1
|
Verdel D, Farr A, Devienne T, Vignais N, Berret B, Bruneau O. Human movement modifications induced by different levels of transparency of an active upper limb exoskeleton. Front Robot AI 2024; 11:1308958. [PMID: 38327825 PMCID: PMC10847271 DOI: 10.3389/frobt.2024.1308958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Active upper limb exoskeletons are a potentially powerful tool for neuromotor rehabilitation. This potential depends on several basic control modes, one of them being transparency. In this control mode, the exoskeleton must follow the human movement without altering it, which theoretically implies null interaction efforts. Reaching high, albeit imperfect, levels of transparency requires both an adequate control method and an in-depth evaluation of the impacts of the exoskeleton on human movement. The present paper introduces such an evaluation for three different "transparent" controllers either based on an identification of the dynamics of the exoskeleton, or on force feedback control or on their combination. Therefore, these controllers are likely to induce clearly different levels of transparency by design. The conducted investigations could allow to better understand how humans adapt to transparent controllers, which are necessarily imperfect. A group of fourteen participants were subjected to these three controllers while performing reaching movements in a parasagittal plane. The subsequent analyses were conducted in terms of interaction efforts, kinematics, electromyographic signals and ergonomic feedback questionnaires. Results showed that, when subjected to less performing transparent controllers, participants strategies tended to induce relatively high interaction efforts, with higher muscle activity, which resulted in a small sensitivity of kinematic metrics. In other words, very different residual interaction efforts do not necessarily induce very different movement kinematics. Such a behavior could be explained by a natural human tendency to expend effort to preserve their preferred kinematics, which should be taken into account in future transparent controllers evaluation.
Collapse
Affiliation(s)
- Dorian Verdel
- Complexité, Innovation, Activités Motrices et Sportives, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- Complexité, Innovation, Activités Motrices et Sportives, Université d’Orléans, Orléans, France
- Laboratoire Universitaire de Recherche en Production Automatisée, Mechanical Engineering Department, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
- Human Robotics Group, Department of Bioengineering, Imperial College of Science, Technology and Medicine, London, United-Kingdom
| | - Anais Farr
- Complexité, Innovation, Activités Motrices et Sportives, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- Complexité, Innovation, Activités Motrices et Sportives, Université d’Orléans, Orléans, France
- ENS Rennes, Bruz, France
| | - Thibault Devienne
- Complexité, Innovation, Activités Motrices et Sportives, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- Complexité, Innovation, Activités Motrices et Sportives, Université d’Orléans, Orléans, France
- Centrale Supelec, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nicolas Vignais
- Complexité, Innovation, Activités Motrices et Sportives, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- Complexité, Innovation, Activités Motrices et Sportives, Université d’Orléans, Orléans, France
| | - Bastien Berret
- Complexité, Innovation, Activités Motrices et Sportives, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- Complexité, Innovation, Activités Motrices et Sportives, Université d’Orléans, Orléans, France
| | - Olivier Bruneau
- Laboratoire Universitaire de Recherche en Production Automatisée, Mechanical Engineering Department, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Verdel D, Bastide S, Geffard F, Bruneau O, Vignais N, Berret B. Reoptimization of single-joint motor patterns to non-Earth gravity torques induced by a robotic exoskeleton. iScience 2023; 26:108350. [PMID: 38026148 PMCID: PMC10665922 DOI: 10.1016/j.isci.2023.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/29/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Gravity is a ubiquitous component of our environment that we have learned to optimally integrate in movement control. Yet, altered gravity conditions arise in numerous applications from space exploration to rehabilitation, thereby pressing the sensorimotor system to adapt. Here, we used a robotic exoskeleton to reproduce the elbow joint-level effects of arbitrary gravity fields ranging from 1g to -1g, passing through Mars- and Moon-like gravities, and tested whether humans can reoptimize their motor patterns accordingly. By comparing the motor patterns of actual arm movements with those predicted by an optimal control model, we show that our participants (N = 61 ) adapted optimally to each gravity-like torque. These findings suggest that the joint-level effects of a large range of gravities can be efficiently apprehended by humans, thus opening new perspectives in arm weight support training in manipulation tasks, whether it be for patients or astronauts.
Collapse
Affiliation(s)
- Dorian Verdel
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Simon Bastide
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | | | - Olivier Bruneau
- LURPA, Mechanical Engineering Department, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Nicolas Vignais
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Bastien Berret
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
3
|
Shamei A, Sóskuthy M, Stavness I, Gick B. Postural adaptation to microgravity underlies fine motor impairment in astronauts' speech. Sci Rep 2023; 13:8231. [PMID: 37217497 DOI: 10.1038/s41598-023-34854-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Understanding the role of anti-gravity behaviour in fine motor control is crucial to achieving a unified theory of motor control. We compare speech from astronauts before and immediately after microgravity exposure to evaluate the role of anti-gravity posture during fine motor skills. Here we show a generalized lowering of vowel space after space travel, which suggests a generalized postural shift of the articulators. Biomechanical modelling of gravitational effects on the vocal tract supports this analysis-the jaw and tongue are pulled down in 1g, but movement trajectories of the tongue are otherwise unaffected. These results demonstrate the role of anti-gravity posture in fine motor behaviour and provide a basis for the unification of motor control models across domains.
Collapse
Affiliation(s)
- Arian Shamei
- University of British Columbia, Vancouver, Canada.
| | | | | | - Bryan Gick
- University of British Columbia, Vancouver, Canada
- Haskins Laboratories, New Haven, CT, USA
| |
Collapse
|
4
|
Belavy DL, Armbrecht G, Albracht K, Brisby H, Falla D, Scheuring R, Sovelius R, Wilke HJ, Rennerfelt K, Martinez-Valdes E, Arvanitidis M, Goell F, Braunstein B, Kaczorowski S, Karner V, Arora NK. Cervical spine and muscle adaptation after spaceflight and relationship to herniation risk: protocol from 'Cervical in Space' trial. BMC Musculoskelet Disord 2022; 23:772. [PMID: 35964076 PMCID: PMC9375326 DOI: 10.1186/s12891-022-05684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Background Astronauts have a higher risk of cervical intervertebral disc herniation. Several mechanisms have been attributed as causative factors for this increased risk. However, most of the previous studies have examined potential causal factors for lumbar intervertebral disc herniation only. Hence, we aim to conduct a study to identify the various changes in the cervical spine that lead to an increased risk of cervical disc herniation after spaceflight. Methods A cohort study with astronauts will be conducted. The data collection will involve four main components: a) Magnetic resonance imaging (MRI); b) cervical 3D kinematics; c) an Integrated Protocol consisting of maximal and submaximal voluntary contractions of the neck muscles, endurance testing of the neck muscles, neck muscle fatigue testing and questionnaires; and d) dual energy X-ray absorptiometry (DXA) examination. Measurements will be conducted at several time points before and after astronauts visit the International Space Station. The main outcomes of interest are adaptations in the cervical discs, muscles and bones. Discussion Astronauts are at higher risk of cervical disc herniation, but contributing factors remain unclear. The results of this study will inform future preventive measures for astronauts and will also contribute to the understanding of intervertebral disc herniation risk in the cervical spine for people on Earth. In addition, we anticipate deeper insight into the aetiology of neck pain with this research project. Trial registration German Clinical Trials Register, DRKS00026777. Registered on 08 October 2021. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05684-0.
Collapse
Affiliation(s)
- Daniel L Belavy
- Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit (University of Applied Sciences), Gesundheitscampus 6-8, 44801, Bochum, Germany.
| | - Gabriele Armbrecht
- Center for Muscle and Bone Research, Charité - University Medicine Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Kirsten Albracht
- Department of Medical Engineering and Technomathematics, Aachen University of Applied Sciences, Aachen, Germany.,Institute of Movement and Neuroscience, German Sport University, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany
| | - Helena Brisby
- Department of Orthopedic Surgery, Sahlgrenska University Hospital, 415 45, Göteborg, Sweden
| | - Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Richard Scheuring
- NASA Johnson Space Center, 2101 NASA Parkway SD4, Houston, TX, 77058, USA
| | - Roope Sovelius
- Centre for Military Medicine, Satakunta Air Command, P.O.Box 761, 33101, Tampere, Finland
| | | | - Kajsa Rennerfelt
- Orthopaedics and Spine Surgery, Sahlgrenska University Hospital, Bruna Stråket 11B, Göteborg, 413 45, Sweden
| | - Eduardo Martinez-Valdes
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Michail Arvanitidis
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Fabian Goell
- Institute of Movement and Neuroscience, German Sport University, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany
| | - Bjoern Braunstein
- Institute of Movement and Neuroscience, German Sport University, Am Sportpark Müngersdorf 6, Cologne, 50933, Germany.,Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Svenja Kaczorowski
- Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit (University of Applied Sciences), Gesundheitscampus 6-8, 44801, Bochum, Germany
| | - Vera Karner
- Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit (University of Applied Sciences), Gesundheitscampus 6-8, 44801, Bochum, Germany
| | - Nitin Kumar Arora
- Department of Applied Health Sciences, Division of Physiotherapy, Hochschule für Gesundheit (University of Applied Sciences), Gesundheitscampus 6-8, 44801, Bochum, Germany
| |
Collapse
|
5
|
Hagio S, Ishihara A, Terada M, Tanabe H, Kibushi B, Higashibata A, Yamada S, Furukawa S, Mukai C, Ishioka N, Kouzaki M. Muscle synergies of multi-directional postural control in astronauts on Earth after a long-term stay in space. J Neurophysiol 2022; 127:1230-1239. [PMID: 35353615 DOI: 10.1152/jn.00232.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Movements of the human biological system have adapted to the physical environment under the 1-g gravitational force on Earth. However, the effects of microgravity in space on the underlying functional neuromuscular control behaviors remain poorly understood. Here, we aimed to elucidate the effects of prolonged exposure to a microgravity environment on the functional coordination of multiple muscle activities. The activities of 16 lower limb muscles of 5 astronauts who stayed in space for at least 3 months were recorded while they maintained multidirectional postural control during bipedal standing. The coordinated activation patterns of groups of muscles, i.e., muscle synergies, were estimated from the muscle activation datasets using a factorization algorithm. The experiments were repeated a total of 5 times for each astronaut, once before and 4 times after spaceflight. The compositions of muscle synergies were altered, with a constant number of synergies, after long-term exposure to microgravity, and the extent of the changes was correlated with the severity of the deficits in postural stability. Furthermore, the muscle synergies extracted 3 months after the return were similar in their activation profile but not in their muscle composition compared with those extracted in the preflight condition. These results suggest that the modularity in the neuromuscular system became reorganized to adapt to the microgravity environment and then possibly reoptimized to the new sensorimotor environment after the astronauts were re-exposed to a gravitational force. It is expected that muscle synergies can be used as physiological markers of the status of astronauts with gravity-dependent change.
Collapse
Affiliation(s)
- Shota Hagio
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.,Unit of Synergetic Studies for Space, Kyoto University, Kyoto, Japan
| | - Akihiko Ishihara
- Laboratory of Cell Biology and Life Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Masahiro Terada
- Unit of Synergetic Studies for Space, Kyoto University, Kyoto, Japan
| | - Hiroko Tanabe
- Institutes of Innovation for Future Society, Nagoya University, Aichi, Japan
| | - Benio Kibushi
- Faculty of Sport Science, Waseda University, Saitama, Japan
| | - Akira Higashibata
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Shin Yamada
- Graduate School of Medicine, Kyorin University, Tokyo, Japan
| | - Satoshi Furukawa
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Chiaki Mukai
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, Ibaraki, Japan
| | - Noriaki Ishioka
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| | - Motoki Kouzaki
- Laboratory of Neurophysiology, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.,Unit of Synergetic Studies for Space, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Poirier G, Papaxanthis C, Mourey F, Lebigre M, Gaveau J. Muscle effort is best minimized by the right-dominant arm in the gravity field. J Neurophysiol 2022; 127:1117-1126. [PMID: 35353617 DOI: 10.1152/jn.00324.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central nervous system (CNS) develops motor strategies that minimize various hidden criteria, such as end-point variance or effort. A large body of literature suggests that the dominant arm is specialized for such open-loop optimization-like processes, whilst the non-dominant arm is specialized for closed-loop postural control. Building on recent results suggesting that the brain plans arm movements that take advantage of gravity effects to minimize muscle effort, the present study tests the hypothesized superiority of the dominant arm motor system for effort minimization. Thirty participants (22.5 ± 2.1 years old; all right-handed) performed vertical arm movements between two targets (40° amplitude), in two directions (upwards and downwards) with their two arms (dominant and non-dominant). We recorded the arm kinematics and electromyographic activities of the anterior and posterior deltoid to compare two motor signatures of the gravity-related optimization process; i.e., directional asymmetries and negative epochs on phasic muscular activity. We found that these motor signatures were still present during movements performed with the non-dominant arm, indicating that the effort-minimization process also occurs for the non-dominant motor system. However, these markers were reduced compared with movements performed with the dominant arm. This difference was especially prominent during downward movements, where the optimization of gravity effects occurs early in the movement. Assuming that the dominant arm is optimal to minimize muscle effort, as demonstrated by previous studies, the present results support the hypothesized superiority of the dominant arm motor system for effort-minimization.
Collapse
Affiliation(s)
- Gabriel Poirier
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Charalambos Papaxanthis
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - France Mourey
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Melanie Lebigre
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Jérémie Gaveau
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| |
Collapse
|
7
|
Gaveau J, Grospretre S, Berret B, Angelaki DE, Papaxanthis C. A cross-species neural integration of gravity for motor optimization. SCIENCE ADVANCES 2021; 7:7/15/eabf7800. [PMID: 33827823 PMCID: PMC8026131 DOI: 10.1126/sciadv.abf7800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Recent kinematic results, combined with model simulations, have provided support for the hypothesis that the human brain shapes motor patterns that use gravity effects to minimize muscle effort. Because many different muscular activation patterns can give rise to the same trajectory, here, we specifically investigate gravity-related movement properties by analyzing muscular activation patterns during single-degree-of-freedom arm movements in various directions. Using a well-known decomposition method of tonic and phasic electromyographic activities, we demonstrate that phasic electromyograms (EMGs) present systematic negative phases. This negativity reveals the optimal motor plan's neural signature, where the motor system harvests the mechanical effects of gravity to accelerate downward and decelerate upward movements, thereby saving muscle effort. We compare experimental findings in humans to monkeys, generalizing the Effort-optimization strategy across species.
Collapse
Affiliation(s)
- Jeremie Gaveau
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sidney Grospretre
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- EA4660-C3S Laboratory-Culture, Sport, Health and Society Univ. Bourgogne Franche-Comté, Besançon, France
| | - Bastien Berret
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
- Institut Universitaire de France (IUF) , Paris, France
| | | | - Charalambos Papaxanthis
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| |
Collapse
|
8
|
Opsomer L, Crevecoeur F, Thonnard JL, McIntyre J, Lefèvre P. Distinct adaptation patterns between grip dynamics and arm kinematics when the body is upside-down. J Neurophysiol 2021; 125:862-874. [PMID: 33656927 DOI: 10.1152/jn.00357.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In humans, practically all movements are learnt and performed in a constant gravitational field. Yet, studies on arm movements and object manipulation in parabolic flight have highlighted very fast sensorimotor adaptations to altered gravity environments. Here, we wondered if the motor adjustments observed in those altered gravity environments could also be observed on Earth in a situation where the body is upside-down. To address this question, we asked participants to perform rhythmic arm movements in two different body postures (right-side-up and upside-down) while holding an object in precision grip. Analyses of grip-load force coordination and of movement kinematics revealed distinct adaptation patterns between grip and arm control. Grip force and load force were tightly synchronized from the first movements performed in upside-down posture, reflecting a malleable allocentric grip control. In contrast, velocity profiles showed a more progressive adaptation to the upside-down posture and reflected an egocentric planning of arm kinematics. In addition to suggesting distinct mechanisms between grip dynamics and arm kinematics for adaptation to novel contexts, these results also suggest the existence of general mechanisms underlying gravity-dependent motor adaptation that can be used for fast sensorimotor coordination across different postures on Earth and, incidentally, across different gravitational conditions in parabolic flights, in human centrifuges, or in Space.NEW & NOTEWORTHY During rhythmic arm movements performed in an upside-down posture, grip control adapted very quickly, but kinematics adaptation was more progressive. Our results suggest that grip control and movement kinematics planning might operate in different reference frames. Moreover, by comparing our results with previous results from parabolic flight studies, we propose that a common mechanism underlies adaptation to unfamiliar body postures and adaptation to altered gravity.
Collapse
Affiliation(s)
- L Opsomer
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - F Crevecoeur
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - J-L Thonnard
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - J McIntyre
- Centre National de la Recherche Scientifique, University of Paris, France.,TECNALIA,Basque Research and Technology Alliance (BRTA), Donostia-San Sebastian, Spain.,Ikerbasque Science Foundation, Bilbao, Spain
| | - P Lefèvre
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium.,Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Swanenburg J, Langenfeld A, Easthope CA, Meier ML, Ullrich O, Schweinhardt P. Microgravity and Hypergravity Induced by Parabolic Flight Differently Affect Lumbar Spinal Stiffness. Front Physiol 2020; 11:562557. [PMID: 32982803 PMCID: PMC7492749 DOI: 10.3389/fphys.2020.562557] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to determine the response of the lumbar spinal motor control in different gravitational conditions. This was accomplished by measuring indicators of lumbar motor control, specifically lumbar spinal stiffness, activity of lumbar extensor and flexor muscles and lumbar curvature, in hypergravity and microgravity during parabolic flights. Three female and five male subjects participated in this study. The mean age was 35.5 years (standard deviation: 8.5 years). Spinal stiffness of the L3 vertebra was measured using impulse response; activity of the erector spinae, multifidi, transversus abdominis, and psoas muscles was recorded using surface electromyography; and lumbar curvature was measured using distance sensors mounted on the back-plate of a full-body harness. An effect of gravity condition on spinal stiffness, activity of all muscles assessed and lumbar curvature (p’s < 0.007) was observed (Friedman tests). Post hoc analysis showed a significant reduction in stiffness during hypergravity (p < 0.001) and an increase in stiffness during microgravity (p < 0.001). Activity in all muscles significantly increased during hypergravity (p’s < 0.001). During microgravity, the multifidi (p < 0.002) and transversus abdominis (p < 0.001) increased significantly in muscle activity while no significant difference was found for the psoas (p = 0.850) and erector spinae muscles (p = 0.813). Lumbar curvature flattened in hypergravity as well as microgravity, albeit in different ways: during hypergravity, the distance to the skin decreased for the upper (p = 0.016) and the lower sensor (p = 0.036). During microgravity, the upper sensor showed a significant increase (p = 0.016), and the lower showed a decrease (p = 0.005) in distance. This study emphasizes the role of spinal motor control adaptations in changing gravity conditions. Both hypergravity and microgravity lead to changes in spinal motor control. The decrease in spinal stiffness during hypergravity is interpreted as a shift of the axial load from the spine to the pelvis and thoracic cage. In microgravity, activity of the multifidi and of the psoas muscles seems to ensure the integrity of the spine. Swiss (BASEC-NR: 2018-00051)/French “EST-III” (Nr-ID-RCB: 2018-A011294-51/Nr-CPP: 18.06.09).
Collapse
Affiliation(s)
- Jaap Swanenburg
- Integrative Spinal Research ISR, Department of Chiropractic Medicine, Balgrist University Hospital, Zurich, Switzerland
| | - Anke Langenfeld
- Integrative Spinal Research ISR, Department of Chiropractic Medicine, Balgrist University Hospital, Zurich, Switzerland
| | | | - Michael L Meier
- Integrative Spinal Research ISR, Department of Chiropractic Medicine, Balgrist University Hospital, Zurich, Switzerland
| | - Oliver Ullrich
- Faculty of Medicine, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Space Medicine, Department of Industrial Engineering, Ernst-Abbe-Hochschule Jena, Jena, Germany.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Petra Schweinhardt
- Integrative Spinal Research ISR, Department of Chiropractic Medicine, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
10
|
Time Course of Sensory Substitution for Gravity Sensing in Visual Vertical Orientation Perception following Complete Vestibular Loss. eNeuro 2020; 7:ENEURO.0021-20.2020. [PMID: 32561572 PMCID: PMC7358335 DOI: 10.1523/eneuro.0021-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/24/2020] [Accepted: 03/30/2020] [Indexed: 01/06/2023] Open
Abstract
Loss of vestibular function causes severe acute symptoms of dizziness and disorientation, yet the brain can adapt and regain near to normal locomotor and orientation function through sensory substitution. Animal studies quantifying functional recovery have yet been limited to reflexive eye movements. Here, we studied the interplay between vestibular and proprioceptive graviception in macaque monkeys trained in an earth-vertical visual orientation (subjective visual vertical; SVV) task and measured the time course of sensory substitution for gravity perception following complete bilateral vestibular loss (BVL). Graviceptive gain, defined as the ratio of perceived versus actual tilt angle, decreased to 20% immediately following labyrinthectomy, and recovered to nearly prelesion levels with a time constant of approximately three weeks of postsurgery testing. We conclude that proprioception accounts for up to 20% of gravity sensing in normal animals, and is re-weighted to substitute completely perceptual graviception after vestibular loss. We show that these results can be accounted for by an optimal sensory fusion model.
Collapse
|
11
|
White O, Gaveau J, Bringoux L, Crevecoeur F. The gravitational imprint on sensorimotor planning and control. J Neurophysiol 2020; 124:4-19. [PMID: 32348686 DOI: 10.1152/jn.00381.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Humans excel at learning complex tasks, and elite performers such as musicians or athletes develop motor skills that defy biomechanical constraints. All actions require the movement of massive bodies. Of particular interest in the process of sensorimotor learning and control is the impact of gravitational forces on the body. Indeed, efficient control and accurate internal representations of the body configuration in space depend on our ability to feel and anticipate the action of gravity. Here we review studies on perception and sensorimotor control in both normal and altered gravity. Behavioral and modeling studies together suggested that the nervous system develops efficient strategies to take advantage of gravitational forces across a wide variety of tasks. However, when the body was exposed to altered gravity, the rate and amount of adaptation exhibited substantial variation from one experiment to another and sometimes led to partial adjustment only. Overall, these results support the hypothesis that the brain uses a multimodal and flexible representation of the effect of gravity on our body and movements. Future work is necessary to better characterize the nature of this internal representation and the extent to which it can adapt to novel contexts.
Collapse
Affiliation(s)
- O White
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| | - J Gaveau
- INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| | - L Bringoux
- Institut des Sciences du Mouvement, CNRS, Aix Marseille Université, Marseille, France
| | - F Crevecoeur
- Institute of Communication and Information Technologies, Electronics and Applied Mathematics (ICTEAM), UCLouvain, Belgium.,Institute of Neuroscience (IoNS), UCLouvain, Belgium
| |
Collapse
|
12
|
Poirier G, Papaxanthis C, Mourey F, Gaveau J. Motor Planning of Vertical Arm Movements in Healthy Older Adults: Does Effort Minimization Persist With Aging? Front Aging Neurosci 2020; 12:37. [PMID: 32161533 PMCID: PMC7052522 DOI: 10.3389/fnagi.2020.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/04/2020] [Indexed: 01/01/2023] Open
Abstract
Several sensorimotor modifications are known to occur with aging, possibly leading to adverse outcomes such as falls. Recently, some of those modifications have been proposed to emerge from motor planning deteriorations. Motor planning of vertical movements is thought to engage an internal model of gravity to anticipate its mechanical effects on the body-limbs and thus to genuinely produce movements that minimize muscle effort. This is supported, amongst other results, by direction-dependent kinematics where relative durations to peak accelerations and peak velocity are shorter for upward than for downward movements. The present study compares the motor planning of fast and slow vertical arm reaching movements between 18 young (24 ± 3 years old) and 17 older adults (70 ± 5 years old). We found that older participants still exhibit strong directional asymmetries (i.e., differences between upward and downward movements), indicating that optimization processes during motor planning persist with healthy aging. However, the size of these differences was increased in older participants, indicating that gravity-related motor planning changes with age. We discuss this increase as the possible result of an overestimation of gravity torque or increased weight of the effort cost in the optimization process. Overall, these results support the hypothesis that feedforward processes and, more precisely, optimal motor planning, remain active with healthy aging.
Collapse
|
13
|
La Scaleia B, Ceccarelli F, Lacquaniti F, Zago M. Visuomotor Interactions and Perceptual Judgments in Virtual Reality Simulating Different Levels of Gravity. Front Bioeng Biotechnol 2020; 8:76. [PMID: 32133351 PMCID: PMC7039824 DOI: 10.3389/fbioe.2020.00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/28/2020] [Indexed: 11/14/2022] Open
Abstract
Virtual reality is used to manipulate sensorimotor interactions in a controlled manner. A critical issue is represented by the extent to which virtual scenarios must conform to physical realism to allow ecological human–machine interactions. Among the physical constraints, Earth gravity is one of the most pervasive and significant for sensorimotor coordination. However, it is still unclear whether visual perception is sensitive to the level of gravity acting on target motion displayed in virtual reality, given the poor visual discrimination of accelerations. To test gravity sensitivity, we asked participants to hit a virtual ball rolling down an incline and falling in air, and to report whether ball motion was perceived as natural or unnatural. We manipulated the gravity level independently for the motion on the incline and for the motion in air. The ball was always visible during rolling, whereas it was visible or occluded during falling before interception. The scene included several cues allowing metric calibration of visual space and motion. We found that the perception rate of natural motion was significantly higher and less variable when ball kinematics was congruent with Earth gravity during both rolling and falling. Moreover, the timing of target interception was accurate only in this condition. Neither naturalness perception nor interception timing depended significantly on whether the target was visible during free-fall. Even when occluded, free-fall under natural gravity was correctly extrapolated from the preceding, visible phase of rolling motion. Naturalness perception depended on motor performance, in addition to the gravity level. In sum, both motor and perceptual responses were guided by an internal model of Earth gravity effects. We suggest that, in order to enhance perceptual sensitivity to physical realism, virtual reality should involve visual backgrounds with metric cues and closed-loop sensorimotor interactions. This suggestion might be especially relevant for the design of rehabilitation protocols.
Collapse
Affiliation(s)
- Barbara La Scaleia
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Francesca Ceccarelli
- Department of Systems Medicine and Centre of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Systems Medicine and Centre of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.,Department of Civil Engineering and Computer Science Engineering, Centre of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
14
|
Fleury L, Prablanc C, Priot AE. Do prism and other adaptation paradigms really measure the same processes? Cortex 2019; 119:480-496. [DOI: 10.1016/j.cortex.2019.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/11/2018] [Accepted: 07/28/2019] [Indexed: 01/06/2023]
|
15
|
Dakin CJ, Rosenberg A. Gravity estimation and verticality perception. HANDBOOK OF CLINICAL NEUROLOGY 2018; 159:43-59. [PMID: 30482332 DOI: 10.1016/b978-0-444-63916-5.00003-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gravity is a defining force that governs the evolution of mechanical forms, shapes and anchors our perception of the environment, and imposes fundamental constraints on our interactions with the world. Within the animal kingdom, humans are relatively unique in having evolved a vertical, bipedal posture. Although a vertical posture confers numerous benefits, it also renders us less stable than quadrupeds, increasing susceptibility to falls. The ability to accurately and precisely estimate our orientation relative to gravity is therefore of utmost importance. Here we review sensory information and computational processes underlying gravity estimation and verticality perception. Central to gravity estimation and verticality perception is multisensory cue combination, which serves to improve the precision of perception and resolve ambiguities in sensory representations by combining information from across the visual, vestibular, and somatosensory systems. We additionally review experimental paradigms for evaluating verticality perception, and discuss how particular disorders affect the perception of upright. Together, the work reviewed here highlights the critical role of multisensory cue combination in gravity estimation, verticality perception, and creating stable gravity-centered representations of our environment.
Collapse
Affiliation(s)
- Christopher J Dakin
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, United States.
| | - Ari Rosenberg
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin - Madison, Madison, WI, United States
| |
Collapse
|
16
|
Macaluso T, Bourdin C, Buloup F, Mille ML, Sainton P, Sarlegna FR, Vercher JL, Bringoux L. Sensorimotor Reorganizations of Arm Kinematics and Postural Strategy for Functional Whole-Body Reaching Movements in Microgravity. Front Physiol 2017; 8:821. [PMID: 29104544 PMCID: PMC5654841 DOI: 10.3389/fphys.2017.00821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/05/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding the impact of weightlessness on human behavior during the forthcoming long-term space missions is of critical importance, especially when considering the efficiency of goal-directed movements in these unusual environments. Several studies provided a large set of evidence that gravity is taken into account during the planning stage of arm reaching movements to optimally anticipate its consequence upon the moving limbs. However, less is known about sensorimotor changes required to face weightless environments when individuals have to perform fast and accurate goal-directed actions with whole-body displacement. We thus aimed at characterizing kinematic features of whole-body reaching movements in microgravity, involving high spatiotemporal constraints of execution, to question whether and how humans are able to maintain the performance of a functional behavior in the standards of normogravity execution. Seven participants were asked to reach as fast and as accurately as possible visual targets while standing during microgravity episodes in parabolic flight. Small and large targets were presented either close or far from the participants (requiring, in the latter case, additional whole-body displacement). Results reported that participants successfully performed the reaching task with general temporal features of movement (e.g., movement speed) close to land observations. However, our analyses also demonstrated substantial kinematic changes related to the temporal structure of focal movement and the postural strategy to successfully perform -constrained- whole-body reaching movements in microgravity. These immediate reorganizations are likely achieved by rapidly taking into account the absence of gravity in motor preparation and execution (presumably from cues about body limbs unweighting). Specifically, when compared to normogravity, the arm deceleration phase substantially increased. Furthermore, greater whole-body forward displacements due to smaller trunk flexions occurred when reaching far targets in microgravity. Remarkably, these changes of focal kinematics and postural strategy appear close to those previously reported when participants performed the same task underwater with neutral buoyancy applied to body limbs. Overall, these novel findings reveal that humans are able to maintain the performance of functional goal-directed whole-body actions in weightlessness by successfully managing spatiotemporal constraints of execution in this unusual environment.
Collapse
Affiliation(s)
| | | | - Frank Buloup
- Aix Marseille Univ, CNRS, ISM, Marseille, France
| | - Marie-Laure Mille
- Aix Marseille Univ, CNRS, ISM, Marseille, France.,UFR STAPS, Université de Toulon, La Garde, France.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | | | | | |
Collapse
|
17
|
Olesh EV, Pollard BS, Gritsenko V. Gravitational and Dynamic Components of Muscle Torque Underlie Tonic and Phasic Muscle Activity during Goal-Directed Reaching. Front Hum Neurosci 2017; 11:474. [PMID: 29018339 PMCID: PMC5623018 DOI: 10.3389/fnhum.2017.00474] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/11/2017] [Indexed: 12/24/2022] Open
Abstract
Human reaching movements require complex muscle activations to produce the forces necessary to move the limb in a controlled manner. How gravity and the complex kinetic properties of the limb contribute to the generation of the muscle activation pattern by the central nervous system (CNS) is a long-standing and controversial question in neuroscience. To tackle this issue, muscle activity is often subdivided into static and phasic components. The former corresponds to posture maintenance and transitions between postures. The latter corresponds to active movement production and the compensation for the kinetic properties of the limb. In the present study, we improved the methodology for this subdivision of muscle activity into static and phasic components by relating them to joint torques. Ten healthy subjects pointed in virtual reality to visual targets arranged to create a standard center-out reaching task in three dimensions. Muscle activity and motion capture data were synchronously collected during the movements. The motion capture data were used to calculate postural and dynamic components of active muscle torques using a dynamic model of the arm with 5 degrees of freedom. Principal Component Analysis (PCA) was then applied to muscle activity and the torque components, separately, to reduce the dimensionality of the data. Muscle activity was also reconstructed from gravitational and dynamic torque components. Results show that the postural and dynamic components of muscle torque represent a significant amount of variance in muscle activity. This method could be used to define static and phasic components of muscle activity using muscle torques.
Collapse
Affiliation(s)
- Erienne V Olesh
- Department of Human Performance, School of Medicine, West Virginia University, Morgantown, WV, United States.,Centers for Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Bradley S Pollard
- Department of Human Performance, School of Medicine, West Virginia University, Morgantown, WV, United States.,Centers for Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Valeriya Gritsenko
- Department of Human Performance, School of Medicine, West Virginia University, Morgantown, WV, United States.,Centers for Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, United States.,Department of Mechanical and Aerospace Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
18
|
Jörges B, López-Moliner J. Gravity as a Strong Prior: Implications for Perception and Action. Front Hum Neurosci 2017; 11:203. [PMID: 28503140 PMCID: PMC5408029 DOI: 10.3389/fnhum.2017.00203] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/07/2017] [Indexed: 11/29/2022] Open
Abstract
In the future, humans are likely to be exposed to environments with altered gravity conditions, be it only visually (Virtual and Augmented Reality), or visually and bodily (space travel). As visually and bodily perceived gravity as well as an interiorized representation of earth gravity are involved in a series of tasks, such as catching, grasping, body orientation estimation and spatial inferences, humans will need to adapt to these new gravity conditions. Performance under earth gravity discrepant conditions has been shown to be relatively poor, and few studies conducted in gravity adaptation are rather discouraging. Especially in VR on earth, conflicts between bodily and visual gravity cues seem to make a full adaptation to visually perceived earth-discrepant gravities nearly impossible, and even in space, when visual and bodily cues are congruent, adaptation is extremely slow. We invoke a Bayesian framework for gravity related perceptual processes, in which earth gravity holds the status of a so called “strong prior”. As other strong priors, the gravity prior has developed through years and years of experience in an earth gravity environment. For this reason, the reliability of this representation is extremely high and overrules any sensory information to its contrary. While also other factors such as the multisensory nature of gravity perception need to be taken into account, we present the strong prior account as a unifying explanation for empirical results in gravity perception and adaptation to earth-discrepant gravities.
Collapse
Affiliation(s)
- Björn Jörges
- Department of Cognition, Development and Psychology of Education, Faculty of Psychology, Universitat de BarcelonaCatalonia, Spain.,Institut de Neurociències, Universitat de BarcelonaCatalonia, Spain
| | - Joan López-Moliner
- Department of Cognition, Development and Psychology of Education, Faculty of Psychology, Universitat de BarcelonaCatalonia, Spain.,Institut de Neurociències, Universitat de BarcelonaCatalonia, Spain
| |
Collapse
|
19
|
Wang W, Dounskaia N. Neural control of arm movements reveals a tendency to use gravity to simplify joint coordination rather than to decrease muscle effort. Neuroscience 2016; 339:418-432. [DOI: 10.1016/j.neuroscience.2016.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/03/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
|
20
|
Gaveau J, Berret B, Angelaki DE, Papaxanthis C. Direction-dependent arm kinematics reveal optimal integration of gravity cues. eLife 2016; 5. [PMID: 27805566 PMCID: PMC5117856 DOI: 10.7554/elife.16394] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022] Open
Abstract
The brain has evolved an internal model of gravity to cope with life in the Earth's gravitational environment. How this internal model benefits the implementation of skilled movement has remained unsolved. One prevailing theory has assumed that this internal model is used to compensate for gravity's mechanical effects on the body, such as to maintain invariant motor trajectories. Alternatively, gravity force could be used purposely and efficiently for the planning and execution of voluntary movements, thereby resulting in direction-depending kinematics. Here we experimentally interrogate these two hypotheses by measuring arm kinematics while varying movement direction in normal and zero-G gravity conditions. By comparing experimental results with model predictions, we show that the brain uses the internal model to implement control policies that take advantage of gravity to minimize movement effort.
Collapse
Affiliation(s)
- Jeremie Gaveau
- Université Bourgogne Franche-Comté, INSERM CAPS UMR 1093, Dijon, France
| | - Bastien Berret
- CIAMS, Université Paris-Sud, Université Paris Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | | |
Collapse
|
21
|
Rousseau C, Papaxanthis C, Gaveau J, Pozzo T, White O. Initial information prior to movement onset influences kinematics of upward arm pointing movements. J Neurophysiol 2016; 116:1673-1683. [PMID: 27486106 DOI: 10.1152/jn.00616.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/11/2016] [Indexed: 11/22/2022] Open
Abstract
To elaborate a motor plan and perform online control in the gravity field, the brain relies on priors and multisensory integration of information. In particular, afferent and efferent inputs related to the initial state are thought to convey sensorimotor information to plan the upcoming action. Yet it is still unclear to what extent these cues impact motor planning. Here we examined the role of initial information on the planning and execution of arm movements. Participants performed upward arm movements around the shoulder at three speeds and in two arm conditions. In the first condition, the arm was outstretched horizontally and required a significant muscular command to compensate for the gravitational shoulder torque before movement onset. In contrast, in the second condition the arm was passively maintained in the same position with a cushioned support and did not require any muscle contraction before movement execution. We quantified differences in motor performance by comparing shoulder velocity profiles. Previous studies showed that asymmetric velocity profiles reflect an optimal integration of the effects of gravity on upward movements. Consistent with this, we found decreased acceleration durations in both arm conditions. However, early differences in kinematic asymmetries and EMG patterns between the two conditions signaled a change of the motor plan. This different behavior carried on through trials when the arm was at rest before movement onset and may reveal a distinct motor strategy chosen in the context of uncertainty. Altogether, we suggest that the information available online must be complemented by accurate initial information.
Collapse
Affiliation(s)
- Célia Rousseau
- Université de Bourgogne Franche-Comté (UBFC), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, Dijon, France; Institut National de Santé et de Recherche Médicale (INSERM U1093), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, Dijon, France; and
| | - Charalambos Papaxanthis
- Université de Bourgogne Franche-Comté (UBFC), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, Dijon, France; Institut National de Santé et de Recherche Médicale (INSERM U1093), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, Dijon, France; and
| | - Jérémie Gaveau
- Université de Bourgogne Franche-Comté (UBFC), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, Dijon, France; Institut National de Santé et de Recherche Médicale (INSERM U1093), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, Dijon, France; and
| | - Thierry Pozzo
- Université de Bourgogne Franche-Comté (UBFC), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, Dijon, France; Institut National de Santé et de Recherche Médicale (INSERM U1093), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, Dijon, France; and Institut Universitaire de France (IUF), Paris, France
| | - Olivier White
- Université de Bourgogne Franche-Comté (UBFC), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, Dijon, France; Institut National de Santé et de Recherche Médicale (INSERM U1093), Cognition Action et Plasticité Sensorimotrice (CAPS) UMR1093, Dijon, France; and
| |
Collapse
|
22
|
Vu VH, Isableu B, Berret B. On the nature of motor planning variables during arm pointing movement: Compositeness and speed dependence. Neuroscience 2016; 328:127-46. [PMID: 27132233 DOI: 10.1016/j.neuroscience.2016.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 12/01/2022]
Abstract
The purpose of this study was to investigate the nature of the variables and rules underlying the planning of unrestrained 3D arm reaching. To identify whether the brain uses kinematic, dynamic and energetic values in an isolated manner or combines them in a flexible way, we examined the effects of speed variations upon the chosen arm trajectories during free arm movements. Within the optimal control framework, we uncovered which (possibly composite) optimality criterion underlays at best the empirical data. Fifteen participants were asked to perform free-endpoint reaching movements from a specific arm configuration at slow, normal and fast speeds. Experimental results revealed that prominent features of observed motor behaviors were significantly speed-dependent, such as the chosen reach endpoint and the final arm posture. Nevertheless, participants exhibited different arm trajectories and various degrees of speed dependence of their reaching behavior. These inter-individual differences were addressed using a numerical inverse optimal control methodology. Simulation results revealed that a weighted combination of kinematic, energetic and dynamic cost functions was required to account for all the critical features of the participants' behavior. Furthermore, no evidence for the existence of a speed-dependent tuning of these weights was found, thereby suggesting subject-specific but speed-invariant weightings of kinematic, energetic and dynamic variables during the motor planning process of free arm movements. This suggested that the inter-individual difference of arm trajectories and speed dependence was not only due to anthropometric singularities but also to critical differences in the composition of the subjective cost function.
Collapse
Affiliation(s)
- Van Hoan Vu
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, 91405 Orsay, France; CIAMS, Université d'Orléans, 45067 Orléans, France.
| | - Brice Isableu
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, 91405 Orsay, France; CIAMS, Université d'Orléans, 45067 Orléans, France
| | - Bastien Berret
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, 91405 Orsay, France; CIAMS, Université d'Orléans, 45067 Orléans, France
| |
Collapse
|
23
|
Macaluso T, Bourdin C, Buloup F, Mille ML, Sainton P, Sarlegna FR, Taillebot V, Vercher JL, Weiss P, Bringoux L. Kinematic features of whole-body reaching movements underwater: Neutral buoyancy effects. Neuroscience 2016; 327:125-35. [PMID: 27095713 DOI: 10.1016/j.neuroscience.2016.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/08/2016] [Accepted: 04/09/2016] [Indexed: 11/25/2022]
Abstract
Astronauts' training is conventionally performed in a pool to reproduce weightlessness by exploiting buoyancy which is supposed to reduce the impact of gravity on the body. However, this training method has not been scientifically validated yet, and requires first to study the effects of underwater exposure on motor behavior. We examined the influence of neutral buoyancy on kinematic features of whole-body reaching underwater and compared them with those produced on land. Eight professional divers were asked to perform arm reaching movements toward visual targets while standing. Targets were presented either close or far from the subjects (requiring in the latter case an additional whole-body displacement). Reaching movements were performed on land or underwater in two different contexts of buoyancy. The divers either wore a diving suit only with neutral buoyancy applied to their center of mass or were additionally equipped with a submersible simulated space suit with neutral buoyancy applied to their body limbs. Results showed that underwater exposure impacted basic movement features, especially movement speed which was reduced. However, movement kinematics also differed according to the way buoyancy was exerted on the whole-body. When neutral buoyancy was applied to the center of mass only, some focal and postural components of whole-body reaching remained close to land observations, notably when considering the relative deceleration duration of arm elevation and concomitant forward trunk bending when reaching the far target. On the contrary, when neutral buoyancy was exerted on body segments, movement kinematics were close to those reported in weightlessness, as reflected by the arm deceleration phase and the whole-body forward displacement when reaching the far target. These results suggest that astronauts could benefit from the application of neutral buoyancy across the whole-body segments to optimize underwater training and acquire specific motor skills which will be used in space.
Collapse
Affiliation(s)
- T Macaluso
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288 Marseille Cedex 09, France
| | - C Bourdin
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288 Marseille Cedex 09, France
| | - F Buloup
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288 Marseille Cedex 09, France
| | - M-L Mille
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288 Marseille Cedex 09, France; Université de Toulon, 83957 La Garde, France; Department of Physical Therapy and Human Movement Sciences, Northwestern University Medical School, Chicago, IL 60611, United States
| | - P Sainton
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288 Marseille Cedex 09, France
| | - F R Sarlegna
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288 Marseille Cedex 09, France
| | - V Taillebot
- COMEX S.A., 36 Bvd des Océans, 13009 Marseille, France
| | - J-L Vercher
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288 Marseille Cedex 09, France
| | - P Weiss
- COMEX S.A., 36 Bvd des Océans, 13009 Marseille, France
| | - L Bringoux
- Aix-Marseille Université, CNRS, ISM UMR 7287, 13288 Marseille Cedex 09, France.
| |
Collapse
|
24
|
Abstract
Sensory systems encode the environment in egocentric (e.g., eye, head, or body) reference frames, creating inherently unstable representations that shift and rotate as we move. However, it is widely speculated that the brain transforms these signals into an allocentric, gravity-centered representation of the world that is stable and independent of the observer's spatial pose. Where and how this representation may be achieved is currently unknown. Here we demonstrate that a subpopulation of neurons in the macaque caudal intraparietal area (CIP) visually encodes object tilt in nonegocentric coordinates defined relative to the gravitational vector. Neuronal responses to the tilt of a visually presented planar surface were measured with the monkey in different spatial orientations (upright and rolled left/right ear down) and then compared. This revealed a continuum of representations in which planar tilt was encoded in a gravity-centered reference frame in approximately one-tenth of the comparisons, intermediate reference frames ranging between gravity-centered and egocentric in approximately two-tenths of the comparisons, and in an egocentric reference frame in less than half of the comparisons. Altogether, almost half of the comparisons revealed a shift in the preferred tilt and/or a gain change consistent with encoding object orientation in nonegocentric coordinates. Through neural network modeling, we further show that a purely gravity-centered representation of object tilt can be achieved directly from the population activity of CIP-like units. These results suggest that area CIP may play a key role in creating a stable, allocentric representation of the environment defined relative to an "earth-vertical" direction.
Collapse
|
25
|
Saradjian AH, Paleressompoulle D, Louber D, Coyle T, Blouin J, Mouchnino L. Do gravity-related sensory information enable the enhancement of cortical proprioceptive inputs when planning a step in microgravity? PLoS One 2014; 9:e108636. [PMID: 25259838 PMCID: PMC4178185 DOI: 10.1371/journal.pone.0108636] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
We recently found that the cortical response to proprioceptive stimulation was greater when participants were planning a step than when they stood still, and that this sensory facilitation was suppressed in microgravity. The aim of the present study was to test whether the absence of gravity-related sensory afferents during movement planning in microgravity prevented the proprioceptive cortical processing to be enhanced. We reestablished a reference frame in microgravity by providing and translating a horizontal support on which the participants were standing and verified whether this procedure restored the proprioceptive facilitation. The slight translation of the base of support (lateral direction), which occurred prior to step initiation, stimulated at least cutaneous and vestibular receptors. The sensitivity to proprioceptive stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following the vibration of the leg muscle. The vibration lasted 1 s and the participants were asked to either initiate a step at the vibration offset or to remain still. We found that the early SEP (90-160 ms) was smaller when the platform was translated than when it remained stationary, revealing the existence of an interference phenomenon (i.e., when proprioceptive stimulation is preceded by the stimulation of different sensory modalities evoked by the platform translation). By contrast, the late SEP (550 ms post proprioceptive stimulation onset) was greater when the translation preceded the vibration compared to a condition without pre-stimulation (i.e., no translation). This suggests that restoring a body reference system which is impaired in microgravity allowed a greater proprioceptive cortical processing. Importantly, however, the late SEP was similarly increased when participants either produced a step or remained still. We propose that the absence of step-induced facilitation of proprioceptive cortical processing results from a decreased weight of proprioception in the absence of balance constraints in microgravity.
Collapse
Affiliation(s)
- Anahid H. Saradjian
- Aix-Marseille Université, CNRS, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
| | - Dany Paleressompoulle
- Fédération de Recherche 3C Comportement-Cerveau-Cognition, CNRS -Aix-Marseille University, Marseille, France
| | - Didier Louber
- Aix-Marseille Université, CNRS, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
| | - Thelma Coyle
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement, UMR 7287, Marseille, France
| | - Jean Blouin
- Aix-Marseille Université, CNRS, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
| | - Laurence Mouchnino
- Aix-Marseille Université, CNRS, Laboratoire Neurosciences Cognitives UMR 7291, Marseille, France
- * E-mail:
| |
Collapse
|
26
|
Crevecoeur F, McIntyre J, Thonnard JL, Lefèvre P. Gravity-dependent estimates of object mass underlie the generation of motor commands for horizontal limb movements. J Neurophysiol 2014; 112:384-92. [PMID: 24790173 DOI: 10.1152/jn.00061.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Moving requires handling gravitational and inertial constraints pulling on our body and on the objects that we manipulate. Although previous work emphasized that the brain uses internal models of each type of mechanical load, little is known about their interaction during motor planning and execution. In this report, we examine visually guided reaching movements in the horizontal plane performed by naive participants exposed to changes in gravity during parabolic flight. This approach allowed us to isolate the effect of gravity because the environmental dynamics along the horizontal axis remained unchanged. We show that gravity has a direct effect on movement kinematics, with faster movements observed after transitions from normal gravity to hypergravity (1.8g), followed by significant movement slowing after the transition from hypergravity to zero gravity. We recorded finger forces applied on an object held in precision grip and found that the coupling between grip force and inertial loads displayed a similar effect, with an increase in grip force modulation gain under hypergravity followed by a reduction of modulation gain after entering the zero-gravity environment. We present a computational model to illustrate that these effects are compatible with the hypothesis that participants partially attribute changes in weight to changes in mass and scale incorrectly their motor commands with changes in gravity. These results highlight a rather direct internal mapping between the force generated during stationary holding against gravity and the estimation of inertial loads that limb and hand motor commands must overcome.
Collapse
Affiliation(s)
- F Crevecoeur
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - J McIntyre
- Centre d'Étude de la Sensorimotricité, Centre National de la Recherche Scientifique, Université Paris Descartes, Paris, France
| | - J-L Thonnard
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Physical and Rehabilitation Medicine Department, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium; and
| | - P Lefèvre
- Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium; Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
Laurens J, Meng H, Angelaki DE. Neural representation of orientation relative to gravity in the macaque cerebellum. Neuron 2014; 80:1508-18. [PMID: 24360549 DOI: 10.1016/j.neuron.2013.09.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2013] [Indexed: 10/25/2022]
Abstract
A fundamental challenge for maintaining spatial orientation and interacting with the world is knowledge of our orientation relative to gravity, i.e., head tilt. Sensing gravity is complicated because of Einstein's equivalence principle, in which gravitational and translational accelerations are physically indistinguishable. Theory has proposed that this ambiguity is solved by tracking head tilt through multisensory integration. Here we identify a group of Purkinje cells in the caudal cerebellar vermis with responses that reflect an estimate of head tilt. These tilt-selective cells are complementary to translation-selective Purkinje cells, such that their population activities sum to the net gravitoinertial acceleration encoded by the otolith organs, as predicted by theory. These findings reflect the remarkable ability of the cerebellum for neural computation and provide quantitative evidence for a neural representation of gravity, whose calculation relies on long-postulated theoretical concepts such as internal models and Bayesian priors.
Collapse
Affiliation(s)
- Jean Laurens
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Hui Meng
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dora E Angelaki
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
28
|
Gaveau J, Berret B, Demougeot L, Fadiga L, Pozzo T, Papaxanthis C. Energy-related optimal control accounts for gravitational load: comparing shoulder, elbow, and wrist rotations. J Neurophysiol 2013; 111:4-16. [PMID: 24133223 DOI: 10.1152/jn.01029.2012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We permanently deal with gravity force. Experimental evidences revealed that moving against gravity strongly differs from moving along the gravity vector. This directional asymmetry has been attributed to an optimal planning process that optimizes gravity force effects to minimize energy. Yet, only few studies have considered the case of vertical movements in the context of optimal control. What kind of cost is better suited to explain kinematic patterns in the vertical plane? Here, we aimed to understand further how the central nervous system (CNS) plans and controls vertical arm movements. Our reasoning was the following: if the CNS optimizes gravity mechanical effects on the moving limbs, kinematic patterns should change according to the direction and the magnitude of the gravity torque being encountered in the motion. Ten subjects carried out single-joint movements, i.e., rotation around the shoulder (whole arm), elbow (forearm), and wrist (hand) joints, in the vertical plane. Joint kinematics were analyzed and compared with various theoretical optimal model predictions (minimum absolute work-jerk, jerk, torque change, and variance). We found both direction-dependent and joint-dependent variations in several kinematic parameters. Notably, directional asymmetries decreased according to a proximodistal gradient. Numerical simulations revealed that our experimental findings could be attributed to an optimal motor planning (minimum absolute work-jerk) that integrates the direction and the magnitude of gravity torque and minimizes the absolute work of forces (energy-related cost) around each joint. Present results support the general idea that the CNS implements optimal solutions according to the dynamic context of the action.
Collapse
|
29
|
Bock O. Basic principles of sensorimotor adaptation to different distortions with different effectors and movement types: a review and synthesis of behavioral findings. Front Hum Neurosci 2013; 7:81. [PMID: 23503204 PMCID: PMC3596763 DOI: 10.3389/fnhum.2013.00081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/28/2013] [Indexed: 11/13/2022] Open
Abstract
This article reviews seemingly conflicting behavioral data about sensorimotor adaptation. Some earlier studies assert that one common mechanism exists for multiple distortions, and others that multiple mechanisms exist for one given distortion. Some but not others report that adaptation is direction-selective. Some submit that adaptation transfers across effectors, and others that a single effector can adapt to multiple distortions. A model is proposed to account for all these findings. It stipulates that adaptive mechanisms respond to multiple distortions, consist of directionally tuned special-purpose modules, can be switched in dependence on contextual cues, and are connected to practiced movement types with a higher weight than to unpracticed ones.
Collapse
Affiliation(s)
- Otmar Bock
- Institute of Physiology and Anatomy, German Sport University Köln, Germany
| |
Collapse
|
30
|
Hudson TE, Landy MS. Measuring adaptation with a sinusoidal perturbation function. J Neurosci Methods 2012; 208:48-58. [PMID: 22565135 DOI: 10.1016/j.jneumeth.2012.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 03/05/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
We examine the possibility that sensory and motor adaptation may be induced via a sinusoidally incremented perturbation. This sinewave adaptation method provides superior data for fitting a parametric model than when using the standard step-function method of perturbation, due to the relative difficulty of fitting a decaying exponential vs. a sinusoid. Using both experimental data and simulations, we demonstrate the difficulty of detecting the presence of motor adaptation using a step-function perturbation, compared to detecting motor adaptation using our sinewave perturbation method.
Collapse
Affiliation(s)
- Todd E Hudson
- Department of Psychology and Center for Neural Science, New York University, New York, NY 10003, United States.
| | | |
Collapse
|
31
|
Abstract
Humans are known to regulate the timing of interceptive actions by modeling, in a simplified way, Newtonian mechanics. Specifically, when intercepting an approaching ball, humans trigger their movements a bit earlier when the target arrives from above than from below. This bias occurs regardless of the ball's true kinetics, and thus appears to reflect an a priori expectation that a downward moving object will accelerate. We postulate that gravito-inertial information is used to tune visuomotor responses to match the target's most likely acceleration. Here we used the peculiar conditions of parabolic flight--where gravity's effects change every 20 s--to test this hypothesis. We found a striking reversal in the timing of interceptive responses performed in weightlessness compared with trials performed on ground, indicating a role of gravity sensing in the tuning of this response. Parallels between these observations and the properties of otolith receptors suggest that vestibular signals themselves might plausibly provide the critical input. Thus, in addition to its acknowledged importance for postural control, gaze stabilization, and spatial navigation, we propose that detecting the direction of gravity's pull plays a role in coordinating quick reactions intended to intercept a fast-moving visual target.
Collapse
|
32
|
Distinct motor plans form and retrieve distinct motor memories for physically identical movements. Curr Biol 2012; 22:432-6. [PMID: 22326201 DOI: 10.1016/j.cub.2012.01.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/01/2011] [Accepted: 01/20/2012] [Indexed: 11/20/2022]
Abstract
We can adapt movements to a novel dynamic environment (e.g., tool use, microgravity, and perturbation) by acquiring an internal model of the dynamics. Although multiple environments can be learned simultaneously if each environment is experienced with different limb movement kinematics, it is controversial as to whether multiple internal models for a particular movement can be learned and flexibly retrieved according to behavioral contexts. Here, we address this issue by using a novel visuomotor task. While participants reached to each of two targets located at a clockwise or counter-clockwise position, a gradually increasing visual rotation was applied in the clockwise or counter-clockwise direction, respectively, to the on-screen cursor representing the unseen hand position. This procedure implicitly led participants to perform physically identical pointing movements irrespective of their intentions (i.e., movement plans) to move their hand toward two distinct visual targets. Surprisingly, if each identical movement was executed according to a distinct movement plan, participants could readily adapt these movements to two opposing force fields simultaneously. The results demonstrate that multiple motor memories can be learned and flexibly retrieved, even for physically identical movements, according to distinct motor plans in a visual space.
Collapse
|
33
|
Abstract
The present study investigates how the CNS deals with the omnipresent force of gravity during arm motor planning. Previous studies have reported direction-dependent kinematic differences in the vertical plane; notably, acceleration duration was greater during a downward than an upward arm movement. Although the analysis of acceleration and deceleration phases has permitted to explore the integration of gravity force, further investigation is necessary to conclude whether feedforward or feedback control processes are at the origin of this incorporation. We considered that a more detailed analysis of the temporal features of vertical arm movements could provide additional information about gravity force integration into the motor planning. Eight subjects performed single joint vertical arm movements (45° rotation around the shoulder joint) in two opposite directions (upwards and downwards) and at three different speeds (slow, natural and fast). We calculated different parameters of hand acceleration profiles: movement duration (MD), duration to peak acceleration (D PA), duration from peak acceleration to peak velocity (D PA-PV), duration from peak velocity to peak deceleration (D PV-PD), duration from peak deceleration to the movement end (D PD-End), acceleration duration (AD), deceleration duration (DD), peak acceleration (PA), peak velocity (PV), and peak deceleration (PD). While movement durations and amplitudes were similar for upward and downward movements, the temporal structure of acceleration profiles differed between the two directions. More specifically, subjects performed upward movements faster than downward movements; these direction-dependent asymmetries appeared early in the movement (i.e., before PA) and lasted until the moment of PD. Additionally, PA and PV were greater for upward than downward movements. Movement speed also changed the temporal structure of acceleration profiles. The effect of speed and direction on the form of acceleration profiles is consistent with the premise that the CNS optimises motor commands with respect to both gravitational and inertial constraints.
Collapse
|