet decreased coupling between the posterior hippocampus and a selection of these regions. Differences in age-related hippocampal-cortical, but not within-hippocampus circuitry selectively predicted worse memory performance. Our findings comprehensively characterize hippocampal functional topography in relation to cognition in older age, suggesting that shifts in cortico-hippocampal connectivity may be sensitive markers of age-related episodic memory decline.
Collapse
Affiliation(s)
- Can Fenerci
- Department of Psychology, McGill University, Montreal, QC, Canada.
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - Giulia Baracchini
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jamie Snytte
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, QC, Canada; Department of Psychology, Harvard University, Cambridge, MA, USA; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
Massand AB, Rai AR, Blossom V, Pai MM, Jiji PJ, Rai R. Ethanolic extract of Ficus religiosa leaves alleviates aluminum-induced oxidative stress, lipid peroxidation, and neuroinflammation in rat brain. Vet World 2024; 17:2088-2095. [PMID: 39507794 PMCID: PMC11536729 DOI: 10.14202/vetworld.2024.2088-2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/07/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim Aluminum (Al)-induced neurotoxicity is known to play a pivotal role in the development of various neurodegenerative diseases, and this is alleged to occur through neuroinflammation and oxidative stress in the brain. This study aimed to determine the effect of Ficus religiosa (FR) leaf extract on oxidative stress and neuroinflammation induced by Al exposure in the rat brain by estimating malondialdehyde (MDA), interleukin-6 (IL6), and total antioxidant (TAO) levels along with the degree of neurodegeneration in the brain of AlCl3-administered and FR leaf extract-treated rats. Materials and Methods Two- to three-month-old male albino Wistar rats weighing 250-280 g were used in the present study. The animals were randomly divided into seven groups, with 12 rats in each group. The groups were categorized as control, Al-intoxicated, FR treatment groups of two dosages, FR control rats of two dosages, and FR pre-treatment group. Results We observed a substantial increase in the levels of MDA and IL6 along with a decline in the TAO level in Al-intoxicated rats, suggesting increased lipid peroxidation (LPO), neuroinflammation, and oxidative stress, respectively. In the FR-treated animals, MDA as well as IL6 levels was decreased, and TAO was enhanced in addition to improved neuronal architecture, demonstrating the ameliorative effect of FR. Conclusion The present study observed a decline in LPO and neuroinflammation in FR-treated rats, demonstrating the protective effect of FR leaves against Al-induced neurotoxicity. The level of TAO also improved along with improvement in neuronal mass in FR-treated rats, adding to its ameliorative effect. However, further elaborate research is needed to confirm its therapeutic potential against inflammation-driven neurodegenerative diseases.
Collapse
Affiliation(s)
- Amit B. Massand
- Department of Anatomy, Smt. B. K. Shah Medical Institute and Research Centre, Sumandeep Vidhyapeeth, Pipariya, Vadodara, Gujarat, India
| | - Ashwin R. Rai
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vandana Blossom
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mangala M. Pai
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - P. J. Jiji
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajalakshmi Rai
- Department of Anatomy, Kasturba Medical College Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
14
|
Rolls ET, Yan X, Deco G, Zhang Y, Jousmaki V, Feng J. A ventromedial visual cortical 'Where' stream to the human hippocampus for spatial scenes revealed with magnetoencephalography. Commun Biol 2024; 7:1047. [PMID: 39183244 PMCID: PMC11345434 DOI: 10.1038/s42003-024-06719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
The primate including the human hippocampus implicated in episodic memory and navigation represents a spatial view, very different from the place representations in rodents. To understand this system in humans, and the computations performed, the pathway for this spatial view information to reach the hippocampus was analysed in humans. Whole-brain effective connectivity was measured with magnetoencephalography between 30 visual cortical regions and 150 other cortical regions using the HCP-MMP1 atlas in 21 participants while performing a 0-back scene memory task. In a ventromedial visual stream, V1-V4 connect to the ProStriate region where the retrosplenial scene area is located. The ProStriate region has connectivity to ventromedial visual regions VMV1-3 and VVC. These ventromedial regions connect to the medial parahippocampal region PHA1-3, which, with the VMV regions, include the parahippocampal scene area. The medial parahippocampal regions have effective connectivity to the entorhinal cortex, perirhinal cortex, and hippocampus. In contrast, when viewing faces, the effective connectivity was more through a ventrolateral visual cortical stream via the fusiform face cortex to the inferior temporal visual cortex regions TE2p and TE2a. A ventromedial visual cortical 'Where' stream to the hippocampus for spatial scenes was supported by diffusion topography in 171 HCP participants at 7 T.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China.
| | - Xiaoqian Yan
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Passeig Lluís Companys 23, Barcelona, Spain
| | - Yi Zhang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Veikko Jousmaki
- Aalto NeuroImaging, Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Yamakawa H, Fukawa A, Yairi IE, Matsuo Y. Brain-consistent architecture for imagination. Front Syst Neurosci 2024; 18:1302429. [PMID: 39229305 PMCID: PMC11368743 DOI: 10.3389/fnsys.2024.1302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Imagination represents a pivotal capability of human intelligence. To develop human-like artificial intelligence, uncovering the computational architecture pertinent to imaginative capabilities through reverse engineering the brain's computational functions is essential. The existing Structure-Constrained Interface Decomposition (SCID) method, leverages the anatomical structure of the brain to extract computational architecture. However, its efficacy is limited to narrow brain regions, making it unsuitable for realizing the function of imagination, which involves diverse brain areas such as the neocortex, basal ganglia, thalamus, and hippocampus. Objective In this study, we proposed the Function-Oriented SCID method, an advancement over the existing SCID method, comprising four steps designed for reverse engineering broader brain areas. This method was applied to the brain's imaginative capabilities to design a hypothetical computational architecture. The implementation began with defining the human imaginative ability that we aspire to simulate. Subsequently, six critical requirements necessary for actualizing the defined imagination were identified. Constraints were established considering the unique representational capacity and the singularity of the neocortex's modes, a distributed memory structure responsible for executing imaginative functions. In line with these constraints, we developed five distinct functions to fulfill the requirements. We allocated specific components for each function, followed by an architectural proposal aligning each component with a corresponding brain organ. Results In the proposed architecture, the distributed memory component, associated with the neocortex, realizes the representation and execution function; the imaginary zone maker component, associated with the claustrum, accomplishes the dynamic-zone partitioning function; the routing conductor component, linked with the complex of thalamus and basal ganglia, performs the manipulation function; the mode memory component, related to the specific agranular neocortical area executes the mode maintenance function; and the recorder component, affiliated with the hippocampal formation, handles the history management function. Thus, we have provided a fundamental cognitive architecture of the brain that comprehensively covers the brain's imaginative capacities.
Collapse
Affiliation(s)
- Hiroshi Yamakawa
- School of Engineering, The University of Tokyo, Tokyo, Japan
- The Whole Brain Architecture Initiative, Tokyo, Japan
| | - Ayako Fukawa
- The Whole Brain Architecture Initiative, Tokyo, Japan
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Ikuko Eguchi Yairi
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Yutaka Matsuo
- School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Chen L, Abate M, Fredericks M, Guo Y, Tao Z, Zhang X. Age-related differences in the intrinsic connectivity of the hippocampus and ventral temporal lobe in autistic individuals. Front Hum Neurosci 2024; 18:1394706. [PMID: 38938289 PMCID: PMC11208705 DOI: 10.3389/fnhum.2024.1394706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Although memory challenges in autistic individuals have been characterized recently, the functional connectivity of the hippocampus and ventral temporal lobe, two structures important for episodic and semantic memory functions, are poorly understood in autistic individuals. Moreover, age-related differences in the functional connectivity associated with these two memory networks are unrevealed. Methods The current study investigated age-related differences in intrinsic connectivity of the hippocampal and ventral temporal lobe (vTL) memory networks in well-matched ASD (n = 73; age range: 10.23-55.40 years old) and Non-ASD groups (n = 74; age range: 10.46-56.20 years old) from the open dataset ABIDE-I. Both theory-driven ROI-to-ROI approach and exploratory seed-based whole-brain approach were used. Results and discussion Our findings revealed reduced connectivity in ASD compared to Non-ASD peers, as well as an age-related reduction in the connectivity of hippocampal and vTL networks with triple networks, namely, the default mode network (DMN), the central executive network (CEN), and the salience network (SN), potentially underpinning their challenges in memory, language, and social functions. However, we did not observe reliable differences in age-related effects between the ASD and Non-ASD groups. Our study underscores the importance of understanding memory network dysfunctions in ASD across the lifespan to inform educational and clinical practices.
Collapse
Affiliation(s)
- Lang Chen
- Department of Psychology, Santa Clara University, Santa Clara, CA, United States
- Neuroscience Program, Santa Clara University, Santa Clara, CA, United States
| | - Meghan Abate
- Neuroscience Program, Santa Clara University, Santa Clara, CA, United States
| | | | - Yuanchun Guo
- Department of Counseling Psychology, Santa Clara University, Santa Clara, CA, United States
| | - Zhizhen Tao
- Department of Counseling Psychology, Santa Clara University, Santa Clara, CA, United States
| | - Xiuming Zhang
- Department of Psychology, Santa Clara University, Santa Clara, CA, United States
| |
Collapse
|
17
|
Gbyl K, Labanauskas V, Lundsgaard CC, Mathiassen A, Ryszczuk A, Siebner HR, Rostrup E, Madsen K, Videbech P. Electroconvulsive therapy disrupts functional connectivity between hippocampus and posterior default mode network. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110981. [PMID: 38373628 DOI: 10.1016/j.pnpbp.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND The mechanisms underlying memory deficits after electroconvulsive therapy (ECT) remain unclear but altered functional interactions between hippocampus and neocortex may play a role. OBJECTIVES To test whether ECT reduces functional connectivity between hippocampus and posterior regions of the default mode network (DMN) and to examine whether altered hippocampal-neocortical functional connectivity correlates with memory impairment. A secondary aim was to explore if these connectivity changes are present 6 months after ECT. METHODS In-patients with severe depression (n = 35) received bitemporal ECT. Functional connectivity of the hippocampus was probed with resting-state fMRI before the first ECT-session, after the end of ECT, and at a six-month follow-up. Memory was assessed with the Verbal Learning Test - Delayed Recall. Seed-based connectivity analyses established connectivity of four hippocampal seeds, covering the anterior and posterior parts of the right and left hippocampus. RESULTS Compared to baseline, three of four hippocampal seeds became less connected to the core nodes of the posterior DMN in the week after ECT with Cohen's d ranging from -0.9 to -1.1. At the group level, patients showed post-ECT memory impairment, but individual changes in delayed recall were not correlated with the reduction in hippocampus-DMN connectivity. At six-month follow-up, no significant hippocampus-DMN reductions in connectivity were evident relative to pre-ECT, and memory scores had returned to baseline. CONCLUSION ECT leads to a temporary disruption of functional hippocampus-DMN connectivity in patients with severe depression, but the change in connectivity strength is not related to the individual memory impairment.
Collapse
Affiliation(s)
- Krzysztof Gbyl
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Vytautas Labanauskas
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Christoffer Cramer Lundsgaard
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - André Mathiassen
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Adam Ryszczuk
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Hartwig Roman Siebner
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Egill Rostrup
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Neuropsychiatric Schizophrenia Research, Mental Health Center Glostrup, Glostrup, Denmark
| | - Kristoffer Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Poul Videbech
- Center for Neuropsychiatric Depression Research, Mental Health Center Glostrup, Mental Health Services of the Capital Region of Denmark, Copenhagen University Hospital, Glostrup, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
18
|
Montagrin A, Croote DE, Preti MG, Lerman L, Baxter MG, Schiller D. The hippocampus dissociates present from past and future goals. Nat Commun 2024; 15:4815. [PMID: 38844456 PMCID: PMC11156658 DOI: 10.1038/s41467-024-48648-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Our brain adeptly navigates goals across time frames, distinguishing between urgent needs and those of the past or future. The hippocampus is a region known for supporting mental time travel and organizing information along its longitudinal axis, transitioning from detailed posterior representations to generalized anterior ones. This study investigates the role of the hippocampus in distinguishing goals over time: whether the hippocampus encodes time regardless of detail or abstraction, and whether the hippocampus preferentially activates its anterior region for temporally distant goals (past and future) and its posterior region for immediate goals. We use a space-themed experiment with 7T functional MRI on 31 participants to examine how the hippocampus encodes the temporal distance of goals. During a simulated Mars mission, we find that the hippocampus tracks goals solely by temporal proximity. We show that past and future goals activate the left anterior hippocampus, while current goals engage the left posterior hippocampus. This suggests that the hippocampus maps goals using timestamps, extending its long axis system to include temporal goal organization.
Collapse
Affiliation(s)
- Alison Montagrin
- The Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, University of Geneva, Geneva, 1202, Switzerland.
- Swiss Center for Affective Sciences (CISA), University of Geneva, 1202, Geneva, Switzerland.
| | - Denise E Croote
- The Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Maria Giulia Preti
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | | | - Mark G Baxter
- The Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daniela Schiller
- The Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
19
|
Yang Y, Fu S, Jiang G, Xu G, Tian J, Ma X. Functional connectivity changes of the hippocampal subregions in anti-N-methyl-D-aspartate receptor encephalitis. Brain Imaging Behav 2024; 18:686-697. [PMID: 38363500 DOI: 10.1007/s11682-024-00852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/17/2024]
Abstract
The hippocampus plays an important role in the pathophysiological mechanism of Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. Nevertheless, the connection between the resting-state activity of the hippocampal subregions and neuropsychiatric disorders in patients remains unclear. This study aimed to explore the changes in functional connectivity (FC) in the hippocampal subregions of patients with anti-NMDAR encephalitis and its association with clinical symptoms and cognitive performance. Twenty-three patients with anti-NMDAR encephalitis and 23 healthy controls (HC) were recruited. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans and completed clinical cognitive scales. Based on the Brainnetome Atlas, the rostral (anterior) and caudal (posterior) hippocampi of both the left and right hemispheres were selected as regions of interest (ROIs) for FC analysis. First, a one-sample t-test was used to observe the whole-brain connectivity distribution of hippocampal subregions within the patient and HC groups at a threshold of p < 0.05. The two-sample t-test was used to compare the differences in hippocampal ROIs connectivity between groups, followed by a partial correlation analysis between the FC values of brain regions with statistical differences and clinical variables. This study observed that the distribution of whole-brain functional connectivity in the rostral and caudal hippocampi aligned with the connectivity differences between the anterior and posterior hippocampi. Compared to the HC group, the patients showed significantly decreased FC between the bilateral rostral hippocampus and the left inferior orbitofrontal gyrus and between the right rostral hippocampus and the right cerebellum. However, a significant increase in FC was observed between the right rostral hippocampus and left superior temporal gyrus, the left caudal hippocampus and right superior frontal gyrus, and the right caudal hippocampus and left gyrus rectus. Partial correlation analysis showed that FC between the left inferior orbitofrontal gyrus and the right rostral hippocampus was significantly negatively correlated with the California Verbal Learning Test (CVLT) and Brief Visuospatial Memory Test (BVMT) scores. The FC between the right rostral hippocampus and the left superior temporal gyrus was negatively correlated with BVMT scores. FC abnormalities in the hippocampal subregions of patients with anti-NMDAR encephalitis were associated with cognitive impairment, emotional changes, and seizures. These results may help explain the pathophysiological mechanisms and clinical manifestations of anti-NMDAR encephalitis and NMDAR dysfunction-related diseases such as schizophrenia.
Collapse
Affiliation(s)
- Yujie Yang
- The Second School of Clinical Medicine, Southern Medial University, Guangzhou City, Guangdong province, PR China
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China
| | - Shishun Fu
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China
| | - Guihua Jiang
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, No.466 Road Xingang, Guangzhou, 510317, P. R. China
| | - Junzhang Tian
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China.
| | - Xiaofen Ma
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China.
| |
Collapse
|
20
|
Sorooshyari SK. Brain age monotonicity and functional connectivity differences of healthy subjects. PLoS One 2024; 19:e0300720. [PMID: 38814972 PMCID: PMC11139261 DOI: 10.1371/journal.pone.0300720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 06/01/2024] Open
Abstract
Alterations in the brain's connectivity or the interactions among brain regions have been studied with the aid of resting state (rs)fMRI data attained from large numbers of healthy subjects of various demographics. This has been instrumental in providing insight into how a phenotype as fundamental as age affects the brain. Although machine learning (ML) techniques have already been deployed in such studies, novel questions are investigated in this work. We study whether young brains develop properties that progressively resemble those of aged brains, and if the aging dynamics of older brains provide information about the aging trajectory in young subjects. The degree of a prospective monotonic relationship will be quantified, and hypotheses of brain aging trajectories will be tested via ML. Furthermore, the degree of functional connectivity across the age spectrum of three datasets will be compared at a population level and across sexes. The findings scrutinize similarities and differences among the male and female subjects at greater detail than previously performed.
Collapse
Affiliation(s)
- Siamak K. Sorooshyari
- Department of Statistics, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
21
|
Sorooshyari SK. Beyond network connectivity: A classification approach to brain age prediction with resting-state fMRI. Neuroimage 2024; 290:120570. [PMID: 38467344 DOI: 10.1016/j.neuroimage.2024.120570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024] Open
Abstract
The brain is a complex, dynamic organ that shows differences in the same subject at various periods. Understanding how brain activity changes across age as a function of the brain networks has been greatly abetted by fMRI. Canonical analysis consists of determining how alterations in connectivity patterns (CPs) of certain regions are affected. An alternative approach is taken here by not considering connectivity but rather features computed from recordings at the regions of interest (ROIs). Using machine learning (ML) we assess how neural signals are altered by and prospectively predictive of age and sex via a methodology that is novel in drawing upon pairwise classification across six decades of subjects' chronological ages. ML is used to answer the equally important questions of what properties of the computed features are most predictive as well as which brain networks are most affected by aging. It was found that there is decreased differentiation among the neural signals of older subjects that are separated in age by the same number of years as younger subjects. Furthermore, the burstiness of the signals change at different rates between males and females. The findings provide insight into brain aging via an ROI-based analysis, the consideration of several feature groups, and a novel classification-based ML pipeline. There is also a contribution to understanding the effects of data aggregated from different recording centers on the conclusions of fMRI studies.
Collapse
|
22
|
Seoane S, van den Heuvel M, Acebes Á, Janssen N. The subcortical default mode network and Alzheimer's disease: a systematic review and meta-analysis. Brain Commun 2024; 6:fcae128. [PMID: 38665961 PMCID: PMC11043657 DOI: 10.1093/braincomms/fcae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/28/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The default mode network is a central cortical brain network suggested to play a major role in several disorders and to be particularly vulnerable to the neuropathological hallmarks of Alzheimer's disease. Subcortical involvement in the default mode network and its alteration in Alzheimer's disease remains largely unknown. We performed a systematic review, meta-analysis and empirical validation of the subcortical default mode network in healthy adults, combined with a systematic review, meta-analysis and network analysis of the involvement of subcortical default mode areas in Alzheimer's disease. Our results show that, besides the well-known cortical default mode network brain regions, the default mode network consistently includes subcortical regions, namely the thalamus, lobule and vermis IX and right Crus I/II of the cerebellum and the amygdala. Network analysis also suggests the involvement of the caudate nucleus. In Alzheimer's disease, we observed a left-lateralized cluster of decrease in functional connectivity which covered the medial temporal lobe and amygdala and showed overlap with the default mode network in a portion covering parts of the left anterior hippocampus and left amygdala. We also found an increase in functional connectivity in the right anterior insula. These results confirm the consistency of subcortical contributions to the default mode network in healthy adults and highlight the relevance of the subcortical default mode network alteration in Alzheimer's disease.
Collapse
Affiliation(s)
- Sara Seoane
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Tenerife 38200, Spain
| | - Martijn van den Heuvel
- Department of Complex Traits Genetics, Center for Neurogenomics and Cognitive Research (CNCR), Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Section Complex Trait Genetics, Amsterdam Neuroscience, Vrije Universiteit Medical Center, Amsterdam UMC, Amsterdam 1081 HV, The Netherlands
| | - Ángel Acebes
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Department of Basic Medical Sciences, University of La Laguna, Tenerife 38200, Spain
| | - Niels Janssen
- Institute of Biomedical Technologies (ITB), University of La Laguna, Tenerife 38200, Spain
- Instituto Universitario de Neurociencia (IUNE), University of La Laguna, Tenerife 38200, Spain
- Department of Cognitive, Social and Organizational Psychology, University of La Laguna, Tenerife 38200, Spain
| |
Collapse
|
23
|
Rossion B, Jacques C, Jonas J. The anterior fusiform gyrus: The ghost in the cortical face machine. Neurosci Biobehav Rev 2024; 158:105535. [PMID: 38191080 DOI: 10.1016/j.neubiorev.2024.105535] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Face-selective regions in the human ventral occipito-temporal cortex (VOTC) have been defined for decades mainly with functional magnetic resonance imaging. This face-selective VOTC network is traditionally divided in a posterior 'core' system thought to subtend face perception, and regions of the anterior temporal lobe as a semantic memory component of an extended general system. In between these two putative systems lies the anterior fusiform gyrus and surrounding sulci, affected by magnetic susceptibility artifacts. Here we suggest that this methodological gap overlaps with and contributes to a conceptual gap between (visual) perception and semantic memory for faces. Filling this gap with intracerebral recordings and direct electrical stimulation reveals robust face-selectivity in the anterior fusiform gyrus and a crucial role of this region, especially in the right hemisphere, in identity recognition for both familiar and unfamiliar faces. Based on these observations, we propose an integrated theoretical framework for human face (identity) recognition according to which face-selective regions in the anterior fusiform gyrus join the dots between posterior and anterior cortical face memories.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France.
| | | | - Jacques Jonas
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
24
|
Barnett AJ, Nguyen M, Spargo J, Yadav R, Cohn-Sheehy BI, Ranganath C. Hippocampal-cortical interactions during event boundaries support retention of complex narrative events. Neuron 2024; 112:319-330.e7. [PMID: 37944517 DOI: 10.1016/j.neuron.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/31/2023] [Accepted: 10/08/2023] [Indexed: 11/12/2023]
Abstract
According to most memory theories, encoding involves continuous communication between the hippocampus and neocortex, but recent work has shown that key moments at the end of an event, called event boundaries, may be especially critical for memory formation. We sought to determine how communication between the hippocampus and neocortical regions during the encoding of naturalistic events related to subsequent retrieval of those events and whether this was particularly important at event boundaries. Participants encoded and recalled two cartoon movies during fMRI scanning. Higher functional connectivity between the hippocampus and the posterior medial network (PMN) at an event's offset is related to the subsequent successful recall of that event. Furthermore, hippocampal-PMN offset connectivity also predicted the amount of detail retrieved after a 2-day delay. These data demonstrate that the relationship between memory encoding and hippocampal-neocortical interaction is dynamic and biased toward boundaries.
Collapse
Affiliation(s)
| | - Mitchell Nguyen
- University of California, Davis, Center for Neuroscience, Davis, CA, USA
| | - James Spargo
- University of California, Davis, Department of Psychology, Davis, CA, USA
| | - Reesha Yadav
- University of California, Davis, Department of Psychology, Davis, CA, USA
| | | | - Charan Ranganath
- University of California, Davis, Center for Neuroscience, Davis, CA, USA; University of California, Davis, Department of Psychology, Davis, CA, USA
| |
Collapse
|
25
|
Fu Z, Sui J, Iraji A, Liu J, Calhoun V. Cognitive and Psychiatric Relevance of Dynamic Functional Connectivity States in a Large (N>10,000) Children Population. RESEARCH SQUARE 2024:rs.3.rs-3586731. [PMID: 38260417 PMCID: PMC10802706 DOI: 10.21203/rs.3.rs-3586731/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Children's brains dynamically adapt to the stimuli from the internal state and the external environment, allowing for changes in cognitive and mental behavior. In this work, we performed a large-scale analysis of dynamic functional connectivity (DFC) in children aged 9 ~ 11 years, investigating how brain dynamics relate to cognitive performance and mental health at an early age. A hybrid independent component analysis framework was applied to the Adolescent Brain Cognitive Development (ABCD) data containing 10,988 children. We combined a sliding-window approach with k-means clustering to identify five brain states with distinct DFC patterns. Interestingly, the occurrence of a strongly connected state was negatively correlated with cognitive performance and positively correlated with dimensional psychopathology in children. Meanwhile, opposite relationships were observed for a sparsely connected state. The composite cognitive score and the ADHD score were the most significantly correlated with the DFC states. The mediation analysis further showed that attention problems mediated the effect of DFC states on cognitive performance. This investigation unveils the neurological underpinnings of DFC states, which suggests that tracking the transient dynamic connectivity may help to characterize cognitive and mental problems in children and guide people to provide early intervention to buffer adverse influences.
Collapse
Affiliation(s)
- Zening Fu
- Georgia Institute of Technology, Emory University and Georgia State University
| | | | | | | | | |
Collapse
|
26
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. Social cognitive regions of human association cortex are selectively connected to the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570477. [PMID: 38106046 PMCID: PMC10723387 DOI: 10.1101/2023.12.06.570477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Reasoning about someone's thoughts and intentions - i.e., forming a theory of mind - is an important aspect of social cognition that relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by theory of mind processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to regions of the anterior medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between amygdala circuits and a distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Joseph J. Salvo
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
27
|
Angeli PA, DiNicola LM, Saadon-Grosman N, Eldaief MC, Buckner RL. Specialization of the Human Hippocampal Long Axis Revisited. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572264. [PMID: 38187548 PMCID: PMC10769203 DOI: 10.1101/2023.12.19.572264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The hippocampus possesses anatomical differences along its long axis. Here the functional specialization of the human hippocampal long axis was explored using network-anchored precision functional MRI (N = 11) paired with behavioral analyses (N=266). Functional connectivity analyses demonstrated that the anterior hippocampus was preferentially correlated with a cerebral network associated with remembering, while the posterior hippocampus was correlated with a distinct network associated with behavioral salience. Seed regions placed within the hippocampus recapitulated the distinct cerebral networks. Functional characterization using task data within the same intensively sampled individuals discovered a functional double dissociation between the anterior and posterior hippocampal regions. The anterior hippocampal region was sensitive to remembering and imagining the future, specifically tracking the process of scene construction, while the posterior hippocampal region displayed transient responses to targets in an oddball detection task and to transitions between task blocks. These findings suggest specialization along the long axis of the hippocampus with differential responses reflecting the functional properties of the partner cerebral networks.
Collapse
Affiliation(s)
- Peter A Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mark C Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
28
|
Liu J, Chen L, Chang H, Rudoler J, Al-Zughoul AB, Kang JB, Abrams DA, Menon V. Replicable Patterns of Memory Impairments in Children With Autism and Their Links to Hyperconnected Brain Circuits. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:1113-1123. [PMID: 37196984 PMCID: PMC10646152 DOI: 10.1016/j.bpsc.2023.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/07/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Memory impairments have profound implications for social communication and educational outcomes in children with autism spectrum disorder (ASD). However, the precise nature of memory dysfunction in children with ASD and the underlying neural circuit mechanisms remain poorly understood. The default mode network (DMN) is a brain network that is associated with memory and cognitive function, and DMN dysfunction is among the most replicable and robust brain signatures of ASD. METHODS We used a comprehensive battery of standardized episodic memory assessments and functional circuit analyses in 25 8- to 12-year-old children with ASD and 29 matched typically developing control children. RESULTS Memory performance was reduced in children with ASD compared with control children. General and face memory emerged as distinct dimensions of memory difficulties in ASD. Importantly, findings of diminished episodic memory in children with ASD were replicated in 2 independent data sets. Analysis of intrinsic functional circuits associated with the DMN revealed that general and face memory deficits were associated with distinct, hyperconnected circuits: Aberrant hippocampal connectivity predicted diminished general memory while aberrant posterior cingulate cortex connectivity predicted diminished face memory. Notably, aberrant hippocampal-posterior cingulate cortex circuitry was a common feature of diminished general and face memory in ASD. CONCLUSIONS Our results represent a comprehensive appraisal of episodic memory function in children with ASD and identify extensive and replicable patterns of memory reductions in children with ASD that are linked to dysfunction of distinct DMN-related circuits. These findings highlight a role for DMN dysfunction in ASD that extends beyond face memory to general memory function.
Collapse
Affiliation(s)
- Jin Liu
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California.
| | - Lang Chen
- Department of Psychology, Santa Clara University, Santa Clara, California
| | - Hyesang Chang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Jeremy Rudoler
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Ahmad Belal Al-Zughoul
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Julia Boram Kang
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Daniel A Abrams
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California; Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, California; Wu Tsai Stanford Neurosciences Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
29
|
Alahmadi AA, Alotaibi NO, Hakami NY, Almutairi RS, Darwesh AM, Abdeen R, Alghamdi J, Abdulaal OM, Alsharif W, Sultan SR, Kanbayti IH. Gender and cytoarchitecture differences: Functional connectivity of the hippocampal sub-regions. Heliyon 2023; 9:e20389. [PMID: 37780771 PMCID: PMC10539667 DOI: 10.1016/j.heliyon.2023.e20389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 07/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction The hippocampus plays a significant role in learning, memory encoding, and spatial navigation. Typically, the hippocampus is investigated as a whole region of interest. However, recent work has developed fully detailed atlases based on cytoarchitecture properties of brain regions, and the hippocampus has been sub-divided into seven sub-areas that have structural differences in terms of distinct numbers of cells, neurons, and other structural and chemical properties. Moreover, gender differences are of increasing concern in neuroscience research. Several neuroscience studies have found structural and functional variations between the brain regions of females and males, and the hippocampus is one of these regions. Aim The aim of this study to explore whether the cytoarchitecturally distinct sub-regions of the hippocampus have varying patterns of functional connectivity with different networks of the brain and how these functional connections differ in terms of gender differences. Method This study investigated 200 healthy participants using seed-based resting-state functional magnetic resonance imaging (rsfMRI). The primary aim of this study was to explore the resting connectivity and gender distinctions associated with specific sub-regions of the hippocampus and their relationship with major functional brain networks. Results The findings revealed that the majority of the seven hippocampal sub-regions displayed functional connections with key brain networks, and distinct patterns of functional connectivity were observed between the hippocampal sub-regions and various functional networks within the brain. Notably, the default and visual networks exhibited the most consistent functional connections. Additionally, gender-based analysis highlighted evident functional resemblances and disparities, particularly concerning the anterior section of the hippocampus. Conclusion This study highlighted the functional connectivity patterns and involvement of the hippocampal sub-regions in major brain functional networks, indicating that the hippocampus should be investigated as a region of multiple distinct functions and should always be examined as sub-regions of interest. The results also revealed clear gender differences in functional connectivity.
Collapse
Affiliation(s)
- Adnan A.S. Alahmadi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Nada O. Alotaibi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah Y. Hakami
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raghad S. Almutairi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afnan M.F. Darwesh
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rawan Abdeen
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jamaan Alghamdi
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osamah M. Abdulaal
- Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Walaa Alsharif
- Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Madina, Saudi Arabia
| | - Salahaden R. Sultan
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ibrahem H. Kanbayti
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Abstract
Perception and memory are traditionally thought of as separate cognitive functions, supported by distinct brain regions. The canonical perspective is that perceptual processing of visual information is supported by the ventral visual stream, whereas long-term declarative memory is supported by the medial temporal lobe. However, this modular framework cannot account for the increasingly large body of evidence that reveals a role for early visual areas in long-term recognition memory and a role for medial temporal lobe structures in high-level perceptual processing. In this article, we review relevant research conducted in humans, nonhuman primates, and rodents. We conclude that the evidence is largely inconsistent with theoretical proposals that draw sharp functional boundaries between perceptual and memory systems in the brain. Instead, the weight of the empirical findings is best captured by a representational-hierarchical model that emphasizes differences in content, rather than in cognitive processes within the ventral visual stream and medial temporal lobe.
Collapse
Affiliation(s)
- Chris B Martin
- Department of Psychology, Florida State University, Tallahassee, Florida, USA;
| | - Morgan D Barense
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada;
- Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Reznik D, Trampel R, Weiskopf N, Witter MP, Doeller CF. Dissociating distinct cortical networks associated with subregions of the human medial temporal lobe using precision neuroimaging. Neuron 2023; 111:2756-2772.e7. [PMID: 37390820 DOI: 10.1016/j.neuron.2023.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 07/02/2023]
Abstract
Tract-tracing studies in primates indicate that different subregions of the medial temporal lobe (MTL) are connected with multiple brain regions. However, no clear framework defining the distributed anatomy associated with the human MTL exists. This gap in knowledge originates in notoriously low MRI data quality in the anterior human MTL and in group-level blurring of idiosyncratic anatomy between adjacent brain regions, such as entorhinal and perirhinal cortices, and parahippocampal areas TH/TF. Using MRI, we intensively scanned four human individuals and collected whole-brain data with unprecedented MTL signal quality. Following detailed exploration of cortical networks associated with MTL subregions within each individual, we discovered three biologically meaningful networks associated with the entorhinal cortex, perirhinal cortex, and parahippocampal area TH, respectively. Our findings define the anatomical constraints within which human mnemonic functions must operate and are insightful for examining the evolutionary trajectory of the MTL connectivity across species.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway; Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany; Department of Psychology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
32
|
Banks MI, Krause BM, Berger DG, Campbell DI, Boes AD, Bruss JE, Kovach CK, Kawasaki H, Steinschneider M, Nourski KV. Functional geometry of auditory cortical resting state networks derived from intracranial electrophysiology. PLoS Biol 2023; 21:e3002239. [PMID: 37651504 PMCID: PMC10499207 DOI: 10.1371/journal.pbio.3002239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/13/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023] Open
Abstract
Understanding central auditory processing critically depends on defining underlying auditory cortical networks and their relationship to the rest of the brain. We addressed these questions using resting state functional connectivity derived from human intracranial electroencephalography. Mapping recording sites into a low-dimensional space where proximity represents functional similarity revealed a hierarchical organization. At a fine scale, a group of auditory cortical regions excluded several higher-order auditory areas and segregated maximally from the prefrontal cortex. On mesoscale, the proximity of limbic structures to the auditory cortex suggested a limbic stream that parallels the classically described ventral and dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex depended on frequency band, consistent with diverse roles in semantic and cognitive processing. On a macroscale, observed hemispheric asymmetries were not specific for speech and language networks. This approach can be applied to multivariate brain data with respect to development, behavior, and disorders.
Collapse
Affiliation(s)
- Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Bryan M. Krause
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - D. Graham Berger
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Declan I. Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Aaron D. Boes
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Joel E. Bruss
- Department of Neurology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Christopher K. Kovach
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
| | - Mitchell Steinschneider
- Department of Neurology, Albert Einstein College of Medicine, New York, New York, United States of America
- Department of Neuroscience, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Kirill V. Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
33
|
Montagrin A, Croote DE, Preti MG, Lerman L, Baxter MG, Schiller D. Hippocampal timestamp for goals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550892. [PMID: 37546946 PMCID: PMC10402162 DOI: 10.1101/2023.07.27.550892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Our brain must manage multiple goals that differ in their temporal proximity. Some goals require immediate attention, while others have already been accomplished, or will be relevant later in time. Here, we examined how the hippocampus represents the temporal distance to different goals using a novel space-themed paradigm during 7T functional MRI (n=31). The hippocampus has an established role in mental time travel and a system in place to stratify information along its longitudinal axis on the basis of representational granularity. Previous work has documented a functional transformation from fine-grained, detail rich representations in the posterior hippocampus to coarse, gist-like representations in the anterior hippocampus. We tested whether the hippocampus uses this long axis system to dissociate goals based upon their temporal distance from the present. We hypothesized that the hippocampus would distinguish goals relevant for ones' current needs from those that are removed in time along the long axis, with temporally removed past and future goals eliciting increasingly anterior activation. We sent participants on a mission to Mars where they had to track goals that differed in when they needed to be accomplished. We observed a long-axis dissociation, where temporally removed past and future goals activated the left anterior hippocampus and current goals activated the left posterior hippocampus. Altogether, this study demonstrates that the timestamp attached to a goal is a key driver in where the goal is represented in the hippocampus. This work extends the scope of the hippocampus' long axis system to the goal-mapping domain.
Collapse
|
34
|
Elmer S, Schmitt R, Giroud N, Meyer M. The neuroanatomical hallmarks of chronic tinnitus in comorbidity with pure-tone hearing loss. Brain Struct Funct 2023; 228:1511-1534. [PMID: 37349539 PMCID: PMC10335971 DOI: 10.1007/s00429-023-02669-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
Tinnitus is one of the main hearing impairments often associated with pure-tone hearing loss, and typically manifested in the perception of phantom sounds. Nevertheless, tinnitus has traditionally been studied in isolation without necessarily considering auditory ghosting and hearing loss as part of the same syndrome. Hence, in the present neuroanatomical study, we attempted to pave the way toward a better understanding of the tinnitus syndrome, and compared two groups of almost perfectly matched individuals with (TIHL) and without (NTHL) pure-tone tinnitus, but both characterized by pure-tone hearing loss. The two groups were homogenized in terms of sample size, age, gender, handedness, education, and hearing loss. Furthermore, since the assessment of pure-tone hearing thresholds alone is not sufficient to describe the full spectrum of hearing abilities, the two groups were also harmonized for supra-threshold hearing estimates which were collected using temporal compression, frequency selectivity und speech-in-noise tasks. Regions-of-interest (ROI) analyses based on key brain structures identified in previous neuroimaging studies showed that the TIHL group exhibited increased cortical volume (CV) and surface area (CSA) of the right supramarginal gyrus and posterior planum temporale (PT) as well as CSA of the left middle-anterior part of the superior temporal sulcus (STS). The TIHL group also demonstrated larger volumes of the left amygdala and of the left head and body of the hippocampus. Notably, vertex-wise multiple linear regression analyses additionally brought to light that CSA of a specific cluster, which was located in the left middle-anterior part of the STS and overlapped with the one found to be significant in the between-group analyses, was positively associated with tinnitus distress level. Furthermore, distress also positively correlated with CSA of gray matter vertices in the right dorsal prefrontal cortex and the right posterior STS, whereas tinnitus duration was positively associated with CSA and CV of the right angular gyrus (AG) and posterior part of the STS. These results provide new insights into the critical gray matter architecture of the tinnitus syndrome matrix responsible for the emergence, maintenance and distress of auditory phantom sensations.
Collapse
Affiliation(s)
- Stefan Elmer
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
- Competence Center Language & Medicine, University of Zurich, Zurich, Switzerland
| | - Raffael Schmitt
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
| | - Nathalie Giroud
- Department of Computational Linguistics, Computational Neuroscience of Speech & Hearing, University of Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland
- Competence Center Language & Medicine, University of Zurich, Zurich, Switzerland
| | - Martin Meyer
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for Neuroscience Zurich, University and ETH of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
- Cognitive Psychology Unit, Alpen-Adria University, Klagenfurt, Austria
| |
Collapse
|
35
|
Nichols ES, Blumenthal A, Kuenzel E, Skinner JK, Duerden EG. Hippocampus long-axis specialization throughout development: A meta-analysis. Hum Brain Mapp 2023. [PMID: 37209288 DOI: 10.1002/hbm.26340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023] Open
Abstract
The human adult hippocampus can be subdivided into the head, or anterior hippocampus and its body and tail, or posterior hippocampus, and a wealth of functional differences along the longitudinal axis have been reported. One line of literature emphasizes specialization for different aspects of cognition, whereas another emphasizes the unique role of the anterior hippocampus in emotional processing. While some research suggests that functional differences in memory between the anterior and posterior hippocampus appear early in development, it remains unclear whether this is also the case for functional differences in emotion processing. The goal of this meta-analysis was to determine whether the long-axis functional specialization observed in adults is present earlier in development. Using a quantitative meta-analysis, long-axis functional specialization was assessed using the data from 26 functional magnetic resonance imaging studies, which included 39 contrasts and 804 participants ranging in age from 4 to 21 years. Results indicated that emotion was more strongly localized to the anterior hippocampus, with memory being more strongly localized to the posterior hippocampus, demonstrating long-axis specialization with regard to memory and emotion in children similar to that seen in adults. An additional analysis of laterality indicated that while memory was left dominant, emotion was processed bilaterally.
Collapse
Affiliation(s)
- Emily S Nichols
- Faculty of Education, Western University, London, Canada
- Western Institute for Neuroscience, Western University, London, Canada
| | - Anna Blumenthal
- Cervo Brain Research Centre, Université Laval, Quebec, Canada
| | | | | | - Emma G Duerden
- Faculty of Education, Western University, London, Canada
- Western Institute for Neuroscience, Western University, London, Canada
- Pediatrics, Schulich School of Medicine & Dentistry, Western University, London, Canada
| |
Collapse
|
36
|
Gray DT, Khattab S, Meltzer J, McDermott K, Schwyhart R, Sinakevitch I, Härtig W, Barnes CA. Retrosplenial cortex microglia and perineuronal net densities are associated with memory impairment in aged rhesus macaques. Cereb Cortex 2023; 33:4626-4644. [PMID: 36169578 PMCID: PMC10110451 DOI: 10.1093/cercor/bhac366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Synapse loss and altered plasticity are significant contributors to memory loss in aged individuals. Microglia, the innate immune cells of the brain, play critical roles in maintaining synapse function, including through a recently identified role in regulating the brain extracellular matrix. This study sought to determine the relationship between age, microglia, and extracellular matrix structure densities in the macaque retrosplenial cortex. Twenty-nine macaques ranging in age from young adult to aged were behaviorally characterized on 3 distinct memory tasks. Microglia, parvalbumin (PV)-expressing interneurons and extracellular matrix structures, known as perineuronal nets (PNNs), were immuno- and histochemically labeled. Our results indicate that microglia densities increase in the retrosplenial cortex of aged monkeys, while the proportion of PV neurons surrounded by PNNs decreases. Aged monkeys with more microglia had fewer PNN-associated PV neurons and displayed slower learning and poorer performance on an object recognition task. Stepwise regression models using age and the total density of aggrecan, a chondroitin sulfate proteoglycan of PNNs, better predicted memory performance than did age alone. Together, these findings indicate that elevated microglial activity in aged brains negatively impacts cognition in part through mechanisms that alter PNN assembly in memory-associated brain regions.
Collapse
Affiliation(s)
- Daniel T Gray
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Salma Khattab
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Jeri Meltzer
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Kelsey McDermott
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Rachel Schwyhart
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Irina Sinakevitch
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig 04103, Germany
| | - Carol A Barnes
- Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ 85721, United States
- Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
37
|
Yang X, Kumar P, Wang M, Zhao L, Du Y, Zhang BY, Qi S, Sui J, Li T, Ma X. Antidepressant treatment-related brain activity changes in remitted major depressive disorder. Psychiatry Res Neuroimaging 2023; 330:111601. [PMID: 36724678 DOI: 10.1016/j.pscychresns.2023.111601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/21/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Recent evidence has shown that some brain regions are core hubs and play a key role in the treatment of depression. Twenty-five unmedicated patients with major depressive disorder (MDD) were included, and telephone follow-up was performed at 8, 24, and 48 weeks after enrollment. After reaching clinical remission, they were scheduled for a second magnetic resonance imaging scan and clinical evaluation. Thirty-one healthy controls were also investigated. The intrinsic functional connectivity (degree centrality) of each participant was mapped using a computationally efficient approach. Then, functional connectivity of patients was calculated between the identified regions of interest by degree centrality analysis and every voxel. Later, linear regression analysis was used to identify potential variables predictive of an improvement in disease severity. The prominent hubs identified by degree centrality analysis included the cerebellum, inferior temporal gyrus, lingual gyrus, dorsal medial prefrontal cortex (DMPFC), and dorsal lateral prefrontal cortex. We also found that the increased degree centrality of DMPFC was associated with improvement in depressive symptoms. The brain activity associated with antidepressant effects, especially brain connectivity changes in the left DMPFC, can potentially be used to monitor treatment response and predict treatment outcomes.
Collapse
Affiliation(s)
- Xiao Yang
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Poornima Kumar
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, United States of America; Department of Psychiatry, Harvard Medical School, United States of America
| | - Min Wang
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Liansheng Zhao
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yue Du
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Belinda Y Zhang
- School of Nursing and Health Professions, University of San Francisco, CA, United States
| | - Shile Qi
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology, Emory University], 30303, Atlanta, GA, United States
| | - Jing Sui
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, China; Chinese Academy of Sciences Center for Excellence in Brain Science, Institute of Automation, 100190, Beijing, China
| | - Tao Li
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaohong Ma
- Psychiatric Laboratory and Mental Health Center, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
38
|
Coughlan G, Bouffard NR, Golestani A, Thakral PP, Schacter DL, Grady C, Moscovitch M. Transcranial magnetic stimulation to the angular gyrus modulates the temporal dynamics of the hippocampus and entorhinal cortex. Cereb Cortex 2023; 33:3255-3264. [PMID: 36573400 PMCID: PMC10016030 DOI: 10.1093/cercor/bhac273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) delivered to the angular gyrus (AG) affects hippocampal function and associated behaviors (Thakral PP, Madore KP, Kalinowski SE, Schacter DL. Modulation of hippocampal brain networks produces changes in episodic simulation and divergent thinking. 2020a. Proc Natl Acad Sci U S A. 117:12729-12740). Here, we examine if functional magnetic resonance imaging (fMRI)-guided TMS disrupts the gradient organization of temporal signal properties, known as the temporal organization, in the hippocampus (HPC) and entorhinal cortex (ERC). For each of 2 TMS sessions, TMS was applied to either a control site (vertex) or to a left AG target region (N = 18; 14 females). Behavioral measures were then administered, and resting-state scans were acquired. Temporal dynamics were measured by tracking change in the fMRI signal (i) "within" single voxels over time, termed single-voxel autocorrelation and (ii) "between" different voxels over time, termed intervoxel similarity. TMS reduced AG connectivity with the hippocampal target and induced more rapid shifting of activity in single voxels between successive time points, lowering the single-voxel autocorrelation, within the left anteromedial HPC and posteromedial ERC. Intervoxel similarity was only marginally affected by TMS. Our findings suggest that hippocampal-targeted TMS disrupts the functional properties of the target site along the anterior/posterior axis. Further studies should examine the consequences of altering the temporal dynamics of these medial temporal areas to the successful processing of episodic information under task demand.
Collapse
Affiliation(s)
- Gillian Coughlan
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst St, North York, Ontario M6A 2E1, Canada
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 15 Parkman St, Boston, MA 02114, United States
| | - Nichole R Bouffard
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst St, North York, Ontario M6A 2E1, Canada
- Department of Psychology, University of Toronto, 27 King's College Cir, Toronto, Ontario M5S 3G3, Canada
| | - Ali Golestani
- Department of Psychology, University of Toronto, 27 King's College Cir, Toronto, Ontario M5S 3G3, Canada
| | - Preston P Thakral
- Department of Psychology, Harvard University, 33 Kirkland St, Cambridge, MA 02138, United States
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, United States
| | - Daniel L Schacter
- Department of Psychology, Harvard University, 33 Kirkland St, Cambridge, MA 02138, United States
| | - Cheryl Grady
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst St, North York, Ontario M6A 2E1, Canada
- Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Morris Moscovitch
- Rotman Research Institute, Baycrest Health Sciences, 3560 Bathurst St, North York, Ontario M6A 2E1, Canada
- Department of Psychology, University of Toronto, 27 King's College Cir, Toronto, Ontario M5S 3G3, Canada
| |
Collapse
|
39
|
Foster BL, Koslov SR, Aponik-Gremillion L, Monko ME, Hayden BY, Heilbronner SR. A tripartite view of the posterior cingulate cortex. Nat Rev Neurosci 2023; 24:173-189. [PMID: 36456807 PMCID: PMC10041987 DOI: 10.1038/s41583-022-00661-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
The posterior cingulate cortex (PCC) is one of the least understood regions of the cerebral cortex. By contrast, the anterior cingulate cortex has been the subject of intensive investigation in humans and model animal systems, leading to detailed behavioural and computational theoretical accounts of its function. The time is right for similar progress to be made in the PCC given its unique anatomical and physiological properties and demonstrably important contributions to higher cognitive functions and brain diseases. Here, we describe recent progress in understanding the PCC, with a focus on convergent findings across species and techniques that lay a foundation for establishing a formal theoretical account of its functions. Based on this converging evidence, we propose that the broader PCC region contains three major subregions - the dorsal PCC, ventral PCC and retrosplenial cortex - that respectively support the integration of executive, mnemonic and spatial processing systems. This tripartite subregional view reconciles inconsistencies in prior unitary theories of PCC function and offers promising new avenues for progress.
Collapse
Affiliation(s)
- Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Seth R Koslov
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lyndsey Aponik-Gremillion
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.,Department of Health Sciences, Dumke College for Health Professionals, Weber State University, Ogden, UT, USA
| | - Megan E Monko
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Center for Magnetic Resonance Research and Center for Neural Engineering, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
40
|
Desai RH, Tadimeti U, Riccardi N. Proper and common names in the semantic system. Brain Struct Funct 2023; 228:239-254. [PMID: 36372812 PMCID: PMC10171918 DOI: 10.1007/s00429-022-02593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/23/2022] [Indexed: 11/14/2022]
Abstract
Proper names are an important part of language and communication. They are thought to have a special status due to their neuropsychological and psycholinguistic profile. To what extent proper names rely on the same semantic system as common names is not clear. In an fMRI study, we presented the same group of participants with both proper and common names to compare the associated activations. Both person and place names, as well as personally familiar and famous names were used, and compared with words representing concrete and abstract concepts. A whole-brain analysis was followed by a detailed analysis of subdivisions of four regions of interest known to play a central role in the semantic system: angular gyrus, anterior temporal lobe, posterior cingulate complex, and medial temporal lobe. We found that most subdivisions within these regions bilaterally were activated by both proper names and common names. The bilateral perirhinal and right entorhinal cortex showed a response specific to proper names, suggesting an item-specific role in retrieving person and place related information. While activation to person and place names overlapped greatly, place names were differentiated by activating areas associated with spatial memory and navigation. Person names showed greater right hemisphere involvement compared to places, suggesting a wider range of associations. Personally familiar names showed stronger activation bilaterally compared to famous names, indicating representations that are enhanced by autobiographic and episodic details. Both proper and common names are processed in the wider semantic system that contains associative, episodic, and spatial components. Processing of proper names is characterized by a somewhat stronger involvement these components, rather than by a fundamentally different system.
Collapse
Affiliation(s)
- Rutvik H Desai
- Department of Psychology, University of South Carolina, Columbia, SC, 29201, USA.
- Institute for Mind and Brain, University of South Carolina, Columbia, SC, 29201, USA.
| | - Usha Tadimeti
- Department of Psychology, University of South Carolina, Columbia, SC, 29201, USA
| | - Nicholas Riccardi
- Department of Psychology, University of South Carolina, Columbia, SC, 29201, USA
| |
Collapse
|
41
|
Kim T, Shin I, Lee SH. False memory confidence depends on the prefrontal reinstatement of true memory. Neuroimage 2022; 263:119597. [PMID: 36044945 DOI: 10.1016/j.neuroimage.2022.119597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
For confidence of memory, a neural basis such as traces of stored memories should be required. However, because false memories have never been stored, the neural basis for false memory confidence remains unclear. Here we monitored the brain activity in participants while they viewed learned or novel objects, subsequently decided whether each presented object was learned and assessed their confidence levels. We found that when novel objects are presented, false memory confidence significantly depends on the shared representations with learned objects in the prefrontal cortex. However, such a tendency was not found in posterior regions including the visual cortex, which may be involved in the processing of perceptual gist. Furthermore, the confidence-dependent shared representations were not observed when participants correctly answered novel objects as non-learned objects. These results demonstrate that false memory confidence is critically based on the reinstatement of high-level semantic gist of stored memories in the prefrontal cortex.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Inho Shin
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sue-Hyun Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Program of Brain and Cognitive Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
42
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
43
|
Bosak N, Branco P, Kuperman P, Buxbaum C, Cohen RM, Fadel S, Zubeidat R, Hadad R, Lawen A, Saadon‐Grosman N, Sterling M, Granovsky Y, Apkarian AV, Yarnitsky D, Kahn I. Brain Connectivity Predicts Chronic Pain in Acute Mild Traumatic Brain Injury. Ann Neurol 2022; 92:819-833. [PMID: 36082761 PMCID: PMC9826527 DOI: 10.1002/ana.26463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Previous studies have established the role of the cortico-mesolimbic and descending pain modulation systems in chronic pain prediction. Mild traumatic brain injury (mTBI) is an acute pain model where chronic pain is prevalent and complicated for prediction. In this study, we set out to study whether functional connectivity (FC) of the nucleus accumbens (NAc) and the periaqueductal gray matter (PAG) is predictive of pain chronification in early-acute mTBI. METHODS To estimate FC, resting-state functional magnetic resonance imaging (fMRI) of 105 participants with mTBI following a motor vehicle collision was acquired within 72 hours post-accident. Participants were classified according to pain ratings provided at 12-months post-collision into chronic pain (head/neck pain ≥30/100, n = 44) and recovery (n = 61) groups, and their FC maps were compared. RESULTS The chronic pain group exhibited reduced negative FC between NAc and a region within the primary motor cortex corresponding with the expected representation of the area of injury. A complementary pattern was also demonstrated between PAG and the primary somatosensory cortex. PAG and NAc also shared increased FC to the rostral anterior cingulate cortex (rACC) within the recovery group. Brain connectivity further shows high classification accuracy (area under the curve [AUC] = .86) for future chronic pain, when combined with an acute pain intensity report. INTERPRETATION FC features obtained shortly after mTBI predict its transition to long-term chronic pain, and may reflect an underlying interaction of injury-related primary sensorimotor cortical areas with the mesolimbic and pain modulation systems. Our findings indicate a potential predictive biomarker and highlight targets for future early preventive interventions. ANN NEUROL 2022;92:819-833.
Collapse
Affiliation(s)
- Noam Bosak
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael,Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Paulo Branco
- Department of NeuroscienceNorthwestern University Medical SchoolChicagoIL
| | - Pora Kuperman
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Chen Buxbaum
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael,Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Ruth Manor Cohen
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Shiri Fadel
- Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Rabab Zubeidat
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Rafi Hadad
- Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Amir Lawen
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | - Noam Saadon‐Grosman
- Department of Medical Neurobiology, Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - Michele Sterling
- RECOVER Injury Research Centre, NHMRC Centre of Research Excellence in Road Traffic Injury RecoveryThe University of QueenslandBrisbaneAustralia
| | - Yelena Granovsky
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| | | | - David Yarnitsky
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael,Department of NeurologyRambam Health Care CampusHaifaIsrael
| | - Itamar Kahn
- Rappaport Faculty of MedicineTechnion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
44
|
Ikeda N, Yamada S, Yasuda K, Uenishi S, Tamaki A, Ishida T, Tabata M, Tsuji T, Kimoto S, Takahashi S. Structural connectivity between the hippocampus and cortical/subcortical area relates to cognitive impairment in schizophrenia but not in mood disorders. J Neuropsychol 2022. [DOI: 10.1111/jnp.12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/10/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Natsuko Ikeda
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Department of Psychiatry Wakayama Prefectural Mental Health Care Center Wakayama Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Kasumi Yasuda
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Shinya Uenishi
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Department of Psychiatry Hidaka Hospital Gobo Japan
| | - Atsushi Tamaki
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Department of Psychiatry Hidaka Hospital Gobo Japan
| | - Takuya Ishida
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Michiyo Tabata
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Tomikimi Tsuji
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Sohei Kimoto
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Shun Takahashi
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Clinical Research and Education Center Asakayama General Hospital Sakai Japan
- Graduate School of Rehabilitation Science Osaka Metropolitan University Habikino Japan
- Department of Psychiatry Osaka University Graduate School of Medicine Suita Japan
| |
Collapse
|
45
|
Setton R, Mwilambwe-Tshilobo L, Sheldon S, Turner GR, Spreng RN. Hippocampus and temporal pole functional connectivity is associated with age and individual differences in autobiographical memory. Proc Natl Acad Sci U S A 2022; 119:e2203039119. [PMID: 36191210 PMCID: PMC9564102 DOI: 10.1073/pnas.2203039119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Recollection of one's personal past, or autobiographical memory (AM), varies across individuals and across the life span. This manifests in the amount of episodic content recalled during AM, which may reflect differences in associated functional brain networks. We take an individual differences approach to examine resting-state functional connectivity of temporal lobe regions known to coordinate AM content retrieval with the default network (anterior and posterior hippocampus, temporal pole) and test for associations with AM. Multiecho resting-state functional magnetic resonance imaging (fMRI) and autobiographical interviews were collected for 158 younger and 105 older healthy adults. Interviews were scored for internal (episodic) and external (semantic) details. Age group differences in connectivity profiles revealed that older adults had lower connectivity within anterior hippocampus, posterior hippocampus, and temporal pole but greater connectivity with regions across the default network compared with younger adults. This pattern was positively related to posterior hippocampal volumes in older adults, which were smaller than younger adult volumes. Connectivity associations with AM showed two significant patterns. The first dissociated connectivity related to internal vs. external AM across participants. Internal AM was related to anterior hippocampus and temporal pole connectivity with orbitofrontal cortex and connectivity within posterior hippocampus. External AM was related to temporal pole connectivity with regions across the lateral temporal cortex. In the second pattern, younger adults displayed temporal pole connectivity with regions throughout the default network associated with more detailed AMs overall. Our findings provide evidence for discrete ensembles of brain regions that scale with systematic variation in recollective styles across the healthy adult life span.
Collapse
Affiliation(s)
- Roni Setton
- Department of Psychology, Harvard University, Cambridge, MA, 02138
| | - Laetitia Mwilambwe-Tshilobo
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, QC, H3A 1G1, Canada
| | - Gary R. Turner
- Department of Psychology, York University, Toronto, ON, M3J 1P3, Canada
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Psychology, McGill University, Montreal, QC, H3A 1G1, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, H3A 2B4, Canada
- Department of Psychiatry, McGill University, Montreal, QC, H3A 1A1, Canada
- Douglas Mental Health University Institute, Verdun, QC, H4H 1R3, Canada
| |
Collapse
|
46
|
Combining CRISPR-Cas9 and brain imaging to study the link from genes to molecules to networks. Proc Natl Acad Sci U S A 2022; 119:e2122552119. [PMID: 36161926 DOI: 10.1073/pnas.2122552119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Receptors, transporters, and ion channels are important targets for therapy development in neurological diseases, but their mechanistic role in pathogenesis is often poorly understood. Gene editing and in vivo imaging approaches will help to identify the molecular and functional role of these targets and the consequence of their regional dysfunction on the whole-brain level. We combine CRISPR-Cas9 gene editing with in vivo positron emission tomography (PET) and functional MRI (fMRI) to investigate the direct link between genes, molecules, and the brain connectome. The extensive knowledge of the Slc18a2 gene encoding the vesicular monoamine transporter (VMAT2), involved in the storage and release of dopamine, makes it an excellent target for studying the gene network relationships while structurally preserving neuronal integrity and function. We edited the Slc18a2 in the substantia nigra pars compacta of adult rats and used in vivo molecular imaging besides behavioral, histological, and biochemical assessments to characterize the CRISPR-Cas9-mediated VMAT2 knockdown. Simultaneous PET/fMRI was performed to investigate molecular and functional brain alterations. We found that stage-specific adaptations of brain functional connectivity follow the selective impairment of presynaptic dopamine storage and release. Our study reveals that recruiting different brain networks is an early response to the dopaminergic dysfunction preceding neuronal cell loss. Our combinatorial approach is a tool to investigate the impact of specific genes on brain molecular and functional dynamics, which will help to develop tailored therapies for normalizing brain function.
Collapse
|
47
|
Schultz H, Yoo J, Meshi D, Heekeren HR. Category-specific memory encoding in the medial temporal lobe and beyond: the role of reward. Learn Mem 2022; 29:379-389. [PMID: 36180131 PMCID: PMC9536755 DOI: 10.1101/lm.053558.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/28/2022] [Indexed: 12/15/2022]
Abstract
The medial temporal lobe (MTL), including the hippocampus (HC), perirhinal cortex (PRC), and parahippocampal cortex (PHC), is central to memory formation. Reward enhances memory through interplay between the HC and substantia nigra/ventral tegmental area (SNVTA). While the SNVTA also innervates the MTL cortex and amygdala (AMY), their role in reward-enhanced memory is unclear. Prior research suggests category specificity in the MTL cortex, with the PRC and PHC processing object and scene memory, respectively. It is unknown, however, whether reward modulates category-specific memory processes. Furthermore, no study has demonstrated clear category specificity in the MTL for encoding processes contributing to subsequent recognition memory. To address these questions, we had 39 healthy volunteers (27 for all memory-based analyses) undergo functional magnetic resonance imaging while performing an incidental encoding task pairing objects or scenes with high or low reward, followed by a next-day recognition test. Behaviorally, high reward preferably enhanced object memory. Neural activity in the PRC and PHC reflected successful encoding of objects and scenes, respectively. Importantly, AMY encoding effects were selective for high-reward objects, with a similar pattern in the PRC. The SNVTA and HC showed no clear evidence of successful encoding. This behavioral and neural asymmetry may be conveyed through an anterior-temporal memory system, including the AMY and PRC, potentially in interplay with the ventromedial prefrontal cortex.
Collapse
Affiliation(s)
- Heidrun Schultz
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | - Jungsun Yoo
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Cognitive Sciences, University of California at Irvine, Irvine, California 92697, USA
| | - Dar Meshi
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Department of Advertising and Public Relations, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, 14195 Berlin, Germany
- Executive University Board, Universität Hamburg, 20148 Hamburg, Germany
| |
Collapse
|
48
|
Fan X, Guo Q, Zhang X, Fei L, He S, Weng X. Top-down modulation and cortical-AMG/HPC interaction in familiar face processing. Cereb Cortex 2022; 33:4677-4687. [PMID: 36156127 DOI: 10.1093/cercor/bhac371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Humans can accurately recognize familiar faces in only a few hundred milliseconds, but the underlying neural mechanism remains unclear. Here, we recorded intracranial electrophysiological signals from ventral temporal cortex (VTC), superior/middle temporal cortex (STC/MTC), medial parietal cortex (MPC), and amygdala/hippocampus (AMG/HPC) in 20 epilepsy patients while they viewed faces of famous people and strangers as well as common objects. In posterior VTC and MPC, familiarity-sensitive responses emerged significantly later than initial face-selective responses, suggesting that familiarity enhances face representations after they are first being extracted. Moreover, viewing famous faces increased the coupling between cortical areas and AMG/HPC in multiple frequency bands. These findings advance our understanding of the neural basis of familiar face perception by identifying the top-down modulation in local face-selective response and interactions between cortical face areas and AMG/HPC.
Collapse
Affiliation(s)
- Xiaoxu Fan
- Department of Psychology, University of Washington, Seattle, WA, 98105, United States
| | - Qiang Guo
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, 510510, China
| | - Xinxin Zhang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education,Guangzhou, Guangdong, 510898, China
| | - Lingxia Fei
- Epilepsy Center, Guangdong Sanjiu Brain Hospital, Guangzhou, Guangdong, 510510, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuchu Weng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education,Guangzhou, Guangdong, 510898, China
| |
Collapse
|
49
|
Matyi MA, Spielberg JM. The structural brain network topology of episodic memory. PLoS One 2022; 17:e0270592. [PMID: 35749536 PMCID: PMC9232126 DOI: 10.1371/journal.pone.0270592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Episodic memory is supported by a distributed network of brain regions, and this complex network of regions does not operate in isolation. To date, neuroscience research in this area has typically focused on the activation levels in specific regions or pairwise connectivity between such regions. However, research has yet to investigate how the complex interactions of structural brain networks influence episodic memory abilities. We applied graph theory methods to diffusion-based anatomical networks in order to examine the structural architecture of the medial temporal lobe needed to support effective episodic memory functioning. We examined the relationship between performance on tests of verbal and non-verbal episodic memory with node strength, which indexes how well connected a brain region is in the network. Findings mapped onto the Posterior Medial memory system, subserved by the parahippocampal cortex and overlapped with findings of previous studies of episodic memory employing different methodologies. This expands our current understanding by providing independent evidence for the importance of identified regions and suggesting the particular manner in which these regions support episodic memory.
Collapse
Affiliation(s)
- Melanie A. Matyi
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| | - Jeffrey M. Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
50
|
Setton R, Sheldon S, Turner GR, Spreng RN. Temporal pole volume is associated with episodic autobiographical memory in healthy older adults. Hippocampus 2022; 32:373-385. [PMID: 35247210 PMCID: PMC8995350 DOI: 10.1002/hipo.23411] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
Abstract
Recollection of personal past events differs across the lifespan. Older individuals recall fewer episodic details and convey more semantic information than young. Here we examine how gray matter volumes in temporal lobe regions integral to episodic and semantic memory (hippocampus and temporal poles, respectively) are related to age differences in autobiographical recollection. Gray matter volumes were obtained in healthy young (n = 158) and old (n = 105) adults. The temporal pole was demarcated and hippocampus segmented into anterior and posterior regions to test for volume differences between age groups. The Autobiographical Interview was administered to measure episodic and semantic autobiographical memory. Volume associations with episodic and semantic autobiographical memory were then assessed. Brain volumes were smaller for older adults in the posterior hippocampus. Autobiographical memory was less episodic and more semanticized for older versus younger adults. Older adults also showed positive associations between temporal pole volumes and episodic autobiographical recall; in the young, temporal pole volume was positively associated with performance on standard laboratory measures of semantic memory. Exploratory analyses revealed that age-related episodic autobiographical memory associations with anterior hippocampal volumes depended on sex. These findings suggest that age differences in brain structures implicated in episodic and semantic memory may portend reorganization of neural circuits to support autobiographical memory in later life.
Collapse
Affiliation(s)
- Roni Setton
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Signy Sheldon
- Departments of Psychology, McGill University, Montreal, QC, Canada
| | - Gary R. Turner
- Department of Psychology, York University, Toronto, ON, Canada
| | - R. Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Departments of Psychology, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
| |
Collapse
|