1
|
Jayaraman C, Mummidisetty CK, Jayaraman A, Pfleeger K, Jacobson M, Ceruolo M, Sen-Gupta E, Caccese J, Chen D. Validity and reliability study of a novel surface electromyography sensor using a well-consolidated electromyography system in individuals with cervical spinal cord injury. Spinal Cord 2024; 62:320-327. [PMID: 38575740 PMCID: PMC11199136 DOI: 10.1038/s41393-024-00981-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
STUDY DESIGN Non-interventional, cross-sectional pilot study. OBJECTIVES To establish the validity and reliability of the BioStamp nPoint biosensor (Medidata Solutions, New York, NY, USA [formerly MC10, Inc.]) for measuring electromyography in individuals with cervical spinal cord injury (SCI) by comparing the surface electromyography (sEMG) metrics with the Trigno wireless electromyography system (Delsys, Natick, MA, USA). SETTING Participants were recruited from the Shirley Ryan AbilityLab registry. METHODS Individuals aged 18-70 years with cervical SCI were evaluated with the two biosensors to capture activity on upper-extremity muscles during two study sessions conducted over 2 days (day 1-consent alone; day 2-two data collections in same session). Time and frequency metrics were captured, and signal-to-noise ratio was determined for each muscle group. Test-retest reliability was determined using Pearson's correlation. Validation of the BioStamp nPoint system was based on Bland-Altmann analysis. RESULTS Among the 11 participants, 30.8% had subacute cervical injury at C5-C6; 53.8% were injured within 1 year of the study. Results from the test-retest reliability assessment revealed that most Pearson's correlations between the two sensory measurements were strong (≥0.50). The Bland-Altman analysis found values of the signal-to-noise ratio, frequency, and peak amplitude were within the level of agreement. Signal-to-noise ratios ranged from 7.06 to 22.1. CONCLUSIONS In most instances, the performance of the BioStamp nPoint sensors was moderately to strongly correlated with that of the Trigno sensors in all muscle groups tested. The BioStamp nPoint system is a valid and reliable approach to assess sEMG measures in individuals with cervical SCI. SPONSORSHIP The present study was supported by AbbVie Inc.
Collapse
Affiliation(s)
- Chandrasekaran Jayaraman
- Max Näder Center for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | | | - Arun Jayaraman
- Max Näder Center for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA
| | | | | | - Melissa Ceruolo
- Medidata Solutions, a Dassault Systèmes company, New York, NY, USA
| | - Ellora Sen-Gupta
- Medidata Solutions, a Dassault Systèmes company, New York, NY, USA
| | - James Caccese
- Medidata Solutions, a Dassault Systèmes company, New York, NY, USA
| | - David Chen
- Max Näder Center for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, USA.
| |
Collapse
|
2
|
Therkildsen ER, Kaster P, Nielsen JB. A scoping review on muscle cramps and spasms in upper motor neuron disorder-two sides of the same coin? Front Neurol 2024; 15:1360521. [PMID: 38497037 PMCID: PMC10940373 DOI: 10.3389/fneur.2024.1360521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/20/2024] [Indexed: 03/19/2024] Open
Abstract
Background Muscle cramps are typically regarded as benign muscle overactivity in healthy individuals, whereas spasms are linked to spasticity resulting from central motor lesions. However, their striking similarities made us hypothesize that cramping is an under-recognized and potentially misidentified aspect of spasticity. Methods A systematic search on spasms and cramps in patients with Upper Motor Neuron Disorder (spinal cord injury, cerebral palsy, traumatic brain injury, and stroke) was carried out in Embase/Medline, aiming to describe the definitions, characteristics, and measures of spasms and cramps that are used in the scientific literature. Results The search identified 4,202 studies, of which 253 were reviewed: 217 studies documented only muscle spasms, 7 studies reported only cramps, and 29 encompassed both. Most studies (n = 216) lacked explicit definitions for either term. One-half omitted any description and when present, the clinical resemblance was significant. Various methods quantified cramp/spasm frequency, with self-reports being the most common approach. Conclusion Muscle cramps and spasms probably represent related symptoms with a shared pathophysiological component. When considering future treatment strategies, it is important to recognize that part of the patient's spasms may be attributed to cramps.
Collapse
Affiliation(s)
| | | | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Zipser-Mohammadzada F, Scheffers MF, Conway BA, Halliday DM, Zipser CM, Curt A, Schubert M. Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed. Exp Brain Res 2023; 241:1675-1689. [PMID: 37199775 DOI: 10.1007/s00221-023-06635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Intramuscular high-frequency coherence is increased during visually guided treadmill walking as a consequence of increased supra-spinal input. The influence of walking speed on intramuscular coherence and its inter-trial reproducibility need to be established before adoption as a functional gait assessment tool in clinical settings. Here, fifteen healthy controls performed a normal and a target walking task on a treadmill at various speeds (0.3 m/s, 0.5 m/s, 0.9 m/s, and preferred) during two sessions. Intramuscular coherence was calculated between two surface EMG recordings sites of the Tibialis anterior muscle during the swing phase of walking. The results were averaged across low-frequency (5-14 Hz) and high-frequency (15-55 Hz) bands. The effect of speed, task, and time on mean coherence was assessed using three-way repeated measures ANOVA. Reliability and agreement were calculated with the intra-class correlation coefficient and Bland-Altman method, respectively. Intramuscular coherence during target walking was significantly higher than during normal walking across all walking speeds in the high-frequency band as obtained by the three-way repeated measures ANOVA. Interaction effects between task and speed were found for the low- and high-frequency bands, suggesting that task-dependent differences increase at higher walking speeds. Reliability of intramuscular coherence was moderate to excellent for most normal and target walking tasks in all frequency bands. This study confirms previous reports of increased intramuscular coherence during target walking, while providing first evidence for reproducibility and robustness of this measure as a requirement to investigate supra-spinal input.Trial registration Registry number/ClinicalTrials.gov Identifier: NCT03343132, date of registration 2017/11/17.
Collapse
Affiliation(s)
| | - Marjelle Fredie Scheffers
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- Faculty of Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernard A Conway
- Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - David M Halliday
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Carl Moritz Zipser
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
4
|
Balbinot G, Li G, Gauthier C, Musselman KE, Kalsi-Ryan S, Zariffa J. Functional electrical stimulation therapy for upper extremity rehabilitation following spinal cord injury: a pilot study. Spinal Cord Ser Cases 2023; 9:11. [PMID: 37005407 PMCID: PMC10067812 DOI: 10.1038/s41394-023-00568-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
STUDY DESIGN Pilot study. OBJECTIVES To examine if functional electrical stimulation therapy (FEST) improves neuromuscular factors underlying upper limb function in individuals with SCI. SETTING A tertiary spinal cord rehabilitation center specialized in spinal cord injury care in Canada. METHODS We examined 29 muscles from 4 individuals living with chronic, cervical, and incomplete SCI. The analysis was focused on the changes in muscle activation, as well as on how the treatment could change the ability to control a given muscle or on how multiple muscles would be coordinated during volitional efforts. RESULTS There was evidence of gains in muscle strength, activation, and median frequency after the FEST. Gains in muscle activation indicated the activation of a greater number of motor units and gains in muscle median frequency the involvement of higher threshold, faster motor units. In some individuals, these changes were smaller but accompanied by increased control over muscle contraction, evident in a greater ability to sustain a volitional contraction, reduce the co-contraction of antagonist muscles, and provide cortical drive. CONCLUSIONS FEST increases muscle strength and activation. Enhanced control of muscle contraction, reduced co-contraction of antagonist muscles, and a greater presence of cortical drive were some of the findings supporting the effects of FEST at the sensory-motor integration level.
Collapse
Affiliation(s)
- Gustavo Balbinot
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.
| | - Guijin Li
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Cindy Gauthier
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Kristin E Musselman
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - José Zariffa
- KITE Research Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Konieczny M, Domaszewski P, Skorupska E, Borysiuk Z, Słomka KJ. Age-Related Differences in Intermuscular Coherence EMG-EMG of Ankle Joint Antagonist Muscle Activity during Maximal Leaning. SENSORS (BASEL, SWITZERLAND) 2022; 22:7527. [PMID: 36236626 PMCID: PMC9573255 DOI: 10.3390/s22197527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Intermuscular synchronization is one of the fundamental aspects of maintaining a stable posture and is of great importance in the aging process. This study aimed to assess muscle synchronization and postural stabilizer asymmetry during quiet standing and the limits of stability using wavelet analysis. Intermuscular synchrony and antagonistic sEMG-sEMG (surface electromyography) coherence asymmetry were evaluated in the tibialis anterior and soleus muscles. METHODS The study involved 20 elderly (aged 65 ± 3.6) and 20 young (aged 21 ± 1.3) subjects. The task was to perform a maximum forward bend in a standing position. The prone test was divided into three phases: quiet standing (10 s), dynamic learning, and maintenance of maximum leaning (20 s). Wavelet analysis of coherence was performed in the delta and beta bands. RESULTS Young subjects modulated interface coherences to a greater extent in the beta band. Analysis of postural stability during standing tasks showed that only the parameter R2b (the distance between the maximal and minimal position central of pressure), as an indicator for assessing the practical limits of stability, was found to be significantly associated with differences in aging. CONCLUSION The results showed differences in the beta and delta band oscillations between young and older subjects in a postural task involving standing quietly and leaning forward.
Collapse
Affiliation(s)
- Mariusz Konieczny
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-068 Opole, Poland
| | - Przemysław Domaszewski
- Department of Health Sciences, Institute of Health Sciences, University of Opole, 45-060 Opole, Poland
| | - Elżbieta Skorupska
- Department of Physiotherapy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Zbigniew Borysiuk
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-068 Opole, Poland
| | - Kajetan J. Słomka
- Institute of Sport Sciences, Academy of Physical Education, 40-065 Katowice, Poland
| |
Collapse
|
6
|
Liang T, Hong L, Xiao J, Wei L, Liu X, Wang H, Dong B, Liu X. Directed network analysis reveals changes in cortical and muscular connectivity caused by different standing balance tasks. J Neural Eng 2022; 19. [PMID: 35767971 DOI: 10.1088/1741-2552/ac7d0c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/29/2022] [Indexed: 11/12/2022]
Abstract
Objective.Standing balance forms the basis of daily activities that require the integration of multi-sensory information and coordination of multi-muscle activation. Previous studies have confirmed that the cortex is directly involved in balance control, but little is known about the neural mechanisms of cortical integration and muscle coordination in maintaining standing balance.Approach.We used a direct directed transfer function (dDTF) to analyze the changes in the cortex and muscle connections of healthy subjects (15 subjects: 13 male and 2 female) corresponding to different standing balance tasks.Main results.The results show that the topology of the EEG brain network and muscle network changes significantly as the difficulty of the balancing tasks increases. For muscle networks, the connection analysis shows that the connection of antagonistic muscle pairs plays a major role in the task. For EEG brain networks, graph theory-based analysis shows that the clustering coefficient increases significantly, and the characteristic path length decreases significantly with increasing task difficulty. We also found that cortex-to-muscle connections increased with the difficulty of the task and were significantly stronger than the muscle-to-cortex connections.Significance.These results show that changes in the difficulty of balancing tasks alter EEG brain networks and muscle networks, and an analysis based on the directed network can provide rich information for exploring the neural mechanisms of balance control.
Collapse
Affiliation(s)
- Tie Liang
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding 071002, People's Republic of China.,Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Lei Hong
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Jinzhuang Xiao
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Lixin Wei
- Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Xiaoguang Liu
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| | - Hongrui Wang
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding 071002, People's Republic of China.,Institute of Electric Engineering, Yanshan University, Qinhuangdao, Hebei 066004, People's Republic of China
| | - Bin Dong
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding 071002, People's Republic of China.,Development Planning Office, Affiliated Hospital of Hebei University, Baoding 071002, People's Republic of China
| | - Xiuling Liu
- Key Laboratory of Digital Medical Engineering of Hebei Province, Hebei University, Baoding 071002, People's Republic of China
| |
Collapse
|
7
|
Surface EMG in Subacute and Chronic Care after Traumatic Spinal Cord Injuries. TRAUMA CARE 2022. [DOI: 10.3390/traumacare2020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Traumatic spinal cord injury (SCI) is a devastating condition commonly originating from motor vehicle accidents or falls. Trauma care after SCI is challenging; after decompression surgery and spine stabilization, the first step is to assess the location and severity of the traumatic lesion. For this, clinical outcome measures are used to quantify the residual sensation and volitional control of muscles below the level of injury. These clinical assessments are important for decision-making, including the prediction of the recovery potential of individuals after the SCI. In clinical care, this quantification is usually performed using sensation and motor scores, a semi-quantitative measurement, alongside the binary classification of the sacral sparing (yes/no). Objective: In this perspective article, I review the use of surface EMG (sEMG) as a quantitative outcome measurement in subacute and chronic trauma care after SCI. Methods: Here, I revisit the main findings of two comprehensive scoping reviews recently published by our team on this topic. I offer a perspective on the combined findings of these scoping reviews, which integrate the changes in sEMG with SCI and the use of sEMG in neurorehabilitation after SCI. Results: sEMG provides a complimentary assessment to quantify the residual control of muscles with great sensitivity and detail compared to the traditional clinical assessments. Our scoping reviews unveiled the ability of the sEMG assessment to detect discomplete lesions (muscles with absent motor scores but present sEMG). Moreover, sEMG is able to measure the spontaneous activity of motor units at rest, and during passive maneuvers, the evoked responses with sensory or motor stimulation, and the integrity of the spinal cord and descending tracts with motor evoked potentials. This greatly complements the diagnostics of the SCI in the subacute phase of trauma care and deepens our understanding of neurorehabilitation strategies during the chronic phase of the traumatic injury. Conclusions: sEMG offers important insights into the neurophysiological factors underlying sensorimotor impairment and recovery after SCIs. Although several qualitative or semi-quantitative outcome measures determine the level of injury and the natural recovery after SCIs, using quantitative measures such as sEMG is promising. Nonetheless, there are still several barriers limiting the use of sEMG in the clinical environment and a need to advance high-density sEMG technology.
Collapse
|
8
|
Chen M, Lu Z, Zhou P. A Dilemma for Coherence Calculation: Should Preprocessing Filters Be Applied? Front Neurosci 2022; 16:838627. [PMID: 35221909 PMCID: PMC8866558 DOI: 10.3389/fnins.2022.838627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
|
9
|
Błaszczyszyn M, Borysiuk Z, Piechota K, Kręcisz K, Zmarzły D. Wavelet coherence as a measure of trunk stabilizer muscle activation in wheelchair fencers. BMC Sports Sci Med Rehabil 2021; 13:140. [PMID: 34717749 PMCID: PMC8557511 DOI: 10.1186/s13102-021-00369-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Intermuscular synchronization constitutes one of the key aspects of effective sport performance and activities of daily living. The aim of the study was to assess the synchronization of trunk stabilizer muscles in wheelchair fencers with the use of wavelet analysis. METHODS Intermuscular synchronization and antagonistic EMG-EMG coherence were evaluated in the pairs of the right and the left latissimus dorsi/external oblique abdominal (LD/EOA) muscles. The study group consisted of 16 wheelchair fencers, members of the Polish Paralympic Team, divided into two categories of disability (A and B). Data analysis was carried out in three stages: (1) muscle activation recording using sEMG; (2) wavelet coherence analysis; and (3) coherence density analysis. RESULTS In the Paralympic wheelchair fencers, regardless of their disability category, the muscles were activated at low frequency levels: 8-20 Hz for category A fencers, and 5-15 Hz for category B fencers. CONCLUSIONS The results demonstrated a clear activity of the trunk muscles in the wheelchair fencers, including those with spinal cord injury, which can be explained as an outcome of their intense training. EMG signal processing application have great potential for performance improvement and diagnosis of wheelchair athletes.
Collapse
Affiliation(s)
- Monika Błaszczyszyn
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland.
| | - Zbigniew Borysiuk
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland
| | - Katarzyna Piechota
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland
| | - Krzysztof Kręcisz
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland
| | - Dariusz Zmarzły
- Faculty of Electrical Engineering, Automatics and Computer Science, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland
| |
Collapse
|
10
|
Balbinot G, Li G, Wiest MJ, Pakosh M, Furlan JC, Kalsi-Ryan S, Zariffa J. Properties of the surface electromyogram following traumatic spinal cord injury: a scoping review. J Neuroeng Rehabil 2021; 18:105. [PMID: 34187509 PMCID: PMC8244234 DOI: 10.1186/s12984-021-00888-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/27/2021] [Indexed: 12/23/2022] Open
Abstract
Traumatic spinal cord injury (SCI) disrupts spinal and supraspinal pathways, and this process is reflected in changes in surface electromyography (sEMG). sEMG is an informative complement to current clinical testing and can capture the residual motor command in great detail-including in muscles below the level of injury with seemingly absent motor activities. In this comprehensive review, we sought to describe how the sEMG properties are changed after SCI. We conducted a systematic literature search followed by a narrative review focusing on sEMG analysis techniques and signal properties post-SCI. We found that early reports were mostly focused on the qualitative analysis of sEMG patterns and evolved to semi-quantitative scores and a more detailed amplitude-based quantification. Nonetheless, recent studies are still constrained to an amplitude-based analysis of the sEMG, and there are opportunities to more broadly characterize the time- and frequency-domain properties of the signal as well as to take fuller advantage of high-density EMG techniques. We recommend the incorporation of a broader range of signal properties into the neurophysiological assessment post-SCI and the development of a greater understanding of the relation between these sEMG properties and underlying physiology. Enhanced sEMG analysis could contribute to a more complete description of the effects of SCI on upper and lower motor neuron function and their interactions, and also assist in understanding the mechanisms of change following neuromodulation or exercise therapy.
Collapse
Affiliation(s)
- Gustavo Balbinot
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada.
| | - Guijin Li
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Matheus Joner Wiest
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
| | - Maureen Pakosh
- Library & Information Services, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
| | - Julio Cesar Furlan
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Canada
- Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Sukhvinder Kalsi-Ryan
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
- Department of Physical Therapy, University of Toronto, Toronto, Canada
| | - Jose Zariffa
- KITE-Toronto Rehabilitation Institute, University Health Network, Toronto, ON, M5G 2A2, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Bakker LBM, Nandi T, Lamoth CJC, Hortobágyi T. Task specificity and neural adaptations after balance learning in young adults. Hum Mov Sci 2021; 78:102833. [PMID: 34175684 DOI: 10.1016/j.humov.2021.102833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Lisanne B M Bakker
- University of Groningen, University Medical Center Groningen, the Netherlands,.
| | - Tulika Nandi
- Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Claudine J C Lamoth
- University of Groningen, University Medical Center Groningen, the Netherlands
| | - Tibor Hortobágyi
- University of Groningen, University Medical Center Groningen, the Netherlands,; Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, Pécs, Hungary; Somogy County Kaposi Mór Teaching Hospital, Kaposvár, Hungary
| |
Collapse
|
12
|
Zhang Y, Al Mamun A, Yuan Y, Lu Q, Xiong J, Yang S, Wu C, Wu Y, Wang J. Acute spinal cord injury: Pathophysiology and pharmacological intervention (Review). Mol Med Rep 2021; 23:417. [PMID: 33846780 PMCID: PMC8025476 DOI: 10.3892/mmr.2021.12056] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most debilitating of all the traumatic conditions that afflict individuals. For a number of years, extensive studies have been conducted to clarify the molecular mechanisms of SCI. Experimental and clinical studies have indicated that two phases, primary damage and secondary damage, are involved in SCI. The initial mechanical damage is caused by local impairment of the spinal cord. In addition, the fundamental mechanisms are associated with hyperflexion, hyperextension, axial loading and rotation. By contrast, secondary injury mechanisms are led by systemic and cellular factors, which may also be initiated by the primary injury. Although significant advances in supportive care have improved clinical outcomes in recent years, a number of studies continue to explore specific pharmacological therapies to minimize SCI. The present review summarized some important pathophysiologic mechanisms that are involved in SCI and focused on several pharmacological and non‑pharmacological therapies, which have either been previously investigated or have a potential in the management of this debilitating injury in the near future.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Abdullah Al Mamun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yuan Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Qi Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jun Xiong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Shulin Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P.R. China
| | - Chengbiao Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
13
|
Walker S. Evidence of resistance training-induced neural adaptation in older adults. Exp Gerontol 2021; 151:111408. [PMID: 34022275 DOI: 10.1016/j.exger.2021.111408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
The deleterious effects of aging on force production are observable from the age of 40 upwards, depending on the measure. Neural mechanisms contributing to maximum force production and rate of force development have been suggested as descending drive from supraspinal centers, spinal motoneuron excitability, and corticospinal inhibition of descending drive; all of which influence motor unit recruitment and/or firing rate. Resistance-trained Master athletes offer a good source of information regarding the inevitable effects of aging despite the countermeasure of systematic resistance-training. However, most evidence of neural adaptation is derived from longitudinal intervention studies in previously untrained (i.e. resistance-training naïve) older adults. There is good evidence for the effect of resistance-training on the end-point of neural activation, i.e. motor unit behavior, but little to no data on the generation of descending drive from e.g. transcranial magnetic stimulation or cortical imaging studies in older adults. This, along with tracking master athletes over several years, would provide valuable information and could be the focus of future research.
Collapse
Affiliation(s)
- Simon Walker
- NeuroMuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland.
| |
Collapse
|
14
|
Walker S, Piitulainen H, Manlangit T, Avela J, Baker SN. Older adults show elevated intermuscular coherence in eyes‐open standing but only young adults increase coherence in response to closing the eyes. Exp Physiol 2020; 105:1000-1011. [DOI: 10.1113/ep088468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/01/2020] [Indexed: 11/08/2022]
Affiliation(s)
- S. Walker
- NeuroMuscular Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä FI‐40014 Finland
| | - H. Piitulainen
- NeuroMuscular Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä FI‐40014 Finland
- Department of Neuroscience and Biomedical Engineering School of Science Aalto University Espoo Finland
| | - T. Manlangit
- NeuroMuscular Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä FI‐40014 Finland
| | - J. Avela
- NeuroMuscular Research Center Faculty of Sport and Health Sciences University of Jyväskylä Jyväskylä FI‐40014 Finland
| | - S. N. Baker
- Institute of Neuroscience, Medical School Newcastle University Newcastle upon Tyne UK
| |
Collapse
|